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On the depth of the relations of the maximal unramified
pro-p Galois group over the cyclotomic Zp-extension

by

Satoshi Fujii (Yokohama)

1. Introduction. Let p be a prime number, k/Q a finite extension and
k∞/k the cyclotomic Zp-extension, where Zp is the additive group of p-adic
integers. Iwasawa-theoretical study of unramified pro-p extensions was de-
veloped by Ozaki [Oz2]. He proved a non-abelian Iwasawa class number
formula, and therefore we are interested in the structure of the Galois group
G(k∞) of the maximal unramified pro-p extension L(k∞)/k∞. A basic ques-
tion is: When does G(k∞) have a simple structure? Especially, we want to
study the cases where G(k∞) is an abelian group or a non-abelian free pro-p
group.

Mizusawa–Ozaki [MO] and Okano [Ok] characterized all imaginary quad-
ratic fields k such that G(k∞) is abelian via effective conditions. For the pth
cyclotomic field k = Q(µp), in the range of 1 < p < 1000, Sharifi [S] also
showed that G(k∞) is abelian. Based on their results, it may be thought that
the next step is to study number fields k such that G(k∞) is a non-abelian
free pro-p group. However, it seems that there is no concrete example of
such a number field k yet. What is more, a number of mathematicians,
including the author, suspect that G(k∞) can never be a non-abelian free
pro-p group. Recently, results which ensure the non-freeness of G(k∞) have
been obtained. Validire [V] gave a good criterion of the non-freeness of the
Galois group of the maximal unramified pro-p extension of k∞ which is
completely decomposed at all primes above p by using the theory of wild
étale kernels. Also in this article, for finite extensions k/Q such that the
prime number p splits completely, we will show that Greenberg’s generalized
conjecture (see Conjecture 1.4 below) implies that the “derived depth” of
G(k∞) is not so large. Now we define the derived depth of pro-p groups. For a
topological group G, let G′ = [G,G] be the closure of the commutator group
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of G. For a non-negative integer i, define D0(G) = G, and Di+1(G) = Di(G)′

inductively.

Definition 1.1 (Derived depth). Let G be a pro-p group and

1→ R→ F → G→ 1

a minimal presentation of G by a free pro-p group F (“minimal” means

that H1(G,Z/p) inf' H1(F,Z/p)). If there is a non-negative integer i such
that R ⊆ Di(F ) and R 6⊆ Di+1(F ), we say that the derived depth of G is i.
The derived depths of the trivial group and of free pro-p groups are defined
to be −∞ and ∞ respectively.

For example, the derived depth of a non-trivial finitely generated free
Zp-module M is ∞ or 1 according as M ' Zp or not. Since a free pro-p
group is a projective object in the category of pro-p groups and since Di(G)
is stable under topological automorphisms for each non-negative integer i,
the definition of the derived depth is independent of the choice of a minimal
presentation. Note that if the derived depth of a pro-p group G is finite,
then G is not a non-abelian free pro-p group. Our main result is as follows.

Main Theorem 1.2. Let p be a prime number and k/Q a finite exten-
sion which is completely decomposed at p. If Greenberg’s generalized conjec-
ture holds for p and k, then the derived depth of G(k∞) is at most 1 except
for the case where G(k∞) ' Zp.

As seen from the above results, it seems that G(k∞) is far from be-
ing a non-abelian free pro-p group. By the way, some results concern-
ing Greenberg’s generalized conjecture have been obtained. Combining Mi-
nardi’s Proposition 3.B of [M] and results of the author (Theorem 1.2 of
this article and computational results in [Fu]), for the prime number 3 and
imaginary quadratic fields k, we have

Corollary 1.3. Let p = 3. Let k = Q(
√
−m) be an imaginary quadratic

field with a positive integer m such that m ≡ 2 mod 3. In the range of
1 < m < 1000, except for four integers m = 461, 743, 971 and 974, the
derived depth of G(k∞) is at most 1 except for the case where G(k∞) ' Z3.

For integers m = 461, 743, 971 and 974, the derived depth of G(k∞) is
only known to be greater than 0 thanks to Okano’s result [Ok]. We further
give examples of imaginary quadratic fields k such that the 2-rank of the
ideal class group is at most 1 and the derived depth of G(k∞) is at most 1
for the prime 2 by using a method of [Fu].

Now we set the notation of this article. For a prime number p and a num-
ber field k (not necessarily finite over Q), we call K/k a Zdp-extension if K/k
is a Galois extension with an isomorphism Gal(K/k) ' Zdp as topological
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groups. Let X(k) and G(k) denote the Galois groups of the maximal un-
ramified pro-p abelian extension L(k)/k and the maximal unramified pro-p
extension L(k)/k (not necessarily abelian), respectively. In general, there is
a natural isomorphism X(k) ' G(k)ab = G(k)/G(k)′, where the superscript
ab denotes the maximal pro-p abelian quotient. We also use the notation
Gab for any pro-p group G.

For a Zdp-extension K/k, let

Λ(K/k) = Zp[[Gal(K/k)]] = lim←−
k⊆k′⊆K, [k′:k]<∞

Zp[Gal(k′/k)]

denote the completed group ring of Gal(K/k) with coefficients in Zp, the
projective limit is taken with respect to the natural morphisms of Galois
groups. Almost all modules in this article are modules over Λ(K/k) for a Zdp-
extension K/k. By Serre’s isomorphism, we know that Λ(K/k) is isomorphic
to the formal power series ring Λd = Zp[[T1, . . . , Td]] of d-variables with
coefficients in Zp. Hence a Λ(K/k)-module is regarded as a Λd-module.

A Λ(K/k)-module M is called pseudo-null , written M ∼Λ(K/k) 0, if
there are two relatively prime annihilators of M in Λ(K/k). Equivalently,
the annihilator ideal of M is not contained in any height 1 prime ideal of
Λ(K/k) (see Definition (5.1.4) of [NSW]). We write “M ⊇ (∼Λ(K/k) 0) 6= 0”
to mean that M contains a non-trivial pseudo-null Λ(K/k)-submodule. Let
k̃ be the composite of all Zp-extensions of k. Then k̃/k is a Zdp-extension
for some positive integer d. If Leopoldt’s conjecture holds for p and k then
d = r2 +1, where r2 denotes the number of complex primes of k. It is known
that Leopoldt’s conjecture holds for each prime number and each abelian
field. Greenberg’s generalized conjecture is as follows:

Conjecture 1.4 (Greenberg’s generalized conjecture [G]). For each
prime number p and finite extension k/Q, X(k̃) is pseudo-null over Λ(k̃/k).

2. Proof of Theorem 1.2. To prove Theorem 1.2, it suffices to show
the following.

Proposition 2.1. Let p be a prime number and k a finite extension of
Q which is completely decomposed at p. Let

1→ R→ F → G(k∞)→ 1

be a minimal presentation of G(k∞) by a free pro-p group F . Suppose
that there is a Zdp-extension K/k such that K contains k∞ and X(K) ⊇
(∼Λ(K/k) 0) 6= 0. Then R 6⊆ D2(F ).

We now show how to deduce Theorem 1.2 from Proposition 2.1. Ob-
serve that k̃/k∞ is unramified. Indeed, since all primes of k lying above
p split completely in k/Q, the inertia subgroup of a prime of k̃ above p
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in Gal(k̃/k) is isomorphic to Zp. Let I be the inertia subgroup of a prime
of k̃ lying above p in Gal(k̃/k). Since all primes of k above p ramify in
k∞/k, I maps to Gal(k∞/k) injectively with finite cokernel. This shows
that I ∩Gal(k̃/k∞) = 1 since I ' Zp, and hence k̃/k∞ is unramified at all
primes lying above p. It is known that k̃/k is unramified outside primes lying
above p. So, we conclude that k̃/k∞ is unramified at all primes of k∞.

Suppose first that X(k̃) = 0. From the fact that X(k̃) = G(k̃)ab and
the pro-p version of Burnside’s basis theorem, we conclude that G(k̃) = 1.
Hence L(k∞) = k̃ and therefore G(k∞) = Gal(k̃/k∞) is abelian since k̃/k∞
is unramified at all primes of k∞. Suppose next that X(k̃) 6= 0. Since k̃
is the composite of all Zp-extensions, it contains k∞. From Greenberg’s
generalized conjecture, it follows that X(k̃) ∼

Λ(ek/k) 0, and X(k̃) 6= 0 by

assumption. In particular, X(k̃) ⊇ (∼
Λ(ek/k) 0) 6= 0. By Proposition 2.1, we

conclude that R 6⊆ D2(F ).
Now, we start to prove Proposition 2.1. Let k be a finite extension of Q

which is completely decomposed at p. Let

1→ R→ F → G(k∞)→ 1

be a minimal presentation of G(k∞) by a free pro-p group F . We may
assume that the Iwasawa µ-invariant of k∞/k is 0. Indeed, if the µ-invariant
is greater than 0, then X(k∞) has a subgroup of the form

∏∞
n=0 Z/p. Since

the maximal abelian quotient F ab of a free pro-p group F has no torsion
element, it follows that R 6⊆ D1(F ). Note that the Iwasawa µ-invariant
is 0 if and only if X(k∞) is finitely generated over Zp. If X(k∞) is finitely
generated over Zp, by the pro-p version of Burnside’s basis theorem, G(k∞)
is finitely generated as a pro-p group.

In what follows, we assume that the Iwasawa µ-invariant of the cyclo-
tomic Zp-extension k∞/k is 0. Since G(k∞) is a finitely generated pro-p

group, F is also finitely generated since H1(G(k∞),Z/p) inf' H1(F,Z/p). Let
K/k be a Zdp-extension such that k∞ ⊆ K and X(K) ⊇ (∼Λ(K/k)) 6= 0. As
mentioned above, k̃/k∞ is unramified, and hence K/k∞ is also unramified
because of K ⊆ k̃.

Lemma 2.2. There is a closed normal subgroup H of F such that Hab is
a finitely generated torsion-free Λ(K/k∞)-module and there is a surjective
morphism Hab → X(K). In particular, X(K) is finitely generated over
Λ(K/k∞).

Proof. Note that K is a subfield of L(k∞) since K/k∞ is unramified,
as mentioned above. We claim that L(K) = L(k∞). The inclusion L(k∞)
⊆ L(K) follows from the fact that KL(k∞)/K is an unramified extension.
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On the other hand, the maximality of L(K) shows that L(K)/k∞ is a Ga-
lois extension. Since the extensions L(K)/K and K/k∞ are unramified,
L(K)/k∞ is also an unramified extension. By the maximality of L(k∞), we
conclude that L(K) ⊆ L(k∞). Therefore L(K) = L(k∞). From this, we find
that G(K) is a subgroup of G(k∞), and G(k∞)/G(K) = Gal(K/k∞).

Let H be the inverse image of G(K) with respect to the surjective mor-
phism F → G(k∞). It follows that F/H ' G(k∞)/G(K) ' Gal(K/k∞).
Thus we obtain the following exact-commutative diagram of pro-p groups:

Ry
1 −−−−→ H −−−−→ F −−−−→ F/H −−−−→ 1y ymin. pres.

yo
1 −−−−→ G(K) −−−−→ G(k∞) −−−−→ Gal(K/k∞) −−−−→ 1

Since the right vertical map is an isomorphism, the left vertical map is
surjective with kernel R. In other words, the sequence

1→ R→ H → G(K)→ 1

of pro-p groups is exact. Now, we consider the abelianization of this exact
sequence. Recall that G(K)ab = X(K). Since Gal(K/k∞) acts on Hab via
inner automorphisms, Hab can be regarded as a module over ΛK/k∞ . Note
that the actions of Λ(K/k∞) on Hab and X(K) are compatible with the
surjective morphism Hab → X(K). We thus have an exact sequence

Rab
G(K) → Hab → X(K)→ 0(2.1)

of Λ(K/k∞)-modules (note that Gal(K/k) does not act on Hab). Hence it
suffices to show thatHab is finitely generated and torsion-free over Λ(K/k∞).
Then H is a desired subgroup of F . By Lyndon’s resolution (see for example
Proposition 1.1 of [N]), there is an exact sequence

0→ Hab → Λ(K/k∞)⊕r → Λ(K/k∞)→ Zp → 0(2.2)

of Λ(K/k∞)-modules, where r is the number of topological generators of
G(k∞). This exact sequence shows thatHab is finitely generated and torsion-
free over Λ(K/k∞).

To finish the proof, we need a module-theoretic lemma.

Lemma 2.3. Let M be a Λ(K/k)-module which is finitely generated over
Λ(K/k∞). Then M ∼Λ(K/k) 0 if and only if M is torsion over Λ(K/k∞).

Hachimori and Sharifi [HS] obtained the same result for p-adic Lie ex-
tensions. Their result contains Lemma 2.3. However, in our case, the proof
is quite easy, so we give it here.
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Proof. By Serre’s isomorphism, we identify Λ(K/k) (resp. Λ(K/k∞))
and Λd (resp. Λd−1). Hence Λd = Λd−1[[Td]]. We regard any Λ(K/k)- (resp.
Λ(K/k∞)-) module as a module over Λd (resp. Λd−1). Since M is finitely
generated over Λd−1, there are generators x1, . . . , xs of M over Λd−1. Thus
there is an s× s matrix A with entries in Λd−1 such that

Td


x1

...
xs

 = A


x1

...
xs

 .

Hence ϕ(Td) = det(Td−A)(∈ Λd−1[Td]) is in the annihilator ideal AnnΛd
(M)

of M . Put AnnΛd
(M) = (g1, . . . , gt). Since ϕ(Td) ∈ AnnΛd

(M), we may
assume that gj ∈ Λd−1[Td]. Indeed, put gi =

∑∞
n=0 ai(n)Tnd with ai(n) ∈

Λd−1. Suppose that ai(n) is contained in the maximal ideal md−1 of Λd−1

for each non-negative integer n. Then the coefficient of gi+ϕ(Td) of degree s
is ai(s)+1, which is not contained in md−1. Hence, if necessary, by replacing
gi with gi + ϕ(Td), we may assume that ai(s) 6∈ md−1. By the Weierstrass
preparation theorem, there are distinguished polynomials Di ∈ Λd−1[Td] and
unit power series Ui ∈ Λd−1[[Td]] such that gi = DiUi. Hence (g1, . . . , gt) =
(D1, . . . , Dt).

If M ∼Λ(K/k) 0, then AnnΛd
(M) is not contained in any height 1 prime

ideal of Λd. Hence the polynomials g1, . . . , gt are relatively prime over
Λd−1[Td]. Let Ωd−1 be the field of fractions of Λd−1. Then there exist poly-
nomials h1, . . . , ht ∈ Ωd−1[Td] such that 1 =

∑t
i=1 higi. If we choose 0 6= h ∈

Λd−1 so that hhi ∈ Λd−1[Td] for each 1 ≤ i ≤ t, then h =
∑t

i=1(hhi)gi ∈
AnnΛd

(M). This shows that M is torsion over Λd−1.
Conversely, suppose that M is torsion over Λd−1. Since ϕ(Td) and el-

ements of Λd−1 are relatively prime, AnnΛd
(M) is not contained in any

height 1 prime ideal of Λd. Therefore, M ∼Λ(K/k) 0.

End of proof of Proposition 2.1. Let Z be the maximal pseudo-null sub-
module of X(K). By our assumption, Z is not trivial. By Lemma 2.3, Z
is torsion over Λ(K/k∞). Since Hab is a torsion-free Λ(K/k∞)-module by
the exact sequence (2.2), the surjective morphism Hab → X(K) is not an
isomorphism. This shows that R 6⊆ H ′ by (2.1). Since Gal(K/k∞) ' F/H
is abelian, we see that F ′ ⊆ H, and hence R 6⊆ D2(F ).

3. Examples. In this section, we shall give examples for the prime
number 2 and imaginary quadratic fields k. Let A(k) be the 2-primary part
of the ideal class group of k. In the following, we only deal with the case that
2 splits in an imaginary quadratic field k = Q(

√
−m) (m is a square-free

positive integer) and that A(k) is cyclic. Then, by genus theory, m satisfies
one of the following three conditions:
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(1) m = ` is an odd prime number with ` ≡ 7 mod 8, and so A(k) = 0.
(2) m is a product of two odd prime numbers `1 and `2 such that `1 ≡ 5,

`2 ≡ 3 mod 8, and so A(k)/2 ' Z/2.
(3) m is a product of two odd prime numbers `1 and `2 such that `1 ≡ 1,

`2 ≡ 7 mod 8, and so A(k)/2 ' Z/2.

The following results about X(k̃) and X(k∞) = G(k∞)ab are known.

Theorem 3.1 (Proposition 3.A of [M]). Let p be a prime number and k
an imaginary quadratic field. If p does not divide the class number of k then
X(k̃) ∼

Λ(ek/k) 0.

Theorem 3.2 (Theorems 6 and 7 of [Fe], Lemma 1 of [Oz1]). Let p = 2
and k = Q(

√
−m) be an imaginary quadratic field with a square-free positive

integer m satisfying m ≡ 7 mod 8. Let ` be an odd prime number and let
r(`) denote the integer m such that ` = ±1 + 2m+2a with an odd integer a.

(i) Let r(k) =
∑

`|m 2r(`) − 1. Then X(k∞) ' Z⊕r(k)2 .
(ii) X(k∞) ' Z2 in exactly the following cases:

(a) m = `, where ` is an odd prime number such that ` ≡ 7 mod 16,
(b) m is a product of two odd prime numbers `1 and `2 such that

`1 ≡ 5, `2 ≡ 3 mod 8.

(iii) X(k̃) = 0 if and only if X(k∞) ' Z2.

Let 1→ R→ F → G(k∞)→ 1 be a minimal presentation of G(k∞) by a
free pro-2 group F . If m satisfies the condition (2), or (1) and ` ≡ 7 mod 16,
then G(k∞) ' X(k∞) ' Z2. In these cases, we can conclude that the derived
depth of G(k∞) is ∞.

Suppose that condition (1) holds and ` ≡ 15 mod 16. Then the Iwasawa
λ-invariant of k∞/k is greater than 1 from Theorem 3.2(i). Hence X(k̃) 6= 0
by Theorem 3.2(iii). By Theorem 3.1, X(k̃) is a non-trivial pseudo-null
Λ(k̃/k)-module. Therefore R 6⊆ D2(F ) by Proposition 2.1. For conditions (1)
and (2), combining the above, we obtain

Proposition 3.3.

• If ` ≡ 7 mod 16 and k = Q(
√
−`), then G(k∞) ' Z2 and therefore

the derived depth of G(k∞) is ∞.
• If ` ≡ 15 mod 16 and k = Q(

√
−`), then the derived depth of G(k∞)

is 1.
• If k = Q(

√
−`1`2) with prime numbers `1 and `2 satisfying `1 ≡ 5

and `2 ≡ 3 mod 8, then G(k∞) ' Z2 and therefore the derived depth
of G(k∞) is ∞.
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Suppose that condition (3) holds. Then the Iwasawa λ-invariant of k∞/k
is greater than 1 from Theorem 3.2 and hence X(k̃) 6= 0. We further divide
condition (3) into two cases. First, we present a known result dealing with
the case where

(
`1
`2

)
= −1, ( ··) being the quadratic residue symbol.

Theorem 3.4 (Proposition C of [I]; see also Theorem 2 of [IKM]). Sup-
pose that condition (3) holds and

(
`1
`2

)
= −1. Further assume that 2(`1−1)/4 6≡

(−1)(`1−1)/8 mod `1. Then X(k̃) is a non-trivial pseudo-null Λ(k̃/k)-module.

From Theorem 3.4 and Proposition 2.1, we have

Proposition 3.5. Under the assumptions of Theorem 3.4, the derived
depth of G(k∞) is 1.

Next, we deal with the case where
(
`1
`2

)
= 1.

Theorem 3.6. Let p = 2. Let `1 and `2 be prime numbers such that
`1 ≡ 1, `2 ≡ 7 mod 8 and

(
`1
`2

)
= 1. Let k = Q(

√
−`1`2) and let Rk(m) be

the ray class group of k modulo m. Put 2N = exp(A(k)). Suppose

(a) there is a positive integer n such that N + 2 < n and

Rk(2n)⊗ Z2 ' T ⊕ Z/2a1 ⊕ Z/2a2

with exp(T ) < exp(A(k)) and N < min{a1, a2},
(b) the norm of the fundamental unit of Q(

√
2`1) is equal to 1.

Then X(k̃) ⊇ (∼
Λ(ek/k) 0) 6= 0. In particular, the derived depth of G(k∞)

is 1.

Proof. Since k(
√
`1)/k is an unramified extension and since A(k)/2 '

Z/2, k(
√
`1)/k is a unique unramified quadratic extension. From Proposi-

tion 2 of [C] and Lemma 4.3 of [Fu], if condition (a) holds then k̃ contains
a non-trivial unramified extension of k, in particular

√
`1 ∈ k̃. Note that

the author showed in [Fu] that the group T is isomorphic to the maximal
torsion subgroup of the Galois group of the maximal pro-2 abelian exten-
sion unramified at all primes lying above 2. By Kummer theory, #T ≥ 4.
When

(
`1
`2

)
= −1, k̃ contains no non-trivial unramified extension since A(k)

is always Z/2. In fact, the condition exp(T ) < exp(A(k)) does not hold.
When

(
`1
`2

)
= 1, since k(

√
`1)/k is unramified, A(k) ' Z/2a with a ≥ 2. The

condition exp(T ) < exp(A(k)) holds only in this case.
Since the quadratic subextension of k∞/k is k(

√
2), k(

√
2`1) is a subfield

of k̃, and all primes above 2 are ramified in k(
√

2`1)/k. Let K/k be a Z2-
extension with k(

√
2`1) ⊆ K. The author also showed in [Fu] that if X(K)

contains a non-trivial finite Λ(K/k)-submodule then X(k̃)⊇ (∼
Λ(ek/k) 0) 6= 0.

To show the existence of a non-trivial finite submodule of X(K), it suf-
fices to prove that the lift map i : A(k)→ A(k(

√
2`1)) is not injective. Since
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A(k) is a cyclic group, the injectivity of i is equivalent to the non-triviality
of the restriction i|A(k)[2] of i to the 2-torsion subgroup A(k)[2] of A(k). Let
l1 be the prime ideal of k above `1. By genus theory, A(k)[2] is generated by
the class c(l1) containing l1. Let L1 and L′1 be the primes of k(

√
2`1) with

L1 6= L′1 lying above `1 and let l+1 be the prime of Q(
√

2`1) lying above 2.
Then l1 = L1L

′
1 = l+1 in k(

√
2`1). By genus theory, the 2-torsion subgroup of

the narrow class group of Q(
√

2`1) is generated by the class containing l+1 .
From our assumption (b), l+1 is a principal ideal. This shows that i|A(k)[2] is
trivial.

Remark 3.7. From Theorem 1 of [L], the lift map i is injective if and
only if the norm of the fundamental unit of Q(

√
2`1) is −1.

We show examples illustrating Theorem 3.6. In the range of 1 < `1, `2
< 500, for the following pairs of prime numbers (`1, `2) and the imaginary
quadratic field k = Q(

√
−`1`2), the derived depth of G(k∞) is 1 by The-

orem 3.6 (the computations were done by using KASH [KASH]):

(17, 47), (17, 103), (17, 127), (17, 151), (17, 191), (17, 239), (17, 263), (17, 271),
(17, 383), (17, 463), (73, 71), (73, 127), (73, 223), (73, 311), (73, 359), (73, 367),
(73,439), (73,463), (73, 479), (73, 487), (89,167), (89,199), (89, 223), (89,263),
(89, 271), (89, 311), (89, 367), (97, 47), (97, 79), (97, 103), (97, 151), (97, 431),
(97, 487), (193, 7), (193, 23), (193, 31), (193, 191), (193, 239), (193, 359),
(193, 383), (193,479), (193,487), (233, 7), (233, 23), (233, 271), (233, 359),
(241, 79), (241, 191), (241, 223), (241, 239), (241, 359), (241, 487), (257, 23),
(257, 79), (257, 199), (257, 223), (257, 479), (281, 7), (281, 31), (281, 79),
(281, 191), (281, 223), (281, 359), (281, 367), (281, 439), (337, 7), (337, 47),
(337, 79), (337, 103), (337, 239), (337, 263), (337, 311), (337, 431), (353, 47),
(353, 127), (353, 167), (353, 311), (353, 431), (401, 47), (401, 103), (401, 223),
(401, 239), (401, 311), (401, 383), (401, 487), (433, 167), (433, 191), (433, 199),
(433, 223), (433, 271), (433, 359), (433, 367), (433, 383), (433, 431), (433, 439),
(449, 7), (449, 167), (449, 271), (449, 359), (449, 367), (449, 431).
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