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Upper bounds for the density of universality
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1. Introduction and statement of results. The Riemann zeta-func-
tion is for Re s > 1 given by

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

=
∞∑

n=1

1
ns
,

and by analytic continuation elsewhere, except for a simple pole at s = 1.
Voronin [11] proved a remarkable universality property of the Riemann zeta-
function, namely that every continuous function g(s), defined on the disc
{s ∈ C : |s| ≤ r} with some r < 1/4, and analytic in the interior, can
be approximated uniformly by shifts of the logarithm of the Riemann zeta-
function in the strip 1/2 < Re s < 1.

Moreover, the set of translates log ζ(3/4+s+iτ) which approximate g(s)
with a given accuracy has even a positive lower density: if measA stands for
the Lebesgue measure of the set A, then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣log ζ
(

3
4

+ s+ iτ

)
− g(s)

∣∣∣∣ < ε

}
> 0.

Similar results were obtained for a large zoo of zeta-functions, for example,
Dirichlet L-functions by Voronin [11], Dedekind zeta-functions by Reich [9],
Hurwitz zeta-functions with certain parameters by Bagchi [1], Dirichlet se-
ries with multiplicative coefficients by Laurinčikas [6, §9.2], and Rankin–
Selberg L-functions by Matsumoto [8].

The Linnik–Ibragimov conjecture states that all functions, given by a
Dirichlet series, which are analytically continuable to the left of the half-
plane of absolute convergence and satisfy additionally some natural growth
conditions, are universal.

For more details on universality see [6] and [7].
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However, the known proofs of universality theorems are ineffective, giving
neither an estimate for the first approximating translate τ nor bounds for
the positive lower density. The aim of this paper is to prove upper bounds
for the upper density of universality.

Denote by Br the closed disc of radius r > 0 with center at the origin.
For a meromorphic function L(s), an analytic function g : Br → C with
fixed r ∈ (0, 1/4), and a positive ε we define the densities

d(ε, g, L) := lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣L
(

3
4

+ s+ iτ

)
− g(s)

∣∣∣∣ < ε

}
,

d(ε, g, L) := lim sup
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣L
(

3
4

+ s+ iτ

)
− g(s)

∣∣∣∣ < ε

}
.

For sufficiently large classes of functions L(s) and g(s), we will prove upper
bounds for the upper density d(ε, g, L) which tend to 0 as ε → 0. For that
purpose we consider analytic isomorphisms g : Br → B1, i.e. the inverse g−1

exists and is analytic. Obviously, such a function g has exactly one simple
zero % in the interior of Br; moreover, it turns out (by the Schwarz lemma,
see [5, §VII.2]) that

g(s) = r exp(iφ)
%− s
r2 − %s with φ ∈ R, |%| < r.(1)

Denote by Ar the class of analytic isomorphisms from Br (with fixed 0 <
r < 1/4) to the unit disc. Further, let N(σ1, σ2, T ;L) count the number
of zeros of L(s) in 1/2 < σ1 < Re s < σ2 < 1, 0 ≤ Im s < T (according
multiplicities). Our main result is

Theorem 1. Suppose that g ∈ Ar. Assume that L(s) is analytic in
Re s ≥ 3/4 − r except for at most o(T ) many singularities inside Re s ≥
3/4 − r, 0 ≤ Im s ≤ T as T → ∞, and that d(ε, g, L) > 0 for all ε > 0.
Then, for any ε ∈ (0, (2r)−1(1/4 + Re |%|)),

d(ε, g, L) ≤ 8r3ε

r2 − |%|2(2)

× lim sup
T→∞

1
T
N

(
3
4

+ Re %− 2rε,
3
4

+ Re %+ 2rε, T ;L
)
.

This theorem relates the density of universality to the value distribution
of L. Note that one can obtain similar estimates for other c-values instead
of c = 0 whenever c lies in the interior of Br. Since too many well distributed
zeros of L(s) in 1/2 < Re s < 1 violate the universality property, it seems
very likely that the limit in (2) exists in general.

Applying this to L(s) = log ζ(s), we deduce
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Corollary 2. Let g ∈ Ar. Then, for any ε ∈ (0, (2r)−1(1/4 + Re |%|)),

d(ε, exp g, ζ(s)) ≤ 8er3ε

r2 − |%|2

× lim
T→∞

1
T
N

(
3
4

+ Re %− 2rε,
3
4

+ Re %+ 2rε, T ; log ζ(s)
)

= o(ε).

Therefore, the decay of d(ε, f, ζ) as ε→ 0 is more than linear in ε.
For a further application we consider Dirichlet series with periodic coef-

ficients

L(s, f) :=
∞∑

n=1

f(n)
ns

, where f(n+ q) = f(n)

for all n ∈ N and some q ∈ N. Obviously, such series converge absolutely in
Re s > 1. By the periodicity of f ,

L(s, f) =
1
qs

q∑

a=1

f(a) ζ
(
s,
a

q

)
, where ζ(s, x) :=

∞∑

n=0

1
(n+ x)s

for fixed 0 < x ≤ 1 and Re s > 1 is the Hurwitz zeta-function. In view of
well known properties of Hurwitz zeta-functions, it turns out that L(s, f)
is analytically continuable throughout C with at most one simple pole at
s = 1. As an immediate consequence of the joint universality of Dirichlet
L-functions we obtain

Theorem 3. Suppose that q is an odd prime, f is not a multiple of a
character mod q, and f(q) = 0. Let g(s) be a continuous function on Br
which is analytic in the interior of Br. Then, for any ε > 0,

d(ε, g, L(s, f)) > 0.

For example, the Davenport–Heilbronn zeta-function, given by

1− iκ
2

L(s, χ) +
1 + iκ

2
L(s, χ), where κ :=

√
10− 2

√
5− 2√

5− 1
and χ is the character mod 5 with χ(2) = i, satisfies the conditions of the
universality theorem above.

With regard to Theorem 1 we get

Corollary 4. Suppose that q is an odd prime, f is not a multiple of
a character mod q satisfying f(1) = 1, f(q) = 0, and g ∈ Ar. Then, for any
ε ∈ (0, (2r)−1(1/4 + Re |%|)) and any σ1 ∈ (1/2, 3/4 + Re %− 2rε),

d(ε, g, L(s, f)) ≤ 8r3ε

4π(r2 − |%|2)(3/4 + Re %− 2rε− σ1)

× log
(

1
q2σ1

q∑

a=1

|f(a)|2ζ
(

2σ1,
a

q

))
.
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We conclude with one more example. Consider for an odd prime q,

L(s, 1q) =
1
qs
ζ

(
s,

1
q

)
, where 1q(n) :=

{
1 if n ≡ 1 mod q,

0 if n 6≡ 1 mod q.
By Theorem 3, L(s, 1q) has the universality property, and, using Corollary 4,
we obtain after some calculations, for sufficiently small ε > 0,

d(ε, g, L(s, 1q)) ≤
2ζ(9/8 + |%|/2)r3ε

q9/8+|%|/2π(r2 − |%|2)
,

which tends to zero as q →∞.

2. Proofs of Theorem 1 and Corollary 2

Proof of Theorem 1. The idea of the proof is that the zero % of g is
related to some zeros of L(s) in 1/2 < Re s < 1. Since g maps the boundary
of Br onto the unit circle, Rouché’s theorem (see [5, §VI.1]) implies the
existence of one simple zero λ of L(z) in

Kτ := {z = 3/4 + s+ iτ : s ∈ Br}
whenever

max
s∈Br

|L(3/4 + s+ iτ)− g(s)| < ε < 1 = max
s∈Br

|g(s)|.(3)

We may say that the zero % of g(s) generates such a zero λ of L(s).
Universality is a phenomenon that appears in intervals. We prove an

upper bound for the distance of different translates generating the same
zero λ of L(s):

Lemma 5. Suppose that a zero λ of L(s), generated by %, lies in two
different translates Kτ1 and Kτ2 . Then

|τ1 − τ2| <
8r4ε

r2 − |%|2 .

Proof. Suppose that there exist

sj = Reλ− 3/4 + itj ∈ Br and τj ∈ R with L(3/4 + sj + iτj) = 0,

for j = 1, 2, such that

λ = 3/4 + s1 + iτ1 = 3/4 + s2 + iτ2.

In view of (1),

|g(s2)− g(s1)| = r
r2 − |%|2

|r2 − %s1| · |r2 − %s2|
|s2 − s1|.

We deduce from (3) that |g(sj)| < ε for j = 1, 2, and therefore

|τ1 − τ2| = |t2 − t1| ≤
4r3

r2 − |%|2 |g(s2)− g(s1)| < 8r3ε

r2 − |%|2 ,

which proves the lemma.
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We continue with the proof of the theorem. Denote by Ij(T ) the disjoint
intervals in [0, T ] such that (3) is valid exactly for

τ ∈
⋃

j

Ij(T ) =: I(T ).

Using Lemma 5, in every interval Ij(T ) lie at least

1 +
[
r2 − |%|2

8r3ε
measIj(T )

]
≥ r2 − |%|2

8r3ε
meas Ij(T )

zeros λ of L(s) in the strip 1/2 < Re s < 1; here [x] stands for the great-
est integer ≤ x. Therefore, the number N (T ) of such zeros λ satisfies the
estimate

8r3ε

r2 − |%|2 N (T ) ≥ measI(T ).(4)

The next step is to replace N (T ) by the zero counting function appearing
in the theorem.

Obviously, the value distribution of L(z) in Kτ is ruled by that of g(s)
in Br. This gives a restriction on the real parts of zeros λ.

Lemma 6. Let λ be a zero of L(s) generated by %. Then

|Reλ− 3/4− Re %| < 2rε.

Proof. Let s ∈ Br. If |g(s)| ≥ ε, then, in view of (3),

|L(3/4 + s+ iτ)| ≥ |g(s)| − |g(s)− L(3/4 + s+ iτ)| > 0.

Since (1) implies |g(s)| ≥ |%− s|/(2r), we obtain the estimate of the lemma
by taking the real parts.

From Lemma 6 we find that

N (T ) ≤ N(3/4 + Re %− 2rε, 3/4 + Re %+ 2rε, T ;L).(5)

On the other hand, since d(ε, g, L) > 0, there exists an increasing sequence
(Tk) with limk→∞ Tk =∞ such that for any δ > 0,

measI(Tk) ≥ (d(ε, g, L)− δ)Tk.
Consequently, this together with (5) and (4) leads to

8r3ε

r2 − |%|2 N
(

3
4

+ Re %− 2rε,
3
4

+ Re %+ 2rε, Tk;L
)
≥ (d(ε, g, L)− δ)Tk.

Sending δ → 0 yields the estimate (2) of the theorem. Since the set of
singularities of L(s) in σ ≥ 3/4 − r has zero density but d(ε, g, L) > 0, the
singularities do not affect the above observations. The theorem is proved.

Proof of Corollary 2. We apply Theorem 1 to L(s) = log ζ(s). Bohr and
Landau proved that the number of zeros of ζ(s) in Re s > σ, 0 < Im s ≤ T
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is o(T ) for any fixed σ > 1/2 (see [10, §9.17]); hence, the set of singularities
of log ζ(s) has density zero. As shown by Bohr and Jessen, the limit

lim
T→∞

1
T
N

(
3
4

+ Re %− δ, 3
4

+ Re %+ δ, T ; log ζ
)

exists, and tends to 0 as ε→ 0 (see [2, Hilfssatz 6]). Further, one has

max
s∈Br

|ζ(3/4 + s+ iτ)− exp g(s)|

≤ max
s∈Br

|exp g(s)| ·max
s∈Br

|exp(log ζ(3/4 + s+ iτ)− g(s))− 1|

≤ emax
s∈Br

|ζ(3/4 + s+ iτ)− exp g(s)|.

The corollary is shown.

3. Proofs of Theorem 3 and Corollary 4

Proof of Theorem 3. Denote by ϕ Euler’s totient. For the ϕ(q) pairwise
inequivalent characters χj mod q define the matrix

Ξ = (χj(n))1≤n,j≤ϕ(q).

By the properties of characters to a prime modulus the matrix Ξ is invert-
ible (since pairwise inequivalent characters are linearly independent over
C, and detΞ is a Vandermonde determinant). Hence there exist uniquely
determined complex numbers c1, . . . , cϕ(q) such that

f(a) =
ϕ(q)∑

j=1

cjχj(a) for a = 1, . . . , ϕ(q),

where at least two distinct coefficients cj are non-vanishing (since f is not
a multiple of a character mod q). In view of f(q) = 0 we obtain the repre-
sentation

L(s, f) =
ϕ(q)∑

j=1

cjL(s, χj).(6)

Put lg := 1 + sups∈Br |g(s)|. Then g(s) + lg 6= 0 for s ∈ Br. Without loss of
generality we may assume that c1, c2 6= 0. Now define

gχ1(s) =
g(s) + lg

c1
, gχ2 = − lg

c2
and gχj (s) = η for j = 3, . . . , ϕ(q),

where η is a small positive parameter, to be chosen later. Using the joint
universality of Dirichlet L-functions [1], for any δ > 0 we obtain

lim inf
T→∞

1
T

meas(τ ∈ [0, T ] : max
1≤j≤ϕ(q)

max
s∈Br

|L(s+ iτ, χj)− gχj (s)| < δ) > 0.

Consequently, (6) implies
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max
s∈Br

|L(s+ iτ, f)− g(s)| ≤
ϕ(q)∑

j=1

|cj|max
s∈Br

|L(s+ iτ, χj)− gχj (s)|+ η

ϕ(q)∑

j=3

|cj |

≤ δ(q − 1) max
1≤j≤q−1

|cj|+ η(q − 3).

For sufficiently small δ and η the assertion of the theorem follows.

Proof of Corollary 4. Denote by N(σ, T ) the number of zeros of L(s, f)
in the region Re s > σ, 0 < Im s ≤ T . Then Littlewood’s lemma (see [10,
§9.9]) states that

σ2�

σ1

N(σ, T ) dσ =
1

2πi

�

R
logL(s, f) ds+O(1),(7)

where R is the rectangular contour with vertices σ1, σ2, σ1 + iT, σ2 + iT with
1/2 < σ1 < 1 < σ2, and where the error term arises from the possible pole
of L(s, f) at s = 1 (to define here logL(s, f) we choose the principal branch
of the logarithm on the real axis whereas for other points s the value of the
logarithm is obtained by analytic continuation). Obviously, we may choose
σ2 such that L(s, f) has no zeros in the half-plane Re s ≥ σ2. Since f(1) = 1
a standard application of Jensen’s formula (see [5, §IX.1] and [3]) shows that
the right hand side of (7) equals

1
2π

T�

0

log |L(σ1 + it, f)| dt+O(log T )

≤ T

4π
log
(

1
T

T�

0

|L(σ1 + it)|2 dt
)

+O(log T ).

Therefore, using the mean square formula [4]

lim
T→∞

1
T

T�

0

|L(σ + it, f)|2 dt =
1
q2σ

q∑

a=1

|f(a)|2ζ
(

2σ,
a

q

)
,

valid for σ > 1/2, we may replace (7) by

∑

Reλ>σ1
0<Imλ≤T

(Reλ− σ1) ≤ T

4π
log
(

1
q2σ

q∑

a=1

|f(a)|2ζ
(

2σ,
a

q

))
+O(logT )(8)

as T → ∞; here the sum on the left hand side is taken over all zeros λ of
L(s, f), not necessarily generated by %. Since, for 1/2 < σ1 < σ3,

N(σ3, T ) ≤ 1
σ3 − σ1

∑

Reλ>σ1
0<Imλ≤T

(Reλ− σ1),

we may estimate
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N(3/4 + Re %− 2rε, 3/4 + Re %+ 2rε, T ;L(s, f))

≤ T

4π(3/4 + Re %− 2rε− σ1)
log
(

1
q2σ1

q∑

a=1

|f(a)|2ζ
(

2σ1,
a

q

))
+O(log T ).

This leads in view of (2) to the estimate in the corollary.
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[4] A. Kačenas and A. Laurinčikas, On the periodic zeta-function, Liet. Mat. Rink. 41
(2001), 214–226 (in Russian).

[5] S. Lang, Complex Analysis, 2nd ed., Springer, 1985.
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