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1. Introduction. Let p ∈ Z be a prime, and let A and B be non-empty
subsets of Zp. Let |S| denote the cardinality of S ⊂ Zp and let S ⊂ Zp

denote the complement of S. Cauchy [2], and independently Davenport [3],
showed that

|A + B| ≥ min{p, |A| + |B| − 1}(1)

where A + B = {a + b : a ∈ A, b ∈ B}. Davenport reports on his later
discovery of Cauchy’s priority in the historical note [4].

The problem of characterizing the pairs of sets (A, B) for which equality
holds in the Cauchy–Davenport inequality was solved by Vosper in [12]. He
obtained the following

Theorem 1. Let p be a prime number , and let A and B be non-empty

subsets of Zp. Then

|A + B| = min{|A| + |B| − 1, p}

if and only if at least one of the following conditions holds:

(i) min{|A|, |B|} = 1,
(ii) |A| + |B| ≥ p + 1,

(iii) B = c − A for some c ∈ Zp,
(iv) A and B are arithmetic progressions with the same common differ-

ence.

The following generalization of (1) was obtained in [9] by Pollard.

Theorem 2. Let p be a prime number , and let A and B be non-empty

subsets of Zp. For t = 1, 2, . . . , min{|A|, |B|}, let Nt = Nt(A, B) denote the

number of congruence classes in Zp that have at least t representations in

the form a + b, where a ∈ A and b ∈ B. Then

N1 + · · · + Nt ≥ t min{p, |A| + |B| − t}.(2)
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Our main theorem characterizes the pairs (A, B) for which equality holds
in (2) for a given t ≥ 2. We will call such pairs t-critical . Since (2) reduces to
(1) when t = 1, our theorem complements Vosper’s theorem. To be precise,
we have

Theorem 3. Let p be a prime number. For 2 ≤ t ≤ min{|A|, |B|}, the

pair (A, B) of non-empty subsets of Zp is t-critical if and only if at least

one of the following conditions holds:

(i) min{|A|, |B|} = t,
(ii) |A| + |B| ≥ p + t,
(iii) |A| = |B| = t + 1 and B = g − A for some g ∈ Zp,
(iv) A and B are arithmetic progressions with the same common differ-

ence.

An important tool in the proof of the theorem is the e-transform of a
pair of sets. For the reader’s convenience, we recall the definition and a few
properties.

Given a pair (A, B) of subsets of Zp and an element e ∈ Zp, let A(e) =
A ∪ (B + e) and B(e) = B ∩ (A − e). Then

(1) A(e) + B(e) ⊆ A + B,
(2) A(e) \ A = e + (B \ B(e)),

(3) |A(e)| + |B(e)| = |A| + |B|.

The book [8] is an excellent reference for the background briefly described
above. We restate and prove our main theorem in Section 3. In Section 2 we
prove several lemmas needed for the proof of the theorem. The final section
contains a few ideas for further work.

The authors are indebted to the anonymous referee for suggesting many
improvements. In particular, arguments used in Lemmas 1, 5 and 8 were
suggested by the referee and replace our less digestible original presenta-
tion.

2. Preliminaries. For x ∈ Zp, let rA,B(x) denote the number of solu-
tions of x = a + b with a ∈ A and b ∈ B. Let S(A, B, t) = N1 + · · · + Nt.
Then we have

S(A, B, t) =
∑

x∈Zp

min{t, rA,B(x)}.

It is clear that rA,B(x) ≤ min{|A|, |B|} for each x ∈ Zp. Therefore, when
t = min{|A|, |B|}, we have

S(A, B, t) =
∑

x∈Zp

min{t, rA,B(x)} =
∑

x∈Zp

rA,B(x) = |A| |B|.
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For |A|+ |B| ≥ p + t, we have rA,B(g) ≥ t for all g ∈ Zp. So in this case,

S(A, B, t) =
∑

x∈Zp

min{t, rA,B(x)} =
∑

x∈Zp

t = tp.

Accordingly, for the remainder of this section, we shall assume |A| + |B| <
p + t and 1 < t < min{|A|, |B|}.

Lemma 1. Let (A, B) be a t-critical pair of subsets of Zp, and suppose

that 1 < t < min{|A|, |B|} and |A| + |B| < p + t. If A is an arithmetic

progression then B is an arithmetic progression with the same common dif-

ference.

Proof. Without loss of generality, we may assume that |A| ≥ |B|, that
0 ∈ B and that A = {0, 1, . . . , k − 1} + pZ, where k = |A|. For brevity,
write ℓ = |B|. We shall complete the proof of the lemma by showing that
B = {b, b + 1, . . . , b + ℓ − 1} for some b ∈ B. Choose integers

0 = r0 < r1 < · · · < rℓ−1 < p

so that, with bj = rj + pZ, we may write

B = {b0, b1, . . . , bℓ−1}.

For 0 ≤ i ≤ t let rℓ+i = p + ri. The set A + B is the union of the intervals
[rj , rj + k − 1] + pZ, and for any x ∈ Zp we have

min{t, rA,B(x)} = |{j ∈ [0, ℓ− 1] : rj ≤ x ≤ rj + min{k − 1, rj+t − rj − 1}}|.

Writing sj,t = min{k, rj+t − rj}, we then obtain

S(A, B, t) =
∑

x∈Zp

min{t, rA,B(x)}=
∑

x∈Zp

|{j ∈ [0, ℓ−1] : rj ≤ x≤ rj +sj,t−1}|

=
ℓ−1
∑

j=0

rj+sj,t−1
∑

x=rj

1 =
ℓ−1
∑

j=0

min{k, rj+t − rj}.

From the above equality, we have

t(k + ℓ − t) =

ℓ−1
∑

j=0

min{k, rj+t − rj}(3)

=
ℓ−1
∑

j=0

(rj+t − rj − max{0, rj+t − rj − k})

= tp −
ℓ−1
∑

j=0

max{0, rj+t − rj − k},
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from which it follows that

t(p + t − k − ℓ) =
ℓ−1
∑

j=0

max{0, rj+t − rj − k}.(4)

Set

J0 = {j ∈ [0, ℓ − 1] : rj+t − rj > k}, J1 = {j ∈ [0, ℓ − 1] : rj+t − rj ≤ k}.

For each j ∈ [0, ℓ − 1] we have {rj+t+1, . . . , rj+ℓ−1} ⊂ [rj+t + 1, rj + p − 1]

and therefore rj+t − rj ≤ p + t − ℓ for all such j. This fact and (4) now
give

t(p + t − k − ℓ) =
∑

j∈J0

(rj+t − rj − k) ≤ (p + t − ℓ − k)|J0|,

implying |J0| ≥ t. Next, from (3) we get

t(k + ℓ − t) = k|J0| +
∑

j∈J1

(rj+t − rj) ≥ k|J0| + t(ℓ − |J0|) = tℓ + (k − t)|J0|

≥ t(ℓ + k − t).

It follows that |J0| = t, |J1| = ℓ − t, and moreover, rj+t − rj = t for each
j ∈ J1. Observe that the latter equality implies that for each j ∈ J1 we have
rj + i + pZ ∈ B for each i ∈ {0, . . . , t}.

To complete the proof, write B1 = {rj + pZ : j ∈ J1} and represent B as
a disjoint union B =

⋃s
i=1 Pi, where each Pi is an arithmetic progression in

Zp with difference 1, and any two of these progressions are separated by at
least one element from B. We then have |Pi ∩ B1| ≤ |Pi| − min{|Pi|, t} for
each i ∈ [1, s] and hence

ℓ − t = |B1| ≤
s

∑

i=1

(|Pi| − min{|Pi|, t}) = ℓ −
s

∑

i=1

min{|Pi|, t},

implying
s

∑

i=1

min{|Pi|, t} ≤ t.

Finally, from
∑s

i=1 |Pi| = ℓ > t we conclude that s = 1, as desired.

Lemma 1 provides an important tool in the induction argument that we
use to prove the main theorem. The next four lemmas dispose of various
endpoint cases.

Lemma 2. If |A| = t + 1 < p then (A, g −A) is a t-critical pair for any

g ∈ Zp.
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Proof. We have N1(A, g −A) + · · ·+ N|A|(A, g −A) = |A|2 and |A| < p.
By Pollard’s inequality we have

|A|2 − N|A|(A, g − A) = N1(A, g − A) + · · · + N|A|−1(A, g − A)

≥ t min{2|A| − t, p} = |A|2 − 1.

Therefore N|A|(A, g −A) ≤ 1, and since g has exactly |A| distinct represen-
tations in A+(g−A), equality holds. It follows that (A, g−A) is t-critical.

Lemma 3. Suppose that (A, B) is a t-critical pair of subsets of Zp. If

|A| = |B| = t + 1 and |A| + |B| < p + t, then B = g − A for some g ∈ Zp.

Proof. Since |A| + |B| < p + t we have

N1 + · · · + Nt+1 = |A| |B| = t2 + 2t + 1,

N1 + · · · + Nt = t(|A| + |B| − t) = t2 + 2t.

It follows that N|A| = 1, which implies that B is of the form g −A for some
g ∈ Zp.

Lemma 4. Suppose that (A, B) is a t-critical pair of subsets of Zp. If

|A| > |B| = t + 1 and |A| + |B| < p + t then A and B are arithmetic

progressions with the same common difference.

Proof. We have

N1 + · · · + Nt = t(|A| + |B| − t) = t(|A| + 1),

N1 + · · · + Nt+1 = (t + 1)|A|

so that Nt+1 = |A| − t.

Let C ⊂ A + B be the set of elements c ∈ Zp which have t + 1 distinct
representations as c = a + b with a ∈ A and b ∈ B. Then C − B ⊆ A, so
|C − B| ≤ |A|. Since |A| + |B| < p + t, we have |A| < p − 1, so by (1),

|C − B| ≥ min{p, |C| + |B| − 1} = |C| + |B| − 1 = |A| − t + |B| − 1 = |A|.

It follows that (C,−B) is a critical pair for (1). Since |C −B| = |A| < p− 1
and |A| > |B| > 1, Vosper’s theorem implies that C and −B are arithmetic
progressions with the same common difference. By Lemma 1 then, A is an
arithmetic progression with the same common difference.

Observe that Lemmas 3 and 4 have the following corollary.

Corollary 1. If (A, B) is t-critical and min{|A|, |B|} = t + 1 while

|A| + |B| < p + t, then either B = g − A for some g ∈ Zp or A and B are

arithmetic progressions with the same common difference.

Lemma 5. Suppose that (A, B) is a t-critical pair of subsets of Zp. If

1 < t < min{|A|, |B|} and |A|+ |B| = p+t−1, then A and B are arithmetic

progressions with the same common difference.
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Proof. Note that the bound max{|A|, |B|} ≤ p − 2 follows from our
standing assumption that 1 < t < min{|A|, |B|}. From the remark at the
beginning of this section, it follows that rA,B(g) ≥ t − 1 for all g ∈ Zp.
Therefore we have

N1 = · · · = Nt−1 = p.

Since (A, B) is t-critical, we also have

N1 + · · · + Nt = t(|A| + |B| − t) = t(p − 1).

It follows that Nt−1 − Nt = t.
Let C be the set of all those elements of A + B with exactly t − 1

representations as a sum of an element of A and an element of B, so that
|C| = t. Then for any c ∈ C the number of representations of c as a sum of
an element of A and an element of B is |B| − (t − 1), and consequently the
number of representations as a sum of an element of A and an element of
B is |A| − (|B| − (t − 1)) = p − |A| − |B| + (t − 1) = 0. It follows that C is
disjoint from A + B and therefore by the Cauchy–Davenport theorem that

p − t = |C| ≥ |A + B| ≥ |A| + |B| − 1 = p − t.

We notice that the Cauchy–Davenport theorem applies here since |A| =
p−|A| = |B|− t+1 ≥ 2, and similarly |B| ≥ 2. Vosper’s theorem now shows

that A and B are arithmetic progressions with the same common difference
and therefore so are A and B.

Lemma 6. Suppose that 3 ≤ |A| ≤ p − 3 and that (A, B) is a 2-critical
pair of subsets of Zp. If B = g − A for some g ∈ Zp then A and B are

arithmetic progressions with the same common difference.

Proof. From B = g − A we easily get N1 = p − 1, and since (A, B) is
2-critical we have N1+N2 = 2min{|A|+|B|−2, p} = 2p−4. Thus N2 = p−3,
and N1−N2 = 2. Let c be one of the two elements of Zp which have a unique
representation as c = a + b with a ∈ A and b ∈ B. Then (c − B) ∩ A = {a}
so that (c−(g−A))∩A = {a}. It follows that (c−g+A)∩A = A\{a}, which
implies that A is an arithmetic progression with common difference c − g.
By Lemma 1 then B is an arithmetic progression with the same common
difference.

The next lemma provides one more necessary analytical tool. Recall that
according to our notation, rA(e),B(e)(c) denotes the number of solutions of
c = a + b with a ∈ A(e) and b ∈ B(e), and that Nt(A(e), B(e)) denotes the
number of those c ∈ Zp with rA(e),B(e)(c) ≥ t.

Lemma 7. For any e ∈ Zp the e-transform (A(e), B(e)) of the pair

(A, B) satisfies

Nt(A(e), B(e)) ≤ Nt

for all t.
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Proof. It is sufficient to prove that for all c in the sum set A(e) + B(e),

rA(e),B(e)(c) ≤ rA,B(c).

But it is easily checked (see for example [8, pp. 46–47]) that

rA,B(c) = rA(e),B(e)(c) + rA\(B+e),B\(A−e)(c).

A final technical lemma is required at the end of the proof of The-
orem 3.

Lemma 8. Suppose that 2 ≤ s ≤ |B| ≤ p − 2 for some B ⊂ Zp and that

|(x1 + B) ∩ · · · ∩ (xs + B)| ≥ |B| − (s − 1)

for some set X = {x1, . . . , xs} ⊂ Zp. If |B| = s then X = g − B for some

g ∈ Zp and if s < |B| then B is an arithmetic progression.

Proof. We have

p− (|B|− (s− 1)) ≥ |(x1 +B)∪ · · ·∪ (xs +B)| = |X +B| ≥ s+(p−|B|)− 1

by the Cauchy–Davenport theorem. The conclusions of the lemma then fol-
low from Vosper’s theorem.

3. A Vosper type theorem for Pollard’s inequality. We can now
prove Theorem 3. We restate it here for the reader’s convenience.

Theorem 3. Let p be a prime number. For 2 ≤ t ≤ min{|A|, |B|}, the

pair (A, B) of non-empty subsets of Zp is t-critical if and only if at least

one of the following conditions holds:

(i) min{|A|, |B|} = t,
(ii) |A| + |B| ≥ p + t,
(iii) |A| = |B| = t + 1 and B = g − A for some g ∈ Zp,
(iv) A and B are arithmetic progressions with the same common differ-

ence.

Proof. The sufficiency of the first two conditions has been discussed at
the beginning of Section 2. The sufficiency of condition (iii) follows from
Lemma 2 and the sufficiency of condition (iv) is an easy exercise. To prove
the necessity, suppose that t ≥ 2 is the smallest positive integer for which
the theorem fails. Then by Lemmas 1 and 2, and Corollary 1, there exists
a t-critical pair (A, B) such that |A| ≥ |B| > t + 1 and such that neither
A nor B is an arithmetic progression. Since A and B are not arithmetic
progressions, we have max{|A|, |B|} ≤ p−2, and then by Lemma 5, we have
|A| + |B| ≤ p + t − 2.

We may choose the pair (A, B) so that

(i) |A + B| is minimal,
(ii) |A| + |B| is maximal subject to (i),
(iii) |B| is minimal subject to (i) and (ii).
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In broad outline, the proof will now proceed in the following four steps:

(1) Rule out the existence of e ∈ Zp such that t < |B(e)| < |B|.
(2) Rule out the existence of e ∈ Zp such that 0 < |B(e)| < t.
(3) Show the existence of many e ∈ Zp such that |B(e)| = t.
(4) Obtain a contradiction with the form of the pair (A, B) assumed

at the beginning of the proof.

With an eye toward step (1) then, we continue the proof as follows.
If t > 2 then, since |A| + |B| ≤ p + t − 2 and |B| > t + 1, by minimality

of t we have

N1 + · · · + Nt−1 > (t − 1)(|A| + |B| − (t − 1)).

Indeed, Vosper’s theorem shows that this estimate also holds for t = 2, as
A and B are not arithmetic progressions and Lemma 6 shows that B is not
of the form g − A with g ∈ Zp.

Suppose that there is some e ∈ Zp such that t < |B(e)| < |B| and, for
brevity, set N ′

i = Ni(A(e), B(e)). By Pollard’s inequality we find

N ′
1 + · · · + N ′

t ≥ t(|A(e)| + |B(e)| − t) = t(|A| + |B| − t) = N1 + · · · + Nt.

By Lemma 7, it follows that N ′
i = Ni for 1 ≤ i ≤ t, and therefore

N ′
1+· · ·+N ′

t−1 > (t−1)(|A|+|B|−(t−1)) = (t−1)(|A(e)|+|B(e)|−(t−1)).

By Lemma 1, since (A(e), B(e)) is a t-critical pair, if one of (A(e), B(e))
is an arithmetic progression, then so is the other and the two progressions
have the same common difference. Therefore, the previous inequality implies
that neither of (A(e), B(e)) is an arithmetic progression. By the properties
of the e-transform recorded in the introduction, it follows that (A(e), B(e))
is also a t-critical pair that violates the conclusion of the theorem. This is
in contradiction to the minimality of |B|. Therefore there can be no e ∈ Zp

such that t < |B(e)| < |B|.
Suppose now that there is an e ∈ Zp such that 0 < |B(e)| < t. Suppose

further that |B(e)| is minimized over such choices of e. Observing that

Ni(A(e), B(e)) = Ni((A − e) ∪ B, B(e))

and Ni(A − e, B) = Ni(A, B) for each i, we consider the pair

(U, I) = ((A − e) ∪ B, (A − e) ∩ B)

with |I| < t. Write Ae = (A− e) and let A′
e = (A− e) \B, B′ = B \ (A− e)

and t′ = t − |I|. For each x ∈ Zp we have

rAe,B(x) = rU,I(x) + rA′

e,B′(x),

so that

min{t, rAe,B(x)} ≥ min{|I|, rU,I(x)} + min{t′, rA′

e,B′(x)}

= rU,I(x) + min{t′, rA′

e,B′(x)}.
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We also have

1 ≤ t′ = t − |I| < |B| − |I| = |B′|

and

|A′
e| + |B′| − t′ = (|Ae| − |I|) + (|B| − |I|) − (t − |I|) = |U | − t < |U | ≤ p.

Therefore

t(|Ae|+ |B|− t) =
∑

x∈Zp

min{t, rAe,B(x)}≥
∑

x∈Zp

rU,I(x)+
∑

x∈Zp

min{t′, rA′

e,B′(x)}

≥ |U | |I| + t′(|A′
e| + |B′| − t′) = |U | |I| + (t − |I|)(|U | − t)

= t(|Ae| + |B| − t).

It follows that
∑

x∈Zp

min{t′, rA′

e,B′(x)} = t′(|A′| + |B′| − t′)

and therefore that (A′
e, B

′) is a t′-critical pair. Since |A′
e| ≥ |B′| > t′ +1 and

|A′
e| + |B′| ≤ p + t′ − 2 − |I|, we conclude, by the minimality of t, that A′

e

and B′ are arithmetic progressions with the same common difference.

We have found that if 0 < |B(e)| < t for some e ∈ Zp then the sets
B \ (A− e) and (A− e) \B must be arithmetic progressions with the same
common difference. We will now show that, together with our assumptions
on the pair (A, B), this implies that A and B are arithmetic progressions
with the same common difference. Let d be the common difference of the
progressions B \ (A − e) and (A − e) \ B. Dividing by d (mod p) we may
assume that d = 1. By a translation we may assume that

(A − e) \ B = {0, 1, . . . , m}, B \ (A − e) = {m + j, . . . , m + j + k}.

Let X = B(e) ∩ (m, m + j) and Y = B(e) ∩ (m + j + k, p) and assume
first that both X and Y are non-empty. Write X = {x1, . . . , xs} and Y =
{y1, . . . , yr}, where m < x1 < · · · < xs < m + j and m + j + k < y1 <
· · · < yr < p and congruence classes are identified by their representatives
in [0, p − 1]. Put

d′ = min{x2 − x1, . . . , xs − xs−1, y2 − y1, . . . , yr − yr−1},

so that (B + d′) ∩ (A − e) is non-empty, and therefore

(∗) |(B + d′) ∩ (A − e)| ≥ |B(e)|

by minimality of |B(e)|. We have |(X +d′)∩X| ≤ |X|−1, and equality holds
if and only if X is an arithmetic progression with difference d′. A similar
observation applies to Y . From (∗), it now follows that X and Y are arith-
metic progressions with difference d′, and moreover, that y1 = m+ j +k+d′

and yr = p − d′. In the same way, considering (B − d′) ∩ (A − e) instead of
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(B + d′) ∩ (A − e), we deduce that x1 = m + d′ and xs = m + j − d′. We
now claim that, in fact, d′ = 1 holds: for otherwise

0 < |(B + d′ + 1) ∩ (A − e)| < |B(e)|,

contradicting the minimality of |B(e)|. But this implies that A and B are
arithmetic progressions with the same common difference.

To remove the assumption that both X and Y must be non-empty, notice
that at least one of them must be non-empty. If X is empty, let

c = min{j, y2 − y1, . . . , yr − yr−1}.

Then, arguing as above, we see that 0 < |(B−c)∩(A−e)| < |B(e)| unless Y
is an arithmetic progression with difference 1 for which y1 = m+j+k+1 and
yr = p − 1. A similar argument applies if Y is empty and X is non-empty.

Since A and B are not arithmetic progressions, we have shown that
there can be no e ∈ Zp such that 0 < |B(e)| < t. The only possible values
for |(A − e) ∩ B| are thus 0, t and |B|.

We are in a position to proceed with step (3) of our initial outline of the
proof. We will show that for any b ∈ B there are many values of e ∈ Zp such
that b ∈ B(e) ( B and therefore such that |B(e)| = t.

It is easily seen that the set of those e with the property in question is
precisely the set E = {e ∈ A − b : B + e 6⊆ A}. Let E′ = (A − b) \ E. If
|E′| ≥ 2, then taking into account that B + E′ ⊆ A and that B is not an
arithmetic progression, by Vosper’s theorem we get

|A| ≥ |B + E′| ≥ |B| + |E′| = |B| + (|A| − |E|)

whence |E| ≥ |B|.
If E′ is empty then we have |E| = |A| ≥ |B| and if |E′| = 1 then

|E| = |A| − 1 ≥ |B| − 1. Notice that |E′| = |{e ∈ A − b : B + e ⊆ A}| is
independent of b ∈ B and therefore |E| is also independent of b ∈ B.

We now assume that |E| ≥ |B|. The case where |E′| = 1 and |E| =
|A| − 1 = |B| − 1 will be treated separately at the end of the proof by
making a modification to the following argument.

By making translations, we may assume that 0 ∈ A∩B and that |A∩B|
= t. Let U = A ∪B and I = A ∩B. Then since |U | |I| = t(|A|+ |B| − t) we
have

S(U, I, t) = S(A, B, t)

and rA,B(x) = rU,I(x) + rA′,B′(x) for each x (with the same notation as
earlier). Since (A, B) is a t-critical pair, it follows that A′ + B′ is contained
in the subset of elements of U + I which have t distinct representations as
u + i with u ∈ U and i ∈ I. That is,

A′ + B′ ⊆
⋂

b∈I

(b + U) ⊆ {x : rA,B(x) ≥ t}.(5)
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As before, let E(b) = {e ∈ A − b : B + e 6⊆ A}. Then, by assumption,
|E(b)| ≥ |B| for each b ∈ I and for any e ∈ E(b) we have b ∈ (A − e) ∩ B.
Fix b∗ ∈ I and e ∈ E(b∗) and keep in mind that b∗ ∈ (A− e)∩B. We have,
as for the case of (U, I),

S(A(e), B(e), t) = S(A, B, t)

and rA,B(x) = rA(e),B(e)(x) + rA\(B+e),B\(A−e)(x) for each x. It follows, in
the same way as for the pair (U, I), that

A \ (B + e)+B \ (A− e) ⊆
⋂

b∈(A−e)∩B

(b+(A∪ (B + e))) ⊆ {x : rA,B(x) ≥ t}.

In fact, since (A, B) is t-critical we have

rU,I(x) = rA(e),B(e)(x) = rA,B(x)

whenever rA,B(x) < t and we have

{x : rA,B(x) ≥ t} = {x : rU,I(x) = t} = {x : rA(e),B(e)(x) = t}.

Consequently,

A′ + B′ ⊆
⋂

b∈(A−e)∩B

(b + (A ∪ (B + e))).

Since this inclusion holds for each e ∈ E(b∗) we obtain

A′ + B′ ⊆
⋂

e∈E(b∗)

(b∗ + (A ∪ (B + e))).

It follows that

(A′ + B′) \ (b∗ + A) ⊆ b∗ +
⋂

e∈E(b∗)

(B + e).

If |B| < |E(b∗)|, then by Lemma 8, we have
⋂

e∈E(b∗)(B + e) = ∅ so that

A′+B′ ⊆ b∗+A. If |B| = |E(b∗)| then Lemma 8 shows that E(b∗) = g′−B for
some g′ ∈ Zp with {g′} =

⋂

e∈E(b∗)(B+e). In this case, since b∗+E(b∗) ⊆ A,

we have g′ = b∗ + (g′ − b∗) ∈ A and it still follows that A′ + B′ ⊆ b∗ + A.
Since b∗ was an arbitrary point of I, we have

A′ + B′ ⊆
⋂

b∈I

(b + A)

so that, by the Cauchy–Davenport inequality,
∣

∣

∣

⋂

b∈I

(b + A)
∣

∣

∣
≥ |A′ + B′| ≥ |A| + |B| − 2t − 1 ≥ |A| − t + 1(6)

since |B| > t + 1. By Lemma 8, this can only occur if A is an arithmetic
progression. This is a contradiction, so the theorem is proved except for the
case when |E′| = 1 and |E| = |A| − 1 = |B| − 1.



12 E. Nazarewicz et al.

When |E′| = 1 and |A| = |B| we have A = g + B for some g ∈ Zp. We
shall assume further, for the moment, that |B| < (p + 1)/2. We require two
observations. The first is that in this case we must have |B| > 2t.

Indeed, we have, using our assumptions on B and the Cauchy–Davenport
inequality,

|B|2 = |A| |B| =
∑

e∈Zp

|(A − e) ∩ B|(7)

= |{e ∈ Zp : |(A − e) ∩ B| = t}| · t + |B| = (|B − B| − 1) · t + |B|

> (2|B| − 2) · t + |B|,

where the strict inequality holds by Vosper’s theorem, because B is not an
arithmetic progression and |B| < (p + 1)/2. We cannot have A = g − B
for some g ∈ Zp since |A| = |B| and p is prime. To get the second equality
above, write |(A − e) ∩ B| =

∑

x∈Zp
χA(x + e)χB(x) where χ denotes the

indicator function of the set. Then change the order of summation. It follows
that |B| > 2t.

Next, we observe that in the present case, A′ and B′ cannot be arithmetic
progressions with the same common difference. If they were, we would have
|A′| = |B′| > t because |B| > 2t. The only possible sizes of (A−e)∩B are 0,
t and |B|. So if we choose g′ 6= 0 such that g′+B′ = A′, then g′+B = A and
g′ + (A ∩B) = A \ (g′ + B′) = A ∩B. This can only happen if A ∩B = Zp.

Returning to the argument in the proof which produced (6), we have,
for each b∗ ∈ I,

(A′ + B′) \ (b∗ + A) ⊆ b∗ +
⋂

e∈E(b∗)

(B + e).

Lemma 8 implies that ∣

∣

∣

⋂

e∈E(b∗)

(B + e)
∣

∣

∣
≤ 1

but gives no information on the structure of the set E(b∗) when
∣

∣

∣

⋂

e∈E(b∗)

(B + e)
∣

∣

∣
= 1

since |E(b∗)| = |B| − 1. However, we do have

A′ + B′ ⊆
(

⋂

b∈I

(b + A)
)

∪ F

where |F | ≤ t.
Then using our previous two observations we obtain
∣

∣

∣

⋂

b∈I

(b + A)
∣

∣

∣
≥ |A′ + B′| − |F | ≥ |A′| + |B′| − t ≥ |A| + (|B| − 2t) − t

≥ |A| − t + 1,

which by Lemma 8 implies that A is an arithmetic progression as before.
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In the remaining case we have |E′| = 1, A = g + B for some g ∈ Zp and
|B| ≥ (p + 1)/2. Since |B| ≥ (p + 1)/2, we have (B + e) ∩ B 6= ∅ for all
e ∈ Zp, e 6= 0. In the present situation, this means that |(B + e)∩B| = t for
all e ∈ Zp, e 6= 0, and therefore

|(B + e) ∩ B| = |B| − t(8)

for all e ∈ Zp, e 6= 0. Looking back at (5), we notice that we may assume
that |A′ + B′| ≤ |A′|+ |B′|. For if |A′ + B′| ≥ |A′|+ |B′|+ 1 then Lemma 8
implies that U and I are arithmetic progressions with the same common
difference. From this we quickly deduce the same for A and B. From the
calculation in (7) and Vosper’s theorem we have

|B|2 = (p − 1)t + |B|

and using |B| ≥ (p + 1)/2 we obtain |B| ≤ 2t.

We shall appeal to the following theorem of Hamidoune and Rødseth
from [5] which characterizes pairs of sets (X, Y ) in Zp for which |X + Y | =
|X| + |Y |. Call an arithmetic progression with difference d from which one
term has been removed an almost-progression with difference d. Note that
an arithmetic progression with fewer than p elements is also an almost pro-
gression.

Theorem 4. Suppose that |X|, |Y | ≥ 3, and that

7 ≤ |X + Y | = |X| + |Y | ≤ p − 4.

Then X and Y are almost-progressions with the same difference.

Represent B as a disjoint union B =
⋃s

i=1 Pi where each Pi is an
arithmetic progression in Zp with difference 1 and any two of these pro-
gressions are separated by at least one element from B. Considering that
|(B+1)∩B| = |(B−1)∩B| = |B|−t we see that s = |B|−t. The set B is also
a disjoint union of progressions with difference 1. Since |(B + d) ∩ B| = t
for each d 6= 0, we may divide by an appropriate d and assume that one
of the progressions with difference 1 which makes up B has at least two
elements.

If |A′| + |B′| = |A′ + B′| < 7 then we have 2|B| − 2t < 7, so that
|B| ≤ t + 3. We must then have |B| = t + 2 or |B| = t + 3. Considering
congruence classes as points on a circle it is easily checked that if either
B = P1 ∪ P2 or B = P1 ∪ P2 ∪ P3 then |(B + e) ∩ B| is not a constant
function of e 6= 0.

Moreover, since |B| ≤ 2t, we have |A′| + |B′| = 2|B| − 2t ≤ |B|. If
|B| = p−3, then |B| = 3 and it is once again simple to verify that |(B+e)∩B|
cannot be a constant function of e 6= 0. We may then assume that

7 ≤ |A′| + |B′| ≤ p − 4.
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As before, write B =
⋃s

i=1 Pi with s = |B| − t and assume, as we may, that
B contains an arithmetic progression with difference 1 having at least two
elements. By translating, we may take A = B and B′ = (B + 1) ∩ B and
A′ = B \ (B +1). If |A′+B′| = |A′|+ |B′|−1 we use Vosper’s theorem and if
|A′ + B′| = |A′| + |B′| we use the Hamidoune–Rødseth theorem to see that
we must have |Pi| = |Pj| for 1 ≤ i, j ≤ s. Considering the set B as a subset
of the circle, it is clear that |(B + 1) ∩ B| 6= |(B + 2) ∩ B|. We have ruled
out (8) for all possible sizes of |B| and this completes the proof.

4. Remarks. We briefly indicate two possible directions for further in-
vestigation.

(1) In [10], Pollard extended his theorem to the case of sums of h subsets
in cyclic groups of composite order. It might be interesting to try to extend
the result in this paper to those cases or to the case of general finite abelian
groups along the lines of Kneser’s theorem (see [8, Chapter 4]).

(2) The Riesz rearrangement inequality (from [11]) states that\\
f(y)g(x − y)h(x) dy dx ≤

\\
f∗(y)g∗(x − y)h∗(x) dy dx

where f∗, g∗, and h∗ are the spherically decreasing rearrangements of the
functions f , g, and h on Rn. (See also [6, Chapter 10].)

A connection with Pollard’s inequality arises because

|A| |B| − S(A, B, t) =
(

∑

s∈Zp

∑

x∈Zp

χB(x)χA(s − x)χCt
(s)

)

− t|Ct|(9)

where Ct = {s ∈ Zp : rA,B(s) ≥ t}.

The cases of equality in the Riesz inequality were determined by Bur-
chard in [1]. Our theorem characterizes pairs which maximize the quantity
in (9). We do not know if Burchard’s theorem implies ours. The connec-
tion between Pollard’s theorem and various other results in additive num-
ber theory and the rearrangement theory treated in [6] is explored in the
paper [7].
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