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On the Diophantine equation x
2 + q

2m = 2yp

by

Sz. Tengely (Debrecen)

1. Introduction. There are many results in the literature concerning
the Diophantine equation

Ax2 + qz1

1 · · · qzs
s = Byn,

where A, B are given non-zero integers, q1, . . . , qs are given primes and n,
x, y, z1, . . . , zs are integer unknowns with n > 2, x and y coprime and
non-negative, and z1, . . . , zs non-negative (see e.g. [1]–[7], [11], [12], [15],
[18]–[22], [25]). Here the elegant result of Bilu, Hanrot and Voutier [10] on the
existence of primitive divisors of Lucas and Lehmer numbers has turned out
to be a very powerful tool. Using this result Luca [19] solved completely the
Diophantine equation x2 + 2a3b = yn. Le [17] obtained necessary conditions
for the solutions of the equation x2 + q2 = yn in positive integers x, y, n with
gcd(x, y) = 1, q prime and n > 2. He also determined all solutions of this
equation for q < 100. In [25] Pink considered the equation x2 +(qz1

1 · · · qzs
s )2

= 2yn, and gave an explicit upper bound for n depending only on max qi

and s. The equation x2 + 1 = 2yn was solved by Cohn [14]. Pink and
Tengely [26] considered the equation x2 + a2 = 2yn. They gave an upper
bound for the exponent n depending only on a, and completely resolved the
equation with 1 ≤ a ≤ 1000 and 3 ≤ n ≤ 80.

In the present paper we study the equation x2 + q2m = 2yp where
m, p, q, x and y are integer unknowns with m > 0, p and q odd primes and
x and y coprime. In Theorem 1 we show that all but finitely many solutions
are of a special type. Proposition 1 provides bounds for p. Theorem 2 deals
with the case of fixed y; we completely resolve the equation x2+q2m = 2·17p.
Theorem 3 deals with the case of fixed q. In Propositions 3 and 4 certain
high degree Thue equations are solved related to primes p < 1000. The
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proof of Proposition 4 is due to Hanrot. It is proved that if the Diophantine
equation x2 + 32m = 2yp with m > 0 and p prime admits a coprime integer
solution (x, y), then (x, y, m, p) ∈ {(13, 5, 2, 3), (79, 5, 1, 5), (545, 53, 3, 3)}.
This means that the equation x2 + 3m = 2yp in coprime integers x, y and
prime p is completely solved because solutions clearly do not exist when m
is odd.

2. A finiteness result. Consider the Diophantine equation

(1) x2 + q2m = 2yp,

where x, y ∈ N with gcd(x, y) = 1, m ∈ N, and p, q are odd primes; N denotes
the set of positive integers. Since the case m = 0 was solved by Cohn [14]
(he proved that the equation has only the solution x = y = 1 in positive
integers) we may assume without loss of generality that m > 0. If q = 2,
then it follows from m > 0 that gcd(x, y) > 1, therefore we may further
assume that q is odd.

Theorem 1. There are only finitely many solutions (x, y, m, q, p) of (1)
with gcd(x, y) = 1, x, y ∈ N, such that y is not a sum of two consecutive

squares, m ∈ N, and p > 3, q are odd primes.

Remark. The finiteness question is interesting if y is a sum of two
consecutive squares. The following examples, all for m = 1, show that very
large solutions exist.

y p q

5 5 79

5 7 307

5 13 42641

5 29 1811852719

5 97 2299357537036323025594528471766399

13 7 11003

13 13 13394159

13 101 224803637342655330236336909331037067112119583602184017999

25 11 69049993

25 47 378293055860522027254001604922967

41 31 4010333845016060415260441

All solutions of (1) with small qm and x > q2m have been determined
in [27].

Lemma 1. Let q be an odd prime and m ∈ N ∪ {0} such that 3 ≤ qm ≤
501. If there exist (x, y) ∈ N2 with gcd(x, y) = 1 and an odd prime p such
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that (1) holds, then

(x, y, q, m, p)

∈{(3, 5, 79, 1, 5), (9, 5, 13, 1, 3), (13, 5, 3, 2, 3), (55, 13, 37, 1, 3),

(79, 5, 3, 1, 5), (99, 17, 5, 1, 3), (161, 25, 73, 1, 3), (249, 5, 307, 1, 7),

(351, 41, 11, 2, 3), (545, 53, 3, 3, 3), (649, 61, 181, 1, 3), (1665, 113, 337, 1, 3),

(2431, 145, 433, 1, 3), (5291, 241, 19, 1, 3), (275561, 3361, 71, 1, 3)}.
Proof. This result follows from Corollary 1 in [27]. The solutions with

x ≤ q2m can be found by an exhaustive search.

We introduce some notation. Put

(2) δ4 =

{
1 if p ≡ 1 (mod4),

−1 if p ≡ 3 (mod4)

and

(3) δ8 =

{
1 if p ≡ 1 or 3 (mod8),

−1 if p ≡ 5 or 7 (mod8).

Since Z[i] is a unique factorization domain, (1) implies the existence of
integers u, v with y = u2 + v2 such that

x = ℜ((1 + i)(u + iv)p) =: Fp(u, v),

qm = ℑ((1 + i)(u + iv)p) =: Gp(u, v).
(4)

Here Fp and Gp are homogeneous polynomials in Z[X, Y ].

Lemma 2. Let Fp, Gp be the polynomials defined by (4). Then

(u − δ4v) |Fp(u, v), (u + δ4v) |Gp(u, v).

Proof. This is Lemma 3 in [27].

Lemma 2 and (4) imply that there exists a k ∈ {0, 1, . . . , m} such that
either

(5) u + δ4v = qk, Hp(u, v) = qm−k,

or

(6) u + δ4v = −qk, Hp(u, v) = −qm−k,

where Hp(u, v) = Gp(u, v)/(u + δ4v).

For all solutions with large qm we derive an upper bound for p in the
case of k = m in (5) or (6) and in the case of q = p.

Proposition 1. If (1) admits a relatively prime solution (x, y) ∈ N2

then
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p ≤ 3803 if u + δ4v = ±qm, qm ≥ 503,

p ≤ 3089 if p = q,

p ≤ 1309 if u + δ4v = ±qm, m ≥ 40,

p ≤ 1093 if u + δ4v = ±qm, m ≥ 100,

p ≤ 1009 if u + δ4v = ±qm, m ≥ 250.

We shall use the following lemmas in the proof of Proposition 1. The
first result is due to Mignotte [10, Theorem A.1.3]. Let α be an algebraic

number whose minimal polynomial over Z is A
∏d

i=1(X−α(i)). The absolute
logarithmic height of α is defined by

h(α) =
1

d

(
log |A| +

d∑

i=1

log max(1, |α(i)|)
)
.

Lemma 3. Let α be a complex algebraic number with |α| = 1, but not

a root of unity , and log α the principal value of the logarithm. Define D =
[Q(α) : Q]/2. Consider the linear form

Λ = b1iπ − b2 log α,

where b1, b2 are positive integers. Let λ be a real number satisfying 1.8 ≤
λ < 4, and put

̺ = eλ, K = 0.5̺π + Dh(α), B = max(13, b1, b2),

t =
1

6π̺
− 1

48π̺(1 + 2π̺/3λ)
, T =

(
1/3 +

√
1/9 + 2λt

λ

)2

,

H = max

{
3λ, D

(
log B + log

(
1

π̺
+

1

2K

)
− log

√
T + 0.886

)

+
3λ

2
+

1

T

(
1

6̺π
+

1

3K

)
+ 0.023

}
.

Then

log |Λ| > −(8πT̺λ−1H2+0.23)K−2H−2 log H+0.5λ+2 log λ−(D+2) log 2.

The next result can be found as Corollary 3.12 on p. 41 of [23].

Lemma 4. If Θ ∈ 2πQ, then the only rational values of the tangent and

the cotangent functions at Θ are 0,±1.

Proof of Proposition 1. Without loss of generality we assume that p >
1000 and qm ≥ 503. We give the proof in the case u+ δ4v = ±qm, qm ≥ 503,
the proofs of the remaining four cases being analogous. From u+δ4v = ±qm

we get

503

2
≤ qm

2
≤ |u| + |v|

2
≤

√
u2 + v2

2
=

√
y

2
,
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which yields y ≥ q2m/2 > 126504. Hence

(7)

∣∣∣∣
x + qmi

x − qmi
− 1

∣∣∣∣ =
2 · qm

√
x2 + q2m

≤ 2
√

y

yp/2
=

2

y(p−1)/2
.

We have

(8)
x + qmi

x − qmi
=

(1 + i)(u + iv)p

(1 − i)(u − iv)p
= i

(
u + iv

u − iv

)p

.

If
∣∣i

(
u+iv
u−iv

)p − 1
∣∣ > 1

3 then 6 > y(p−1)/2, which yields a contradiction with

p > 1000 and y > 126504. Thus
∣∣∣∣i

(
u + iv

u − iv

)p

− 1

∣∣∣∣ ≤
1

3
.

Since |log z| ≤ 2|z − 1| for |z − 1| ≤ 1/3, we obtain

(9)

∣∣∣∣i
(

u + iv

u − iv

)p

− 1

∣∣∣∣ ≥
1

2

∣∣∣∣log i

(
u + iv

u − iv

)p∣∣∣∣.

Suppose first that α := δ4

(
u−iv
−v+iu

)σ
is a root of unity for some σ ∈

{−1, 1}. Then
(

u − iv

−v + iu

)σ

=
−2uv

u2 + v2
+

σ(−u2 + v2)

u2 + v2
i = ±α = exp

(
2πij

n

)
,

for some integers j, n with 0 ≤ j ≤ n − 1. Therefore

tan

(
2πj

n

)
=

σ(−u2 + v2)

−2uv
∈ Q or (u, v) = (0, 0).

The latter case is excluded. Hence, by Lemma 4, u2−v2

2uv ∈ {0, 1,−1}. This
implies that |u| = |v|, but this is excluded by the requirement that the
solutions x, y of (1) are relatively prime and that y > 126504. Therefore α
is not a root of unity.

Note that α is irrational, |α| = 1, and it is a root of the polynomial
(u2 + v2)X2 + 4δ4uvX + (u2 + v2). Therefore h(α) = 1

2 log y.

Choose l ∈ Z such that∣∣∣∣p log

(
iδ4

u + iv

u − iv

)
+ 2lπi

∣∣∣∣

is minimal, where the logarithms have their principal values. Then |2l| ≤ p.
Consider the linear form in two logarithms (πi = log(−1))

(10) Λ = 2|l|πi − p log α.

If l = 0 then by Liouville’s inequality and Lemma 1 of [29],

(11) |Λ| ≥ |p log α| ≥ |log α| ≥ 2−2 exp(−2h(α)) ≥ exp(−8(log 6)3h(α)).
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From (7) and (11) we obtain

log 4 − p − 1

2
log y ≥ log |Λ| ≥ −4(log 6)3 log y.

Hence p ≤ 47. Thus we may assume without loss of generality that l 6= 0.
We apply Lemma 3 with σ = sign(l), α = δ4

(
u−iv
−v+iu

)σ
, b1 = 2|l| and

b2 = p. Set λ = 1.8. We have D = 1 and B = p. By applying (7)–(10) and
Lemma 3 we obtain

log 4 − p − 1

2
log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.004.

We have

15.37677 ≤ K < 9.5028 +
1

2
log y,

0.008633 < t < 0.008634,

0.155768 < T < 0.155769,

H < log p + 2.270616,

log y > 11.74803.

From the above inequalities we conclude that p ≤ 3803.

The following lemma gives a more precise description of the polyno-
mial Hp; the notation pmod 4 is defined as the number from the set {0, 1, 2, 3}
that is congruent to p modulo 4.

Lemma 5. The polynomial Hp(±qk − δ4v, v) has degree p − 1 and

Hp(±qk − δ4v, v) = ±δ82
(p−1)/2pvp−1 + qkpĤp(v) + qk(p−1),

where Ĥp ∈ Z[X] has degree < p − 1. The polynomial Hp(X, 1) ∈ Z[X] is

irreducible and

Hp(X, 1) =

p−1∏

k=0
k 6=k0

(
X − tan

(
(4k + 3)π

4p

))
,

where k0 = [p/4] · (p mod 4).

Proof. By definition we have

(12) Hp(u, v) =
Gp(u, v)

u + δ4v
=

(1 + i)(u + iv)p − (1 − i)(u − iv)p

2i(u + δ4v)
.

Hence

Hp(±qk − δ4v, v) =
(1 + i)(±qk + (i − δ4)v)p − (1 − i)(±qk + (−i − δ4)v)p

±2iqk
.

Therefore the coefficient of vp is (1+ i)(−δ4 + i)p +(1− i)(δ4 + i)p. If δ4 = 1,
then it equals

−2(−1 + i)p−1 + 2(1 + i)p−1 = −2(−4)(p−1)/4 + 2(−4)(p−1)/4 = 0,
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since p ≡ 1 (mod4). If δ4 = −1, then it equals

(1 + i)p+1 − (−1 + i)p+1 = (−4)(p+1)/4 − (−4)(p+1)/4 = 0.

Similarly the coefficient of vp−1 is

±(1 + i)(δ4 − i)p−1 − (1 − i)(δ4 + i)p−1

2i
p = ±δ82

(p−1)/2p.

It is easy to see that the constant is qk(p−1). The coefficient of vt for t =
1, . . . , p−2 is ±

(p
t

)
(qk)p−t−1ct, where ct is a power of 2. The irreducibility of

Hp(X, 1) follows from the fact that Hp(X − δ4, 1) satisfies Eisenstein’s irre-
ducibility criterion. The last statement of the lemma is a direct consequence
of Lemma 4 from [27].

Remark. Schinzel’s Hypothesis H says that if P1(X), . . . , Pr(X) ∈ Z[X]
are irreducible polynomials with positive leading coefficients such that no
integer l > 1 divides Pi(x) for all integers x for some i ∈ {1, . . . , k}, then
there exist infinitely many positive integers x such that P1(x), . . . , Pr(x) are
simultaneously prime. Since ±Hp(±1−δ4v, v) is irreducible having constant
term ±1, the Hypothesis implies that for k = 0, m = 1 there are infinitely
many solutions of (5) and (6). Hence there are infinitely many solutions
of (1).

Lemma 6. If there exists a k ∈ {0, 1, . . . , m} such that (5) or (6) has a

solution (u, v) ∈ Z2 with gcd(u, v) = 1, then either k = 0 or (k = m, p 6= q)
or (k = m − 1, p = q).

Proof. Suppose that 0 < k < m. It follows from Lemma 5 that
q | ± δ82

(p−1)/2pvp−1. If q 6= p, we find that q | v and q |u, contrary to
gcd(u, v) = 1. Thus k = 0 or k = m. If p = q, then from Lemma 5 and (5),
(6) we get

±δ82
(p−1)/2vp−1 + pkĤp(v) + pk(p−1)−1 = ±pm−k−1.

Therefore k = 0 or k = m − 1.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. By Lemma 6 we have k = 0, m− 1 or m. If k = 0,
then u + δ4v = ±1 and y is a sum of two consecutive squares. If k = m− 1,
then p = q. Hence u + δ4v = ±pm−1, which implies that y ≥ p2(m−1)/2 ≥
p2/2. From Proposition 1 we obtain p ≤ 3089. We recall that Hp(u, v) is
an irreducible polynomial of degree p − 1. Thus we have only finitely many
Thue equations (if p > 3)

Hp(u, v) = ±p.

By a result of Thue [28] we know that for each p there are only finitely many
integer solutions, which proves the statement.



78 Sz. Tengely

Let k = m. Here we have u + δ4v = ±qm and Hp(±qm − δ4v, v) = ±1.
If qm ≤ 501 then there are only finitely many solutions which are given in
Lemma 1. We have computed an upper bound for p in Proposition 1 when
qm ≥ 503. This leads to finitely many Thue equations

Hp(u, v) = ±1.

From Thue’s result it follows that there are only finitely many integral so-
lutions (u, v) for any fixed p, which implies the remaining part of the theo-
rem.

3. Fixed y. First we consider (1) with given y which is not a sum of
two consecutive squares. Since y = u2 + v2 there are only finitely many
possible pairs (u, v) ∈ Z2. Among these pairs we have to select those for
which u ± v = ±qm0 , for some prime q and some integer m0. Thus there
are only finitely many pairs (q, m0). The method of [27] makes it possible to
compute (at least for moderate q and m0) all solutions of x2 + q2m0 = 2yp

even without knowing y. Let us consider the concrete example y = 17.

Theorem 2. The only solution (m, p, q, x) in positive integers m, p, q, x
with p and q odd primes of the equation x2 + q2m = 2 · 17p is (1, 3, 5, 99).

Proof. Note that 17 cannot be written as a sum of two consecutive
squares. From y = u2 + v2 we find that q is 3 or 5 and m = 1. This implies
that 17 does not divide x. We are left with the equations

x2 + 32 = 2 · 17p, x2 + 52 = 2 · 17p.

From Lemma 1 we see that the first equation has no solutions and the second
only the solution (p, x) = (3, 99).

4. Fixed q. If m is small, then one can apply the method of [27] to
obtain all solutions. Proposition 1 provides an upper bound for p in case
u + δ4v = ±qm. Therefore it is sufficient to resolve the Thue equations

Hp(u, v) = ±1

for primes less than the bound. In practice this is a difficult job but in
some special cases there exist methods which work (see [8], [9], [10], [16]).
Lemma 7 shows that we have a cyclotomic field in the background just as
in [10]. Probably the result of the following lemma is in the literature, but
we have not found a reference. We thank Peter Stevenhagen for the short
proof.

Lemma 7. For any positive integer M denote by ζM a primitive Mth root

of unity. If α is a root of Hp(X, 1) for some odd prime p, then Q(ζp + ζp) ⊂
Q(α) ∼= Q(ζ4p + ζ4p).
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Proof. Since

tan z =
1

i

exp(iz) − exp(−iz)

exp(iz) + exp(−iz)
,

we can write α = tan
( (4k+3)π

4p

)
as

1

i

ζ4k+3
8p − ζ−4k−3

8p

ζ4k+3
8p + ζ−4k−3

8p

= −ζ4

ζ4k+3
4p − 1

ζ4k+3
4p + 1

∈ Q(ζ4p).

Since it is invariant under complex conjugation, it is an element of
Q(ζ4p + ζ4p). We also know that [Q(ζ4p + ζ4p) : Q] = [Q(α) : Q] = p − 1,

thus Q(ζ4p + ζ4p)
∼= Q(α). The claimed inclusion follows from the fact that

ζp + ζp can be expressed easily in terms of ζ4p + ζ4p.

It is important to remark that the Thue equations Hp(u, v) = ±1 do
not depend on q. By combining the methods of composite fields [9] and
non-fundamental units [16] for Thue equations we may rule out some cases
completely. If the method applies it remains to consider the cases u+ δ4v =
±1 and p = q. If q is fixed one can adopt the strategy of eliminate large
primes p. Here we use the fact that when considering the Thue equation

(13) Hp(u, v) = ±1,

we are looking for integer solutions (u, v) for which u + δ4v is a power of q.
Let w be a positive integer relatively prime to q. Then the set S(q, w) =
{qm mod w : m ∈ N} has ordw(q) elements. Let

L(p, q, w) = {s ∈ {0, 1, . . . , ordw(q)} :

Hp(q
s − δ4v, v) = 1 has a solution modulo w}.

We search for numbers w1, . . . , wN such that ordw1
(q) = · · · = ordwN

(q)
=: w, say. Then

m0 mod w ∈ L(p, q, w1) ∩ · · · ∩ L(p, q, wN),

where m0 mod w denotes the smallest non-negative integer congruent to m
modulo w. Hopefully this will lead to some restrictions on m. As we saw
before, the special case p = q leads to a Thue equation Hp(u, v) = ±p and
the previously mentioned techniques may apply even for large primes. In
case of u + δ4v = ±1 one encounters a family of superelliptic equations
Hp(±1 − δ4v, v) = ±qm. We will see that sometimes it is possible to solve
these equations completely using congruence conditions only.

From now on we consider (1) with q = 3, that is,

(14) x2 + 32m = 2yp.

The equation x2 + 3 = yn was completely resolved by Cohn [13]. Arif
and Muriefah [2] found all solutions of the equation x2 +32m+1 = yn. There
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is one family of solutions, given by (x, y, m, n) = (10 · 33t, 7 · 32t, 5 + 6t, 3).
Luca [18] proved that all solutions of the equation x2 + 32m = yn are of the
form x = 46 · 33t, y = 13 · 32t, m = 4 + 6t, n = 3.

Remark. We note that equation (14) with odd powers of 3 is easily
solvable. From x2 + 32m+1 = 2yp we get

4 ≡ 2yp (mod8),

hence p = 1, which contradicts the assumption that p is prime.

Let us first treat the special case p = q = 3. By (4) and Lemma 2 we
have

x = F3(u, v) = (u + v)(u2 − 4uv + v2),

3m = G3(u, v) = (u − v)(u2 + 4uv + v2).

Therefore there exists an integer k with 0 ≤ k ≤ m such that

u − v = ±3k, u2 + 4uv + v2 = ±3m−k.

Hence we have

6v2 ± 6 · 3kv + 32k = ±3m−k.

Both from k = m and from k = 0 it follows easily that k = m = 0. This
yields the solutions (x, y) = (±1, 1).

If k = m− 1 > 0, then 3 | 2v2 ± 1. Thus one has to resolve the system of
equations

u − v = −3m−1, u2 + 4uv + v2 = −3.

The latter equation has infinitely many solutions parametrized by

u =
−ε

2
((2 +

√
3)t−1 + (2 −

√
3)t−1), v =

ε

2
((2 +

√
3)t + (2 −

√
3)t),

where t ∈ N, ε ∈ {−1, 1}. Hence

(15)
1

2
((3 +

√
3)(2 +

√
3)t−1 + (3 −

√
3)(2 −

√
3)t−1) = ±3m−1.

The left-hand side of (15) is the explicit formula for the linear recursive
sequence defined by r0 = r1 = 3, rt = 4rt−1 − rt−2, t ≥ 2. One can easily
check that

rt ≡ 0 (mod27) ⇔ t ≡ 5 (mod9) ⇔ rt ≡ 0 (mod17).

Thus m = 2 or m = 3. If m = 2, k = 1, then we obtain the solution
(x, y) = (13, 5); if m = 3, k = 2, then we get (x, y) = (545, 53). From now
on we assume that p > 3.

As already mentioned, sometimes it is possible to handle the case k = 0
using congruence arguments only. In the case of q = 3 this works.

Lemma 8. For q = 3 there is no solution of (5) and (6) with k = 0.
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Proof. We give a proof for (5), which also works for (6). In the case of
(5), if k = 0, then u = 1 − δ4v. Observe that by (12),

• if v ≡ 0 (mod3), then Hp(1 − δ4v, v) ≡ 1 (mod3),
• if v ≡ 1 (mod3) and p ≡ 1 (mod4), then Hp(1 − δ4v, v) ≡ 1 (mod3),
• if v ≡ 1 (mod3) and p ≡ 3 (mod4), then Hp(1− δ4v, v) ≡ ±1 (mod3),
• if v ≡ 2 (mod3) and p ≡ 1 (mod4), then Hp(1− δ4v, v) ≡ ±1 (mod3),
• if v ≡ 2 (mod3) and p ≡ 3 (mod4), then Hp(1 − δ4v, v) ≡ 1 (mod3).

Thus Hp(1 − δ4v, v) 6≡ 0 (mod3). Therefore there is no v ∈ Z such that
Hp(1 − δ4v, v) = 3m, as should be the case by (5) and (6).

Finally, we investigate the remaining case, that is, u + δ4v = 3m. We
remark that u + δ4v = −3m is not possible because from (6) and Lemma 5
we obtain −1 ≡ Hp(−3m − δ4v, v) ≡ 3k(p−1) ≡ 1 (mod p).

Proposition 2. If there is a coprime solution (u, v) ∈ Z2 of (5) with

q = 3, k = m, then p ≡ 5 or 11 (mod24).

Proof. For k = m we have, by (5) and Lemma 5,

(16) Hp(3
m − δ4v, v) = δ82

(p−1)/2pvp−1 + 3mpĤp(v) + 3m(p−1) = 1.

Therefore
δ82

(p−1)/2p ≡ 1 (mod3)

and we get p ≡ 1, 5, 7, 11 (mod24). Since by Lemma 1 the only solution
of the equation x2 + 32m = 2yp with 1 ≤ m ≤ 5 is given by (x, y, m, p) ∈
{(79, 5, 1, 5), (545, 53, 3, 3)}, we may assume without loss of generality that
m ≥ 6. To get rid of the classes 1 and 7 we work modulo 243. If p = 8t + 1,
then from (16) we have

24t(8t + 1)v8t ≡ 1 (mod243).

It follows that 243 | t and the first prime of the appropriate form is 3889,
which is larger than the bound we have for p. If p = 8t + 7, then

−24t+3(8t + 7)v8t+6 ≡ 1 (mod243).

It follows that t ≡ 60 (mod243) and it turns out that p = 487 is in this
class, so we work modulo 36 to show that the smallest possible prime is
larger than the bound we have for p. Here we have to resolve the case m = 6
using the method from [27]. This value of m is not too large so the method
worked. We did not get any new solution. Thus p ≡ 5 or 11 (mod24).

Proposition 3. There exists no coprime integer solution (x, y) of x2 +
32m = 2yp with m>0 and p<1000, p ≡ 5 (mod24) or p∈{131, 251, 491, 971}
prime.

Proof. To prove the theorem we resolve the Thue equations (13) for the
given primes. In each case there is a small subfield, hence we can apply
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the method of [9]. We wrote a PARI [24] script to handle the computation.
We note that if p = 659 or p = 827, then there is a degree 7 subfield,
but the regulator is too large to get an unconditional result. The same
holds for p = 419, 683, 947, in which cases there is a degree 11 subfield. In
the computation we followed the paper [9], but at the end we skipped the
enumeration step. Instead we used the bound for |x| given by the formula
(34) on page 318. The summary of the computation is in Table 1.

Table 1. Summary of the computation (AMD64 Athlon 1.8GHz)

p X3 time p X3 time p X3 time p X3 time p X3 time

29 4 1s 173 2 6s 317 2 13s 557 2 27s 797 2 45s

53 3 2s 197 2 7s 389 2 25s 653 2 33s 821 2 56s

101 2 3s 251 2 14s 461 2 22s 677 2 28s 941 2 62s

131 2 6s 269 2 14s 491 2 25s 701 2 37s 971 2 75s

149 2 7s 293 2 10s 509 2 23s 773 2 44s

We obtained small bounds for |u| in each case. It remained to find the
integer solutions of the polynomial equations Hp(u0, v) = 1 for the given
primes with |u0| ≤ X3. It turns out that there is no solution for which
u + δv = 3m, m > 0, and the statement follows.

The remaining Thue equations related to the remaining primes (p <
1000) were solved by G. Hanrot.

Proposition 4 (G. Hanrot). There exists no coprime integer solution

(x, y) of x2 + 32m = 2yp with m > 0 and

p ∈ {59, 83, 107, 179, 227, 347, 419, 443, 467, 563, 587, 659, 683, 827, 947}.

Table 2. Summary of the computation (AMD Opteron 2.6GHz)

p X3 time p X3 time p X3 time

59 47 2s 347 186 33m 587 279 248m

83 62 9s 419 216 67m 659 1 3s

107 74 23s 443 2 5s 683 2 7s

179 111 2m29s 467 233 102m 827 2 4s

227 134 6m13s 563 270 211m 947 2 10s

Proof. By combining the effective methods of composite fields [9] and
non-fundamental units [16] all Thue equations involving the given primes
were solved. The computations were done using PARI. Most of the compu-
tation time is the time for p− 1 LLL-reductions in dimension 3 on a lattice
with integer entries of size about the square of the Baker bound. The nu-
merical precision required for the reduction step is 7700 in the worst case
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(p = 587). The summary of the computation is in Table 2. We got small
bounds for |u| in each case. There is no solution for which u+δv = 3m, m > 0,
and the statement follows.

We recall that Cohn [14] showed that the only positive integer solution
of x2 + 1 = 2yp is given by x = y = 1.

Theorem 3. If the Diophantine equation x2 + 32m = 2yp with m > 0
and p prime admits a coprime integer solution (x, y), then (x, y, m, p) =
(13, 5, 2, 3), (79, 5, 1, 5), or (545, 53, 3, 3).

Proof. We will provide lower bounds for m which contradict the bound
for p provided by Proposition 1. By Proposition 1 we have p ≤ 3803 and
by Proposition 2 we have p ≡ 5 or 11 (mod24). We are left with the primes
p < 1000, p ≡ 5 or 11 (mod24). They are treated in Propositions 3 and 4.
We compute the following sets for each prime p with 1000 ≤ p ≤ 3803, p ≡
5 or 11 (mod24):

A5 := L(p, 3, 242),

A16 := L(p, 3, 136) ∩ L(p, 3, 193) ∩ L(p, 3, 320) ∩ L(p, 3, 697),

A22 := L(p, 3, 92) ∩ L(p, 3, 134) ∩ L(p, 3, 661),

A27 := L(p, 3, 866) ∩ L(p, 3, 1417),

A34 := L(p, 3, 103) ∩ L(p, 3, 307) ∩ L(p, 3, 1021),

A39 := L(p, 3, 169) ∩ L(p, 3, 313),

A69 := L(p, 3, 554) ∩ L(p, 3, 611).

About half of the primes can be disposed of by the following reasoning.
In case of A5 we have ord242 3 = 5, hence this set contains those congruence
classes modulo 5 for which (14) is solvable. The situation is similar for the
other sets. How can we use this information? Suppose it turns out that for
a prime A5 = {0} and A16 = {0}. Then we know that m ≡ 0 (mod5 · 16)
and Proposition 1 implies p ≤ 1309. If the prime is larger than this bound,
then we have a contradiction. In Table 3 we included those primes for which
we obtained a contradiction in this way.

In the columns “mod” the numbers n are stated for which sets An were
used for the given prime. It turned out that only four sets were needed. In
case of 5, 22 we have m ≥ 110, p ≤ 1093, in case of 16, 22 we have m ≥ 176,
p ≤ 1093 and in the case 16, 27 we have m ≥ 432, p ≤ 1009.

For the remaining primes we combine the available information by means
of the Chinese remainder theorem. Let CRT(5, 16, 39) be the smallest non-
negative solution of the system of congruences
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Table 3. Excluding some primes using congruences

p mod p mod p mod p mod p mod

1013 16, 27 1571 5, 22 1973 16, 22 2357 16, 22 3011 5, 22

1109 16, 22 1613 16, 22 1979 16, 22 2459 16, 22 3203 16, 22

1181 16, 22 1619 16, 22 2003 16, 22 2477 16, 22 3221 16, 22

1187 16, 22 1667 16, 22 2027 16, 22 2531 5, 22 3323 16, 22

1229 16, 22 1709 16, 22 2069 16, 22 2579 16, 22 3347 16, 22

1259 16, 22 1733 16, 22 2099 16, 22 2693 16, 22 3371 5, 22

1277 16, 22 1787 16, 22 2141 16, 22 2741 16, 27 3413 16, 22

1283 16, 22 1811 5, 22 2237 16, 22 2861 16, 22 3533 16, 22

1307 16, 22 1877 16, 27 2243 16, 22 2909 16, 22 3677 16, 22

1493 16, 22 1931 5, 22 2309 16, 27 2957 16, 22 3701 16, 22

1523 16, 22 1949 16, 22 2333 16, 22 2963 16, 22

Table 4. Excluding some primes using CRT

p rm CRT p rm CRT p rm CRT

1019 384 5, 16, 27 2267 448 5, 16, 69 3389 170 5, 27, 34

1061 176 5, 16, 39 2339 208 5, 16, 39 3461 116 5, 16, 39

1091 580 5, 16, 27 2381 44 5, 27, 34 3467 336 5, 16, 27

1163 586 5, 27, 34 2411 180 5, 16, 27 3491 850 5, 27, 34

1301 416 5, 16, 39 2549 320 5, 16, 27 3539 112 5, 16, 39

1427 270 5, 27, 34 2699 640 5, 16, 69 3557 176 5, 16, 39

1451 340 5, 16, 27 2789 204 5, 27, 34 3581 150 5, 27, 34

1499 112 5, 16, 39 2819 352 5, 16, 27 3659 112 5, 16, 39

1637 121 5, 27, 34 2837 131 5, 27, 34 3779 72 5, 27, 34

1901 304 5, 16, 39 2843 136 5, 27, 34 3797 416 5, 16, 39

1907 102 5, 27, 34 3083 340 5, 27, 34 3803 136 5, 27, 34

1997 170 5, 27, 34 3251 580 5, 16, 27

2213 170 5, 27, 34 3299 64 5, 16, 39

m ≡ a5 (mod5),

m ≡ a16 (mod16),

m ≡ a39 (mod39),

where a5 ∈ A5, a16 ∈ A16 and a39 ∈ A39. Let rm be the smallest non-zero
element of the set {CRT(5, 16, 39) : a5 ∈ A5, a16 ∈ A16, a39 ∈ A39}. In
Table 4 we included the values of rm and the numbers related to the sets
A5–A69. We see that m ≥ rm in all cases. For example, if p = 1019 then
m ≥ 384, and Proposition 1 implies p ≤ 1009, which is a contradiction.
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For p = 2381 we used A5, A27 and A34, given by A5 = {0, 1, 4}, A27 =
{0, 14, 15, 17}, A34 = {0, 10}. Hence

{CRT(5, 27, 34) : a5 ∈ A5, a27 ∈ A27, a34 ∈ A34}
= {0, 44, 204, 476, 486, 554, 690, 986, 1394, 1404, 1836, 1880, 1904,

2040, 2390, 2526, 2754, 3230, 3240, 3444, 3716, 3740, 3876, 4226}.
The smallest non-zero element is 44 (which comes from [a5, a27, a34] =
[4, 17, 10]), therefore m ≥ 44 and p ≤ 1309, a contradiction. In this way all
remaining primes > 1000 can be handled.
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Lemma 7, and Kálmán Győry for calling his attention to Schinzel’s Hy-
pothesis.

References

[1] S. A. Arif and F. S. A. Muriefah, On the Diophantine equation x2 + 2k = yn,
Internat. J. Math. Math. Sci. 20 (1997), 299–304.

[2] —, —, The Diophantine equation x2 + 3m = yn, ibid. 21 (1998), 619–620.
[3] —, —, On a Diophantine equation, Bull. Austral. Math. Soc. 57 (1998), 189–198.
[4] —, —, The Diophantine equation x2 + 52k+1 = yn, Indian J. Pure Appl. Math. 30

(1999), 229–231.
[5] —, —, The Diophantine equation x2 + q2k = yn, Arab. J. Sci. Eng. Sect. A Sci. 26

(2001), 53–62.
[6] —, —, On the Diophantine equation x2 + 2k = yn. II , ibid. 7 (2001), 67–71.
[7] —, —, On the Diophantine equation x2 + q2k+1 = yn, J. Number Theory 95 (2002),

95–100.
[8] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, ibid. 60 (1996),

373–392.
[9] —, —, Thue equations with composite fields, Acta Arith. 88 (1999), 311–326.

[10] Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas
and Lehmer numbers, with an appendix by M. Mignotte, J. Reine Angew. Math.
539 (2001), 75–122.

[11] Y. Bugeaud, On the Diophantine equation x2
− pm = ±yn, Acta Arith. 80 (1997),

213–223.
[12] J. H. E. Cohn, The Diophantine equation x2 + 2k = yn, Arch. Math. (Basel) 59

(1992), 341–344.
[13] —, The Diophantine equation x2 + 3 = yn, Glasgow Math. J. 35 (1993), 203–206.
[14] —, Perfect Pell powers, ibid. 38 (1996), 19–20.
[15] —, The Diophantine equation x2 + 2k = yn. II , Internat. J. Math. Math. Sci. 22

(1999), 459–462.



86 Sz. Tengely

[16] G. Hanrot, Solving Thue equations without the full unit group, Math. Comp. 69
(2000), 395–405.

[17] M. H. Le, On the Diophantine equation x2 + p2 = yn, Publ. Math. Debrecen 63
(2003), 67–78.

[18] F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61 (2000), 241–246.
[19] —, On the equation x2 + 2a

· 3b = yn, Internat. J. Math. Math. Sci. 29 (2002),
239–244.

[20] M. Mignotte, On the Diophantine equation D1x
2 + Dm

2 = 4yn, Portugal. Math. 54
(1997), 457–460.

[21] F. S. A. Muriefah, On the Diophantine equation px2 + 3n = yp, Tamkang J. Math.
31 (2000), 79–84.

[22] —, On the Diophantine equation Ax2 + 22m = yn, Internat. J. Math. Math. Sci. 25
(2001), 373–381.

[23] I. Niven, Irrational Numbers, Carus Math. Monogr. 11, Math. Assoc. Amer., Wiley,
New York, 1956.

[24] The PARI Group, Bordeaux, PARI/GP, version 2.2.8, 2004, available from http://
pari.math.u-bordeaux.fr/.

[25] I. Pink, On the Diophantine equation x2+(pz1

1 . . . pzs

s )2 = 2yn, Publ. Math. Debrecen
65 (2004), 205–213.

[26] I. Pink and Sz. Tengely, Full powers in arithmetic progressions, ibid. 57 (2000),
535–545.

[27] Sz. Tengely, On the Diophantine equation x2 + a2 = 2yp, Indag. Math. (N.S.) 15
(2004), 291–304.
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