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1. Introduction. Let A and B be coprime positive integers and let �

denote the square of an integer. There have been many papers investigating
the positive integer solutions of the Diophantine equations

(1) Ax2 − By4 = ±1,±2,±4.

Thanks to Ljunggren, we know the exact number of positive integer solutions
(x, y) of the equation Ax2−By4 = 1, 2, 4. In fact, let A, B be positive integers
and C = 1, 2, 4, such that AB is odd if C is even; A square-free and AB not
a perfect square; and let C = 2 when A = 1. Further, only such values of
A, B, C are considered for which Ax2−By2 = C has a solution, (x, y) = (a, b)
being the minimal positive integer solution. Ljunggren [9] proved that:

Theorem L1. If 3+4Bb2/C is not a perfect square, then Ax2−By4 = C
has at most one solution in positive integers (x, y). The equation Ax2 −
By4 = 4 has at most one solution in positive relatively prime integers (x, y).

Let A and B be odd positive integers such that the Diophantine equation
Ax2 − By2 = 4 has solutions in odd positive integers. Let a1, b1 be the
minimal positive integer solution. Define

(2)
an

√
A + bn

√
B

2
=

(

a1

√
A + b1

√
B

2

)n

.

With these assumptions, Ljunggren [10] proved the following two theorems:
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Theorem L2. The Diophantine equation Ax4 − By2 = 4 has at most

two solutions in positive integers x, y.

(i) If a1 = h2 and Aa2
1 − 3 = k2, there are only two solutions, namely ,

x =
√

a1 = h and x =
√

a3 = hk.

(ii) If a1 = h2 and Aa2
1−3 6= k2, then x =

√
a1 = h is the only solution.

(iii) If a1 = 5h2 and A2a4
1 − 5Aa2

1 + 5 = 5k2, then the only solution is

x =
√

a5 = 5hk.

Otherwise there are no solutions.

Theorem L3. The Diophantine equation Ax4 − By2 = 1 has at most

one solution in positive integers x, y. If x = x1, y = y1 is a solution, then

x2
1A

1/2 + y1B
1/2 =

(

1
2(a1A

1/2 + b1B
1/2)

)3
.

Let m and n be odd positive integers and suppose that (a1, b1) is the
minimal positive integer solution of mX2 − nY 2 = 2. Define

(3)
ak
√

m + bk
√

n√
2

=

(

a1
√

m + b1
√

n√
2

)k

.

Luca and Walsh [11] showed:

Theorem LW.

(i) If b1 is not a square, then the equation

(4) mX2 − nY 4 = 2

has no solutions (X, Y ).

(ii) If b1 is a square and b3 is not a square, then (X, Y ) = (a1,
√

b1) is

the only solution of (4).
(iii) If b1 and b3 are both squares, then (X, Y ) = (a1,

√
b1) and (a3,

√
b3)

are the only solutions of (4).

However, a similar result for the equation Ax2 − By4 = 4 has not been
obtained yet.

For the results of this section, it will be assumed that A and B are odd
positive integers such that the Diophantine equation

(5) Ax2 − By2 = 4

is solvable in odd integers x and y. This assumption will be referred to as
Hypothesis (⋆). Let (x1, y1) be the minimal positive integer solution of (5),
and define

(6)
xn

√
A + yn

√
B

2
=

(

x1

√
A + y1

√
B

2

)n

.

We will obtain:
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Theorem 1.1. Assume that Hypothesis (⋆) holds.

(i) If y1 is not a square, then the equation

(7) Ax2 − By4 = 4

has no positive integer solutions except for the case y1 = 3� and

By2
1 + 3 = 3�, when (x, y) = (x3,

√
y3) is the only solution of (7).

(ii) If y1 is a square, then (7) has at most one positive integer solution

other than (x, y) = (x1,
√

y1), which is either (x, y) = (x3,
√

y3) or

(x, y) = (x2,
√

y2), the latter occurring if and only if x1 and y1 are

both squares and A = 1, B 6= 5.

Theorem 1.2. Assume that Hypothesis (⋆) holds. Then the equation

(8) Ax2 − By4 = 1

has at most one positive integer solution. The only possible solution (x, y)
is given by y =

√

y3/2 = hk, where y1 = h2, P3 = 2k2.

Corollary 1.1. Assume that Hypothesis (⋆) holds. Then equation (8)
has a positive integer solution if and only if y1 = �, y3 = y1P3 = 2�.

Let R > 0 and Q be nonzero coprime integers with R − 4Q > 0. Let
α and β be the two roots of the trinomial x2 −

√
R x + Q. The Lehmer

sequence {Pn(R, Q)} and the associated Lehmer sequence {Qn(R, Q)} with
parameters R and Q are defined as follows:

Pn = Pn(R, Q) =

{

(αn − βn)/(α − β), 2 ∤ n,

(αn − βn)/(α2 − β2), 2 |n,
(9)

Qn = Qn(R, Q) =

{

(αn + βn)/(α + β), 2 ∤ n,

αn + βn, 2 |n.
(10)

Note that Pn(1,−1) and Qn(1,−1) are the Fibonacci numbers and Lucas
numbers. It is easy to see that Pn, Qn ∈ Z for all positive integers n.

We say that the terms Pn and Pm are in the same square-class if their
product is a square. A square-class containing at least one element of the
Lehmer sequence is called nontrivial. For a Lehmer sequence, an important
problem is to decide whether it contains nontrivial classes or not, and then
to find all elements in a nontrivial class. Obviously, the problem is equivalent
to finding all n such that Pn = k�, where k is a given integer.

Recently, many special cases of this type of problem have been consid-
ered. We recall the relevant known facts:

(a) Cohn [4], Alfred [1], Burr [3], Wyler [19] and Ko and Sun [8] showed
that Pn = 144 is the only square Fibonacci number greater than 1.
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(b) Ljunggren [9] determined, for all odd positive integers R and Q = 1,
all indices n such that Qn(R, Q) or nQn(R, Q) is a square.

(c) Cohn [5]–[7], determined the squares and double squares in {Pn}∞n=1

and {Qn}∞n=1 when R = P 2 is odd or some special even integer and Q = ±1.

(d) In his seminal paper [17], Rotkiewicz partly solved the problem for
R and Q with 2 |RQ.

(e) In [13], [14] and [16], McDaniel and Ribenboim found all positive
integers m and n such that PmPn = � or QmQn = � with 1 ≤ m < n,
n 6= 3m when both R = P 2 and Q are odd integers. Moreover, if PmPn = �

or QmQn = � and n = 3m, they proved that there exists an effectively
computable constant C satisfying m < C. See Theorems 1 through 4 in [14]
for details.

Observe that Qm(R, x), Qm(x, Q)∈Z[x], and both polynomials have only
simple roots. Hence by Theorems 9.2 and 10.6 of [18], for given R, Q, k, k1, if

(11) Qm(R, Q)Qkm(R, Q) = k1y
r,

then max(m, r) < C1, where C1 is an effectively computable constant de-
pending only on R, Q, k, k1; if equation (3) holds for given m, R, k, k1 or
m, Q, k, k1, then max(Q, r) (or max(P, r)) < C2, where C2 is an effectively
computable constant depending only on m, R (or Q), k and k1. Therefore,
the effective results in [13], [14], [16] are special cases of the above remark.
However, the size of the computable constants—were it computed—would
often be too large to enable finding all the solutions.

In [21], the second author proved the following

Proposition 1.1. Let R and Q be coprime odd integers with D = R −
4Q > 0. If Qn = � or n�, then n = 1, 3, 5.

In the present paper, we will prove

Proposition 1.2. For a given integer k, let d0 be the first index d with

k |Qd. If Qd = k� or 2k�, then d = d0d1 and d1 = 1, 3, 5.

Proposition 1.3. If Qn = k�, k |n, then n = 1, 3, 5. If Qn = 2k�,
k |n, then n = 3.

2. Preliminaries. We first list the properties which will be used. For
easy reference, we note that P2 = 1, P3 = R−Q, Q2 = R−2Q, Q3 = R−3Q.
Most of the properties below may be proved directly. For details, we refer
to the book of Ribenboim [15] and the paper of the second author [20].
Unless otherwise stated, m and n are arbitrary integers. For simplicity, in
this paper we denote (αdr + βdr)/(αd + βd) and (αr + βr)/(α + β) by Qr,d

and Qr respectively.
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Proposition 2.1.

(1) If 3 |Qd with d odd , then 3 |R.

(2) For odd integers r and d, we have gcd(Qr,d, Qd) | r.
(3) If p is an odd prime with p |R, then p |Qn if and only if n/p is an

odd integer.

(4) Pm is even for m > 0 if and only if 3 |m.

(5) Qm is even for m > 0 if and only if 3 |m.

(6) If d = gcd(m, n), then gcd(Pm, Pn) = Pd.

(7) If d = gcd(m, n), then gcd(Qm, Qn) = Vd if m/d and n/d are odd ,
and 1 or 2 otherwise.

(8) If d = gcd(m, n), then gcd(Pm, Qn) = Qd if m/d is even, and 1 or

2 otherwise.

(9) Let p be an odd prime, and ε = (DR|p) be the Kronecker symbol.

If p ∤ RQ, then Pp−ε ≡ 0 (mod p).
(10) Let q be a prime, m, k positive integers, and α, λ nonnegative inte-

gers with gcd(q, k) =1and ordq(Pm) = α. If qα 6= 2, then ordq(Pkmqλ)
= α+λ. Here ordq(n) denotes the rational number t such that qt |n
but qt+1 ∤ n.

(11) If n ≥ 1, then gcd(Pn, Q) = gcd(Qn, Q) = 1.
(12) V 2

m−DU2
m = 4Qm, where Vm = αm+βm, Um = (αm−βm)/(α−β).

(13) Let p be an odd prime. If p2 |D, then ordp(Pn) = ordp(n).

The following two lemmas are Lemmas 1, 2(a) and 4(I) of [20].

Lemma 2.1. Let j = 2ug, 2 ∤ g, g > 0, and let 0 ≤ m ≤ j. Then, if

0 ≤ v < u,

(i) Q2j+m ≡ −QjQm (modV2u) and Q2j+m ≡ QjQm (modV2v),
(ii) Q2j−m ≡ −Qj−mQm (modV2u) and Q2j−m ≡ Qj−mQm (modV2v).

Lemma 2.2. Let u ≥ 2 be an integer. Then

(i) V2u ≡ −1 (mod8),
(ii) (Q3|V2u) = 1.

Lemma 2.3.

(i) If p is a positive integer with p |R and p ≡ 3 (mod8), then (p|V4) = 1.
(ii) If a is a positive integer with a | (R − 3Q) = Q3, then (a|V4) = 1.

Proof. (i) By the assumption and Lemma 2.2(i),

(p|V4) = −(V4|p) = −((R − 2Q)2 − 2Q2|p) = −(2Q2|p) = 1.

(ii) Lemma 2.2(i) again yields (2|V4) = 1. Thus it suffices to prove the
assertion for a odd. In fact,

(a|V4) = (−1)(a−1)/2(V4|a) = (−1)(a−1)/2(−Q2|a) = 1.
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Lemma 2.4. Let p, d and a be positive integers satisfying

d ≡ ±3 (mod8), p ≡ 3 (mod16), (a|V4) = 1.

Then

QdQpd 6= a�.

Proof. Suppose QdQpd = a�. By assumption, we can write

p = 16k + 3, d = 2j + m, j = 2ug, 2 ∤ g, u ≥ 2 and m = −3 or m = −5.

First we consider the case m = −3. Note that pd = 2(pj − 24k − 4) − 1.
If u = 2, then by Lemma 2.1 we obtain

Qd ≡ −Qj−3Q3 (modV4), Qpd ≡ Qpj−24k−5 (modV4);

if u > 2, then

Qd ≡ Qj−3Q3 (modV4), Qpd ≡ −Qpj−24k−5 (modV4).

This yields

1 = (a|V4) = (QdQpd|V4) = (−Q3|V4) = −1,

a contradiction.
Next we consider the case m = −5. Similarly, pd = 2(pj − 40k − 8) + 1.

If u = 2, by Lemma 2.1 again

Qd ≡ −Qj−5Q5 (modV4), Qpd ≡ −Qpj−40k−8 (modV4);

if u > 2, then

Qd ≡ Qj−5Q5 (modV4), Qpd ≡ Qpj−40k−8 (modV4).

This yields

1 = (a|V4) = (QdQpd|V4) = (QQ5|V4) = (Q(V4 − QQ3)|V4) = −1,

again a contradiction.

Combining Lemmas 2.3 and 2.4 we obtain the following two corollaries.

Corollary 2.1. Let p and d be positive integers such that p |R, p ≡ 3
(mod16) and d ≡ ±3 (mod8). Then QdQpd 6= �, p�. In particular ,

QdQ3d 6= �, 2�, 3�, 6�

when 3 |R and d ≡ ±3 (mod8).

Corollary 2.2. Let a, p and d be positive integers such that a | (R−3Q),
p ≡ 3 (mod16) and d ≡ ±3 (mod8). Then QdQpd 6= �, a�.

Corollary 2.3. Let d be an odd positive integer and k a positive in-

teger with k |Qd. If p is a positive integer such that p ≡ ±3 (mod8) and

p | (R− 3Q), then Q3pd 6= kr� with r | 6p. In particular , if 5 | (R− 3Q), then

Q15d 6= k�, 2k�, 3k�, 5k�, 6k�, 10k�, 15k�, 30k�.
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Proof. Suppose Q3pd = kr� and r | 6p. Then Q3pd = QpdQ3,pd = kr�.
Since gcd(Qpd, Q3,pd) | 3 and k |Qpd, it follows that Qpd = kr1�, r1 | 6p,
and so

(12) QpdQ3pd = a�, a | 6p,

and (a|V4) = 1 by Lemmas 2.2 and 2.3. If d ≡ ±1, then pd ≡ ±3 (mod8), and
so (5) is impossible by Lemma 2.4. Now we assume that d ≡ ±3 (mod8).
Since Q3pd = QdQ3p,d = kr�, r | 6p, we then have Qd = kr2�, r2 | 3p.
Similarly, Q3d = kr3�, r3 | 3p. Therefore

QdQ3d = b�, b | 3p,

which is impossible by Lemmas 2.3 and 2.4.

Lemma 2.5. Let d be an odd positive integer and k a positive integer

with k |Qd. Then Q15d 6= k�, 2k�.

Proof. If Q15d = k�, then Q5dQ3,5d = k�. Since gcd(Q3,5d, Q5d) | 3, we
have Q5d = k� or 3k�, whence

Q5dQ15d = � or 3�,

which is impossible if d ≡ ±1 (mod8) by Lemmas 2.3 and 2.4. Similarly,
Q3d = k� or 3k� is impossible if d ≡ ±3 (mod8).

By Corollary 2.3 and the above arguments, we may assume that d ≡ ±3
(mod8), 5 ∤ (R−3Q) and Q3d 6= k�, 3k�. Since Q15d = Q5,3dQ3d = k� and
gcd(Q3d, Q5,3d) | 5, we have

Q3d = 5k�,

which implies that either 5 |R or 5 |P5−ε, where ε = (DR|5) is the Kronecker
symbol. If ε = 1, then 5 |P4. It follows that 5 | gcd(P4, Q3d) = Q1 = 1 by
Proposition 2.1(8), a contradiction. If ε = −1, then 5 |P6. It follows that
5 | gcd(P6, Q3d) = Q3 = R−3Q, which contradicts 5 ∤ (R−3Q). If ε = 0, then
5 |D. Since V 2

3d −DU2
3d = 4Qm, it follows that 5 |Q, which is impossible by

Proposition 2.1(11). Hence we get 5 |R and 5 | d. Now Q3d = Q3,dQd = 5k�

and gcd(Qd, Q3,d) | 3, hence Qd = 5k� or 15k�, and so

QdQ3d = � or 3�,

contrary to Corollary 2.1. The proof of Q15d 6= 2k� goes in exactly the same
way.

3. Proofs of propositions

Proof of Proposition 1.2. Put d0 = 3s0d′0, d = 3sd′, 3 ∤ d′0d
′. Then s ≥ s0

and d′0 | d′. By Proposition 2.1(2),(3) we have

gcd(Qd′ , Q3s,d′) | 3s, 3 ∤ Qd′ .
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Thus
gcd(Qd′ , Q3s,d′) = 1.

Similarly,

(13) gcd(Qd′
0
, Q3s0 ,d′

0
) = 1.

By Proposition 2.1(6),

(14) gcd(Qd′/d′
0
,d′

0
, Q3s0 ,d′

0
) = 1.

From Qd′ = Qd′
0
Qd′/d′

0
,d′

0
, (13) and (14), we have

(15) gcd(Qd′ , Q3s0 ,d′
0
) = 1.

Let

(16) gcd(k, Qd′
0
) = k1, gcd(k, Q3s0 ,d′

0
) = k2.

Then from k |Qd0
= Qd′

0
Q3s0 ,d′

0
and (6), we have

(17) gcd(k1, k2) = 1, k = k1k2.

By hypothesis, we have

(18) Q3sd′ = Qd′Q3s,d′ = k1k2�.

It follows from (15)–(18) that

(19) Qd′ = k1�.

Write r = d′/d′0. Then by (19), we get

Qd′
0
Qr,d′

0
= k1�.

Since k1 |Qd′
0

and gcd(Qr,d′
0
, Qd′

0
) | r, we obtain

Qr,d′
0

= r1�, r1 | r.
Let r = r1r2. Then the above equality becomes

Qr1,r2d′
0
Qr2,d′

0
= r1�.

It follows that

(20) Qr2,d′
0

= �, Qr1,r2d′
0

= r1�.

Since gcd(Qr1,r2d′
0
/r1, Qr2d′

0
) = 1 and Qr2d′

0
= Qr2,d′

0
Qd′

0
, by Proposition 1.1

we get r1 = 1, 5 and r2 = 1, 5. The case of r1 = r2 = 5 is impossible since
then 5 |R, and so 5 ‖Q5,d′

0
, which contradicts the first equality of (20).

If s ≥ s0 + 2, then Q3,3s−1d′Q3s−1d′ = k� and k |Q3s−1d′ , and so

(21) Q3s−1d′ = k� or 3k�.

In exactly the same way, we have

(22) Q3s−2d′ = k� or 3k�.

Therefore

(23) Q3sd′Q3s−1d′ = � or 3�
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and

(24) Q3s−1d′Q3s−2d′ = � or 3�.

Since 3s−1d′ ≡ ±3 (mod8) or 3s−2d′ ≡ ±3 (mod8), one of the equalities (23)
and (24) is impossible by Lemma 2.4. Thus we conclude that s ≤ s0 +1 and
r = 1 or 5, and so d = d0, 3d0, 5d0 or 15d0. However, d = 15d0 is impossible
by Lemma 2.5. The case of Qd = 2k� is similar, which proves Proposi-
tion 1.2.

Proof of Proposition 1.3. Similarly, we only prove the case Qn = k�,
the proof for Qn = 2k� being similar. Without loss of generality we may
assume that k is square-free. Let n/k = t. Then

(25) Qk,tQt = k�.

Let p be a prime divisor of k. Then p is odd and p |Qt(α)R. By Proposition
2.1(9) it follows that ordp(Qk,t) ≥ ordp(k). Therefore, by the arbitrary choice
of p and the assumption that k is square-free, we infer that k |Qk,t, say
Qk,t = km. We first claim that gcd(m, Qt) = 1. Otherwise there is a prime
p |m with p |Qt, and by Proposition 2.1(9) again, ordp(Qk,t) = ordp(k)
contradicting ordp(Qk,t) = ordp(k) + ordp(m) > ordp(k). Combining this
with (25) we get

(26) Qk,t = k�, Qt = �.

From Qt = � and Proposition 1.1 we get t = 1, 3 or 5. If t = 1 or 5,
from Qk,t = k� and Proposition 1.1 again we get k = 1, 3 or 5. However,
k = t = 5 leads to the equation Q25 = 5�, which is impossible by considering
the 5-parts of both sides. Thus we have proved that if Qn = k�, k |n and
3 ∤ n, then n = 1 or 5. We will use this fact in the following argument when
t = 3.

Suppose that t = 3. Then Q3k = k�. If 3 | k, say k = 3k′, 3 ∤ k′, then

Q9,k′Qk′ = 3k′
�.

Since gcd(Q9,k′ , Qk′) | 9 and 3 ∤ Qk′ , we get

(27) Qk′ = k1�, k1 | k′,

and it follows that k′ = 1 or 5 as above. If 3 ∤ k, then similarly we have
k = 1 or 5.

Combining the above arguments, to prove the theorem, it suffices to
prove that the following equations are impossible:

Q9 = 3�, Q15 = 5�,

Q15 = 3�, Q45 = 15�.

By Corollary 2.1, it is easy to prove that Q9 = 3� and Q15 = 3� are
impossible. From Q45 = 15� we get Q15 = 5�. Therefore we are only left
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with the equation Q15 = 5�, which implies that either 5 | (R − 3Q) or 5 |R
by Proposition 2.1(8),(9). However, it is impossible when 5 | (R − 3Q) by
Corollary 2.3 and it is impossible when 5 |R by Corollary 2.1. We are done.

4. Proofs of theorems. To prove the above theorems, we need Propo-
sition 1.3 and some results of Ribenboim and McDaniel [16].

Let P > 1 be an odd integer, α = (P+
√

P 2 − 4)/2, β = (P−
√

P 2 − 4)/2,

Un =
αn − βn

α − β
, Vn = αn + βn, n = 1, 2, . . . .

Then by Theorems 1 and 2 of [16] (note that Q = 1), we have

Lemma 4.1.

(i) If Vn = �, then n = 1.

(ii) If Vn = 2�, then n = 3.

Lemma 4.2 ([12]). If A > 1, then all positive integer solutions (x, y) of

the equation (5) are of the form (xn, yn) with 2 ∤ n, where (xn, yn) is defined

by (6). If A = 1, then all positive integer solutions (x, y) of (5) are of the

form (xn, yn).

Lemma 4.3 ([22]). If ε = x1

√
A + y1

√
B is the minimal positive integer

solution of (5), then a
√

A + b
√

B = (ε/2)3 is the minimal positive integer

solution of the equation

Ax2 − By2 = 1.

Lemma 4.4 ([2]). The only positive integer solutions of the Diophantine

equation

3x4 − 2y2 = 1

are (x, y) = (1, 1) and (3, 11).

Proof of Theorem 1.1. First we consider the case of y1 not a square. Let

α =
x1

√
A + y1

√
B

2
, α =

x1

√
A − y1

√
B

2
.

Suppose that (x, y) is a positive integer solution of (7). By Lemma 4.2,

(28)
x
√

A + y2
√

B

2
=

(

x1

√
A + y1

√
B

2

)n

for some positive integer n > 1. Thus

(29) y2 = y1Pn

where Pn = (αn − αn)/(α − α). Let d be the square-free part of y1. From
(29) we have

(30) Pn = d�, d | y1.



Square-classes 59

Since D = (α − α)2 = By2
1 , we have d |n by Proposition 2.1(13). If n is

an odd, then we obtain n = 3 or 5 by (30) and Proposition 1.3.
When n = 3, we have d = 3. Hence y1 = 3� and

P3 = (α3 − α3)/(α − α) = α2 + αα + α2

= (α + α)2 − αα = Ax2
1 − 1 = By2

1 + 3 = 3�,

and so y2 = y1P3 = y3.
When n = 5, we have d = 5. Then y1 = 5u2 and

P5 =
α5 − α5

α − α
= α4 + α3α + α2α2 + αα3 + α4

= ((α + α)2 − 2)2 + (α + α)2 − 3 = (Ax2
1 − 2)2 + Ax2

1 − 3

= (By2
1 + 2)2 + By2

1 + 1 = B2y4
1 + 5By2

1 + 5 = 5v2.

Hence 625B2u4 +125Bu2 +5 = 5v2. Completing the square and simplifying
the result yields the equation (2v)2 − 5(10Bu2 + 1)2 = −1, which implies
that (2v, 10Bu2 + 1) is a solution of the Pell equation

(31) x2 − 5y2 = −1.

Since 2 +
√

5 is the fundamental solution of (31), we have

(32) 2v + (10Bu2 + 1)
√

5 = (2 +
√

5)n

for some odd integer n > 1. Thus

(33) 10Bu2 + 1 =

(n−1)/2
∑

r=0

(

n

2r + 1

)

2(n−2r−1)/25r,

which implies that 10Bu2 + 1 is congruent to 1 (mod4) and hence that B
is even, contrary to assumption.

If n is even, say n = 2m, it follows that A = 1 by Lemma 4.2. By (30),
we get

PmVm = d�,

where Vm = αm + αm. By Proposition 2.1(8),(13), gcd(Pm, Vm) = 1 or 2
and d |Pm, and so

(34) Pm = d�, Vm = �, or Pm = 2d�, Vm = 2�.

Assume the latter; then m = 3 by Lemma 4.1, and so d = 3, y1 = 3�.
Noticing that x2

1 − By2
1 = 4, we get x2

1 ≡ 4 (mod9). Since P3 = (α + α)2 −
αα = x2

1−1 = 6�, it follows that 3 ≡ 6� (mod9), so 1 ≡ 2� (mod3), which
is impossible. Now we consider the former equalities of (34). By Lemma 4.1
again, m = 1, so d = 1, which contradicts the assumption that y1 is not a
square. This proves (i).

Suppose now that y1 is a square. Let (x, y) 6= (x1,
√

y1) be another
solution of (7). We also have equation (30) with d = 1. If n is odd, similarly
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we get n = 3 or 5. Now we are in a position to prove that the case of n = 5 is
impossible. Otherwise write P5 = h2. Then P5 = B2y4

1 +5By2
1 +5 = h2, and

so (2By2
1+5)2−5 = (2h)2, which is impossible. Hence n = 3, y2 = y1P3 = y3.

If n is even, then A = 1 by Lemma 4.2. Write n = 2m. By (30), we get

PmVm = �.

By Proposition 2.1(8),(13), gcd(Pm, Vm) = 1 or 2 and d |Pm. Therefore we
have

(35) Pm = �, Vm = �, or Pm = 2�, Vm = 2�.

In the former case, we have m = 1 by Lemma 4.1. It follows that y2 = y2 =
y1P2 = x1y1, which implies that x1 = �, y1 = �.

From the latter equalities of (35), we have m = 3 by Lemma 4.1. Since
P3 = x2

1 − 1 = 2�, V3 = x1(x
2
1 − 3) = 2�, we have either

(36) x1 = 3h2, x2
1 − 3 = 6k2, gcd(x1, x

2
1 − 3) = 3,

or

(37) x1 = �, x2
1 − 3 = 2�, gcd(x1, x

2
1 − 3) = 1.

(37) implies that 1 ≡ 2 (mod3), a contradiction. From (36), we conclude
that 3h4 − 2k2 = 1, and so (h, k) = (1, 1) or (3, 11) by Lemma 4.4.

When (h, k) = (1, 1), x1 = 3, P3 = x2
1 − 1 = 8, V3 = x1(x

2
1 − 3) = 18, we

have P6 = P3V3 = 122, By2
1 = x2

1 − 4 = 5, which implies that B = 5, y1 = 1.
Thus y =

√
y1P6 = 12.

When (h, k) = (3, 11), x1 = 27, a simple computation shows that x2
1−1 =

728 6= 2�, which contradicts P3 = x2
1 − 1 = 2�.

This completes the proof.

Proof of Theorem 1.2. Let

α =
x1

√
A + y1

√
B

2
, α =

x1

√
A − y1

√
B

2
.

By Lemma 4.3, ε = α3 is the minimal positive integer solution of the equa-
tion Ax2 −By2 = 1. Assume that (x, y) is a positive integer solution of (5).
Then

(38) x
√

A + y2
√

B = εn

for some positive integer n. Thus

(39) 2y2 = y1P3n.

Let d be the square-free part of y1. From (39) we have

(40) P3n = 2d�, d | y1.

Similarly, since D = (α−α)2 = By2
1, we have d | 3n. If n is odd, we obtain

n = 1 by (40) and Proposition 1.3. Hence d = 1 or 3. If d = 3, then y1 = 3�.
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Since Ax2
1−By2

1 = 4, we obtain Ax2
1 ≡ 4 (mod9). From P3 = Ax2

1−1 = 6�,
it is easy to see that 3 ≡ 6� (mod9). Thus 1 ≡ 2� (mod3), which is
impossible. So d = 1, y1 = h2, P3 = 2k2, 2y2 = y1P3 = y3 = 2h2k2. Thus
y =

√

y3/2 = hk.
If n is even, say n = 2m, then A = 1. By (40), we get

P3mV3m = 2d�.

By Proposition 2.1(4),(5),(8),(13), gcd(P3m, V3m) = 2 and d |P3m. Therefore
we have either

(41) P3m = 2d�, V3m = �,

which is impossible by Lemma 4.1, or

(42) P3m = d�, V3m = 2�.

By Lemma 4.1, we obtain m = 1 from the latter equality of (42). By the
former equality of (42) we get d = 1 or 3. Then P3 = x2

1 − 1 = � or 3�,
and it follows that 3 ∤ x1. It is easy to prove that gcd(x1, x

2
1 − 3) = 1. Thus

from V3 = x1(x
2
1 − 3) = 2� and 2 ∤ x1, we deduce that x2

1 − 3 = 2�, which
implies that 1 = (2|3) = −1, a contradiction. This completes the proof.

Corollary 1.1 is an immediate consequence of Theorem 1.2.

Acknowledgements. The authors are grateful to the referees for their
valuable suggestions.

References

[1] U. Alfred, On square Lucas numbers, Fibonacci Quart. 2 (1964), 11–12.
[2] R. T. Bumby, The diophantine equation 3x4

− 2y2 = 1, Math. Scand. 21 (1967),
144–148.

[3] S. A. Burr, On the occurrence of squares in Lucas sequences, Notices Amer. Math.
Soc. (Abstract 63T-203), 10 (1963), 367.

[4] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964),
537–541.

[5] —, Eight diophantine equations, Proc. London Math. Soc. 16 (1966), 153–166.
[6] —, Five diophantine equations, Math. Scand. 21 (1967), 61–70.
[7] —, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631–646.
[8] C. Ko and Q. Sun, On square Fibonacci numbers, J. Sichuan Univ. 11 (1965), 11–18

(in Chinese).
[9] W. Ljunggren, Ein Satz über die diophantische Gleichung Ax2

− By4 = C (C =
1, 2, 4), in: 12. Skand. Mat.-Kongr. (Lund, 1953), 1954, 188–194.

[10] —, On the diophantine equation Ax4
−By2 = C (C = 1, 4), Math. Scand. 21 (1967),

149–158.
[11] F. Luca and P. G. Walsh, Squares in Lehmer sequences and some Diophantine

applications, Acta Arith. 100 (2001), 47–62.
[12] J. G. Luo, Extensions and applications on Störmer’s theory, J. Sichuan Univ. 28

(1991), 469–474 (in Chinese).



62 J. G. Luo and P. Z. Yuan

[13] W. L. McDaniel, Square Lehmer numbers, Colloq. Math. 66 (1993), 85–93.
[14] W. L. McDaniel and P. Ribenboim, Square-classes in Lucas sequences having odd

parameters, J. Number Theory 73 (1998), 14–27.
[15] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989.
[16] P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number

Theory 58 (1996), 104–123.
[17] A. Rotkiewicz, Applications of Jacobi’s symbol to Lehmer’s numbers, Acta Arith.

42 (1983), 163–187.
[18] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge

Univ. Press, Cambridge, 1986.
[19] O. Wyler, Solution of problem 5080 , Amer. Math. Monthly 71 (1964), 220–222.
[20] P. Z. Yuan, A note on the divisibility of the generalized Lucas’ sequences, Fibonacci

Quart. 40 (2002), 153–156.
[21] —, The square terms in Lehmer sequences, Acta Math. Sinica 46 (2003), 897–902

(in Chinese).
[22] P. Z. Yuan and J. G. Luo, On solutions of higher degree diophantine equation,

J. Math. Res. Expo. 21 (2001), 99–102 (in Chinese).

Department of Applied Mathematics
College of Information Science and Technology
Hainan University
Haikou, 570228, P.R. China
E-mail: jg−luo@tom.com

Department of Mathematics
Sun Yat-sen University

Guangzhou, 510275, P.R. China
E-mail: mcsypz@zsu.edu.cn

Received on 1.4.2006

and in revised form on 8.11.2006 (5181)


