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1. Introduction. In the study of the arithmetic of Abelian varieties, the
theory of height functions is very important. For an Abelian variety defined
over a global field and a divisor on it, we can choose a good height function
which is called the canonical height function. The canonical height function
can be decomposed into canonical local height functions, which are functions
defined for each absolute value. Néron [12] obtained theoretical results and
Tate made these results more explicit for elliptic curves (cf. [9, 20]).

The canonical height function on Jacobians of curves of genus 2 was
studied by Flynn and Smart [5], Yoshitomi [19], and Stoll [14, 15]. They
studied the canonical height by decomposing it into a sum of canonical local
heights. Note that Flynn, Smart, and Stoll treated the case where Y 2 =
(sextic) by the method of Cassels and Flynn [2], and that Yoshitomi treated
the case where Y 2 = (quintic) by using complex analysis and intersection
theory.

In this paper, we study canonical local height functions on Jacobians of
curves of genus 2. Although other authors have already treated canonical
local height functions, our treatment is more systematic. This systematic
treatment enables us to prove some relations for canonical local height func-
tions. We treat the case where Y 2 = (sextic) by the method of Cassels and
Flynn [2]; however, almost all the results in this paper hold with a slight
modification for the case where Y 2 = (quintic).

To study canonical local height functions on Jacobians of curves of
genus 2, we need the multiplication formulas. Kanayama [8] gave the multi-
plication formulas for the case where Y 2 = (quintic). However, in the case
where Y 2 = (sextic), the multiplication formulas are not known. Since the
height functions under consideration are defined through the Kummer sur-
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face, it is sufficient to construct the multiplication formulas for the Kummer
surface. In this paper, we find them, and then we derive some relations
between the canonical local height functions.

As applications, we give bounds for the difference between the naive
height and the canonical height and an algorithm to compute the canonical
height. These height bounds are generalizations of the author’s result for
elliptic curves [16, 17].

This paper is organized as follows: In Section 2, we review the arithmetic
of curves of genus 2 according to [2]. In Section 3, we give the multiplica-
tion formulas for the Kummer surfaces associated with curves of genus 2.
In Section 4, we recall the concepts and facts needed when we construct
the canonical local height functions. In Section 5, we define the canonical
local height functions and prove several of their properties. In Section 6,
we give bounds for the difference between the naive height function and
the canonical height function. Then we discuss algorithms to compute these
bounds. In Section 7, we describe a refinement of an algorithm to compute
the canonical height.

The proof of Lemma 3.1, which is a proof of irreducibility, requires the
use of a computer algebra system. The author used Risa/Asir [13].

2. Preliminaries for curves of genus 2. In this section, we review
the basis for the arithmetic of curves of genus 2 according to [2].

Let k be a field with char(k) 6= 2. We denote by k̄ the algebraic closure
of k. We consider a non-singular projective curve of genus 2 over k,

C : Y 2 = f(X),

where

f(X) = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0 ∈ k[X]

is of degree 5 or 6 and has no multiple roots. When f(X) is of degree 6,
we denote the two points at infinity of C by ∞+ and ∞−. When f(X) is
of degree 5, both ∞+ and ∞− stand for the unique point at infinity, and
then we also denote it by ∞. The points ∞+ and ∞− are defined over k or
a quadratic extension of k.

Let J be the Jacobian of C. A point on J can be written as a divisor
class of the form (P1)+(P2)− (∞+)− (∞−), where P1, P2 ∈ C. Let Θ+, Θ−

be the images of C in J via the embeddings

P 7→ (P )− (∞+), P 7→ (P )− (∞−)

respectively. Note that Θ+ and Θ− may not be defined over k. However,
Θ++Θ− is defined over k. Furthermore,Θ++Θ− is linearly equivalent to 2Θ,
where Θ is a suitable theta divisor on J . By [11, Section 6, Application 1],
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Θ+ +Θ− is base-point free and ample. Since l(Θ+ +Θ−) = l(2Θ) = 4, there
exists a morphism from J to P3 associated with Θ+ +Θ−.

Following [2], we choose a morphism κ : J → P3 associated with Θ+ + Θ−

as follows: Let P be a point on J corresponding to a divisor (P1) + (P2) −
(∞+)− (∞−), where Pi = (xi, yi) ∈ C for i = 1, 2. If P1, P2 6=∞+,∞− and
x1 6= x2, then we define

κ(P ) = (ξ1(P ), . . . , ξ4(P )),
where

ξ1(P ) = 1, ξ2(P ) = x1 + x2, ξ3(P ) = x1x2,

ξ4(P ) =
F0(x1, x2)− 2y1y2

(x1 − x2)2
,

F0(x1, x2) = 2f0 + f1(x1 + x2) + 2f2x1x2 + f3x1x2(x1 + x2)

+ 2f4(x1x2)2 + f5(x1x2)2(x1 + x2) + 2f6(x1x2)3.

If P does not satisfy the above condition, we define κ(P ) by changing coor-
dinates and taking limits. For example, when we denote by O the identity
element of J , we have κ(O) = (0, 0, 0, 1). We call the image of κ the Kummer
surface, and denote it by K.

The defining equation of K is G(ξ1, . . . , ξ4) = 0, where G is a homoge-
neous polynomial in ξ1, . . . , ξ4 of degree 4 with coefficients in Z[f0, . . . , f6].
An explicit formula for G is given in [2].

Let ι : J → J be the involution defined by ι(P ) = −P . Then κ ◦ ι = κ,
and the quotient variety J/〈ι〉 is isomorphic to K through the morphism
induced by κ. We identify J/〈ι〉 with K by this isomorphism.

We denote the multiplication-by-m map on J by [m]. Since [m](−P ) =
−([m]P ), [m] induces a morphism on K. We denote by δ the morphism on
K induced by the duplication map, that is, κ([2]P ) = δ(κ(P )). Explicit for-
mulas for δ are given in [3] and available at [4]. According to these formulas,
δ = (δ1, . . . , δ4), where δi are homogeneous polynomials in ξ1, . . . , ξ4 of de-
gree 4 with coefficients in Z[f0, . . . , f6]. It is the aim of Section 3 to obtain
similar formulas for general multiplication maps.

We cannot recover κ(P+Q) from only κ(P ) and κ(Q) because P and −P
are identified through κ. However, we can obtain an unordered pair
(κ(P +Q), κ(P −Q)) from κ(P ) and κ(Q).

Proposition 2.1 ([2, Theorem 3.4.1]). There exist polynomials Bij bi-
quadratic in the two sets of homogeneous variables (ξ1(P ), . . . , ξ4(P )) and
(ξ1(Q), . . . , ξ4(Q)) with coefficients in Z[f0, . . . , f6] such that, for any P,Q ∈
J(k̄), there exists c ∈ k̄× such that

(2.1) ξi(P +Q)ξj(P −Q) + ξj(P +Q)ξi(P −Q) = c · 2Bij(κ(P ), κ(Q))

for all i, j = 1, 2, 3, 4.
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Explicit formulas for Bij are also available at [4]. We will use δi and Bij
as defined at [4] throughout this paper.

3. Multiplication formulas. In this section, we construct the multipli-
cation formulas for the Kummer surfaces associated with curves of genus 2.

For a while, we will assume that k = Q(f0, . . . , f6) and that f0, . . . , f6 are
algebraically independent over Q. We begin with some technical lemmas.

Lemma 3.1. Let Gi be the polynomial obtained by substituting 0 for ξi
in G. Then Gi is irreducible in Z[f0, . . . , f6][ξ1, . . . , ξi−1, ξi+1, . . . , ξ4].

Proof. We can verify the lemma by using a computer algebra system.
The author used Risa/Asir [13].

Lemma 3.2. Let I = 〈G, ξi〉 be the ideal in k[ξ1, . . . , ξ4] generated by G
and ξi. Then I is a prime ideal. In particular, I is a radical ideal, that is,√
I = I.

Proof. Let R = k[ξ1, . . . , ξ4] and R′ = k[ξ1, . . . , ξi−1, ξi+1, . . . , ξ4]. We
define a ring homomorphism ϕ : R→ R′ by

ϕ(g(ξ1, . . . , ξ4)) = g(ξ1, . . . , ξi−1, 0, ξi+1, . . . , ξ4).

Take Gi as in Lemma 3.1. Note that Gi = ϕ(G).
Let I ′ be the ideal generated by Gi in R′. Then I = ϕ−1(I ′). By

Lemma 3.1, I ′ is a prime ideal, and so is I.

The following theorem gives the multiplication formulas.

Theorem 3.3. There exist homogeneous polynomials µm,i ∈ k[ξ1, . . . , ξ4]
for any m ≥ 0 and i = 1, 2, 3, 4 such that the following conditions are
satisfied:

(i) We have

µ0,1 = µ0,2 = µ0,3 = 0, µ0,4 = 1,
µ1,i = ξi,

µ2m,i = δi(µm) (m ≥ 1),(3.1)
µ2m+1,iξi = Bii(µm+1, µm) (m ≥ 1)(3.2)

in k[ξ1, . . . , ξ4]/〈G〉, where µm = (µm,1, . . . , µm,4).
(ii) For all P ∈ J(k̄), we have

(3.3) κ([m]P ) = (µm,1(κ(P )), . . . , µm,4(κ(P ))).

Proof. We prove the theorem by induction on m. It is clear when m =
0, 1.

We assume that we have µm,i for m ≤ n. When n+ 1 is even, we define
µn+1,i by (3.1). Then we obtain (3.3) for m = n+ 1.
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Assume that n + 1 is odd. We put n + 1 = 2l + 1. By Proposition 2.1,
for all P ∈ J(k̄), there exists c ∈ k̄× such that

ξi([2l + 1]P )ξi(P ) = cBii(κ([l + 1]P ), κ([l]P ))

for all i = 1, 2, 3, 4. We define g ∈ k[ξ1, . . . , ξ4] by

g = Bii(µl+1, µl).

Then g(Q) = 0 for all Q ∈ K(k̄) with ξi(Q) = 0. Hence we have g ∈√
〈G, ξi〉k̄ by Hilbert’s Nullstellensatz, where 〈G, ξi〉k̄ is the ideal in

k̄[ξ1, . . . , ξ4] generated by G and ξi. Since g ∈ k[ξ1, . . . , ξ4], we see that

g ∈
√
〈G, ξi〉k̄ ∩ k[ξ1, . . . , ξ4] =

√
〈G, ξi〉k,

where 〈G, ξi〉k is the ideal in k[ξ1, . . . , ξ4] generated by G and ξi. We have√
〈G, ξi〉k = 〈G, ξi〉k by Lemma 3.2. Hence we can write

(3.4) g = g1ξi + g2G,

where g1, g2 ∈ k[ξ1, . . . , ξ4]. Put µn+1,i = g1. Then we obtain (3.3) for m =
n+ 1.

Remark 3.4. The polynomials µm,i are uniquely determined modulo G.

Remark 3.5. We can compute µ2m+1,i by using Gröbner bases (see [1,
§5.6]). We can also compute them using the following elementary operations.
In (3.4), we can assume that g2 does not contain the variable ξi. We sub-
stitute 0 for ξi in (3.4). Let h be the polynomial obtained by substituting 0
for ξi in g. Then h = g2Gi, where Gi is taken as in Lemma 3.1. Hence we
can calculate g2 = h/Gi and g1 = (g − g2G)/ξi.

In Theorem 3.3, the coefficients of µm,i are in k = Q(f0, . . . , f6). In fact,
we have the following:

Proposition 3.6. For all m ≥ 0 and i = 1, 2, 3, 4, we can choose µm,i
with coefficients in Z[f0, . . . , f6].

Proof. We prove the conclusion by induction on m. It is clear when
m = 0, 1.

Assume that the conclusion is true if m < n. If n is even, the conclusion
is clear since δi and µn/2,i have coefficients in Z[f0, . . . , f6].

If n is odd, we have

(3.5) µ2l+1,iξi = Bii(µl+1, µl) + g2G

in k[ξ1, . . . , ξ4], where n = 2l + 1 and g2 ∈ k[ξ1, . . . , ξ4]. We can assume
that g2 does not contain the variable ξi by replacing µ2l+1,i if necessary.
Substitute 0 for ξi. Then

g2Gi = H,
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where H is a polynomial obtained by substituting 0 for ξi in −Bii(µl+1, µl).
Then H has coefficients in Z[f0, . . . , f6] since Bii, µl+1,j , and µl,j have the
same property. Gi is irreducible in Z[f0, . . . , f6][ξ1, . . . , ξi−1, ξi+1, . . . , ξ4] by
Lemma 3.1. Therefore g2 has coefficients in Z[f0, . . . , f6]. Hence the right-
hand side of (3.5) has coefficients in Z[f0, . . . , f6], and so does µ2l+1,i.

By Proposition 3.6, we can remove the assumption that k = Q(f0, . . . , f6)
and that f0, . . . , f6 are algebraically independent over Q.

Corollary 3.7. The statement of Theorem 3.3 holds for any field k
with char(k) 6= 2.

Proof. The relations among the polynomials µm,i in Theorem 3.3(i) hold
for Z[f0, . . . , f6][ξ1, . . . , ξ4]. Since there is a ring homomorphism Z[f0, . . . , f6]
→ k, there exist µm,i ∈ k[ξ1, . . . , ξ4] such that condition (i) is satisfied.
Condition (ii) follows from (i) and Proposition 2.1.

We describe some properties of µm,i.

Lemma 3.8. For all m ≥ 0 and i = 1, 2, 3, 4, µm,i has degree m2.

Proof. Since δi are homogeneous polynomials of degree 4 and Bii are
biquadratic forms, the lemma follows by induction on m.

Lemma 3.9. Let O = (0, 0, 0, 1). Then

µm,1(O) = µm,2(O) = µm,3(O) = 0, µm,4(O) = 1 for all m ≥ 0.

Proof. It is enough to show that µm,4(O) = 1. First note that we can
verify that δ4(O) = 1 and B44(O,O) = 1 by direct computation. We prove
the conclusion by induction on m. It is clear when m = 0, 1. We assume
that the conclusion is true for m < n. When n is even, put n = 2l. Then

µn,4(O) = δ4(µl(O)) = δ4(O) = 1.

When n is odd, put n = 2l + 1. Then

µn,4(O)µ1,4(O) = B44(µl+1(O), µl(O)) = B44(O,O) = 1.

Since µ1,4(O) = 1, we have µn,4(O) = 1.

Proposition 3.10. We have

(3.6) µm+n,iµm−n,j + µm+n,jµm−n,i = 2Bij(µm, µn)

in k[ξ1, . . . , ξ4]/〈G〉 for all m,n ≥ 0 such that m ≥ n and for all i, j =
1, 2, 3, 4.

Proof. By Proposition 2.1, for all P ∈ K(k̄), there exists c(P ) ∈ k̄× such
that

(µm+n,iµm−n,j + µm+n,jµm−n,i)(P ) = c(P ) · 2Bij(µm, µn)(P )
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for all i, j = 1, 2, 3, 4. Since both sides of (3.6) have the same degree by
Lemma 3.8, c is a regular function on K. However, since K is projective,
c must be a constant. Comparing values at O, we obtain c = 1.

4. Preliminaries from height theory. In this section, we state some
definitions and propositions needed for the next section. For simplicity, we
treat only the case of number fields. However, the results in this and the next
sections are valid for more general fields with absolute values. For details on
this section, see [7] or [10].

Let k be a number field. We denote by Mk the set of all absolute values
on k whose restriction to Q is one of the standard absolute values on Q.

A function γ : Mk → R is said to be an Mk-constant if γ(v) = 0 for all but
a finite number of v in Mk. We may regard γ as a family of constants {γv}.

Let V be a variety over k. We consider a function on the disjoint union

α :
∐
v∈Mk

V (kv)→ R.

We denote by αv the restriction of α to V (kv). Then we may regard α
as a family of functions {αv}. We say that α is Mk-bounded if there exist
Mk-constants γ, γ′ such that

γ(v) ≤ αv(P ) ≤ γ′(v)

for all v ∈Mk and P ∈ V (kv).
A subset Y ⊂

∐
v∈Mk

V (kv) is said to be affine Mk-bounded if there
exists an affine open subset V0 with affine coordinates x1, . . . , xn such that
Y ⊂

∐
v∈Mk

V0(kv) and the function∐
v∈Mk

V0(kv)→ R, P 7→ max
1≤i≤n

|xi(P )|v

is Mk-bounded on Y . A subset Y ⊂
∐
v∈Mk

V (kv) is said to be Mk-bounded
if Y is contained in the finite union of affine Mk-bounded subsets.

Let α :
∐
v∈Mk

V (kv) → R be a function. We say that α is locally Mk-
bounded if α is Mk-bounded on any Mk-bounded subset. We say that α is
continuous if αv is continuous with respect to the v-adic topology for all
v ∈Mk.

We use the following proposition later.

Proposition 4.1. Let φ : Pn→Pm be a rational map given by an (m+1)-
tuple φ = (f0, . . . , fm) of homogeneous polynomials of degree d over k. Let
X be a closed subvariety of Pn such that φ is defined on X. Then there exist
Mk-constants C and C ′ such that
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Cv ≤ log max
0≤i≤m

|fi(P )|v − d log max
0≤i≤n

|xi|v ≤ C
′
v

for all v ∈Mk and all P = (x0, . . . , xn) ∈ X(kv).

Proposition 4.1 is a local version of [7, Theorem B.2.5]. The proof is
essentially the same as that in [7].

Let D be a divisor on V . We write VD = V \ supp(D). A function
λD :

∐
v∈Mk

VD(kv)→ R is called a local height function (or Weil function)
on V associated with D if the following property holds: For any Zariski
open subset U of A such that U ∩ supp(D) 6= ∅ and D|U = div(f) for some
rational function f on U , there exists a locally Mk-bounded continuous
function α :

∐
v∈Mk

U(kv)→ R such that

λD,v(P ) = −log |f(P )|v + αv(P )

for all v ∈Mk and P ∈ UD(kv).

Theorem 4.2. Let A be an Abelian variety defined over k. For any
divisor D on A, there exists a local height function λ̂D on A associated
with D such that the following properties hold, where γ1, γ2, γ3 denote Mk-
constants:

(i) Let D and D′ be divisors on V . Then λ̂D+D′ = λ̂D + λ̂D′ + γ1.
(ii) If D = div(f), then λ̂D,v(P ) = −log |f(P )|v + γ2(v) for all v ∈Mk

and P ∈ AD(kv).
(iii) For all v ∈Mk̄ and P ∈ A[2]∗D(kv),

λ̂[2]∗D,v(P ) = λ̂D,v([2]P ) + γ3(v).

Furthermore λ̂D is determined by D up to an Mk-constant.
Such functions λ̂D also have the property that if ϕ : B → A is a homo-

morphism of Abelian varieties defined over k, then

λ̂ϕ∗(D),v(P ) = λ̂D,v(ϕ(P )) + γ4(v)

for all v ∈Mk and P ∈ Bϕ∗(D)(kv), where γ4 is an Mk-constant.

Proof. See [10, Chapter 11, Theorem 1.1].

We call λ̂D in Theorem 4.2 a canonical local height function (or Néron
function) on A associated with D.

5. Canonical local heights. In this section, we describe the canonical
local height functions on the Jacobians of curves of genus 2. For the rest of
this paper, we assume that the curve C is defined over a number field k.

We define the divisors Θi on J by

Θ1 = Θ+ +Θ−, Θi = Θ1 + div
(
ξi
ξ1

)
(i = 2, 3, 4).

Note that P ∈ supp(Θi) if and only if ξi(P ) = 0.
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For 1 ≤ i ≤ 4 and v ∈ Mk, we define the naive local height function
λi,v : JΘi(kv)→ R by

λi,v(P ) = log max
1≤j≤4

∣∣∣∣ξj(P )
ξi(P )

∣∣∣∣
v

.

It is independent of the choice of homogeneous coordinates for κ(P ). Fur-
thermore, λi,v is a local height function associated with Θi. We have

λi,v(P ) = λj,v(P )− log
∣∣∣∣ ξi(P )
ξj(P )

∣∣∣∣
v

for any P /∈ supp(Θi) ∪ supp(Θj).

To construct the canonical local height functions, we define the function
Φv : J(kv)→ R by

Φv(P ) =
maxi |δi(κ(P ))|v

maxi |ξi(P )|4v
.

The right-hand side is independent of the choice of homogeneous coordinates
for κ(P ) since δi are homogeneous polynomials of degree 4.

Lemma 5.1. logΦv is an Mk-bounded continuous function.

Proof. It is clear that logΦv is continuous. To prove boundedness, apply
Proposition 4.1 to δ : K → K.

By Lemma 5.1, we can define the function λ̂i,v : JΘi(kv)→ R by

λ̂i,v(P ) = λi,v(P ) +
∞∑
n=0

1
4n+1

logΦv([2n]P ).

We call it the canonical local height function on J associated with Θi. By
definition, we have

(5.1) λ̂i,v(P ) = λ̂j,v(P )− log
∣∣∣∣ ξi(P )
ξj(P )

∣∣∣∣
v

for any P /∈ supp(Θi) ∪ supp(Θj).

Remark 5.2. Flynn and Smart [5] also defined the canonical local height
functions on J . They defined only one function for one absolute value. If we
denote by λ̂′v the canonical local height function for v ∈ Mk as defined by
them, then we have

λ̂′v(P ) = λ̂i,v(P ),

where i is the smallest index such that ξi(P ) 6= 0.

We have the following theorem:

Theorem 5.3. For each i with 1 ≤ i ≤ 4, λ̂i,v : JΘi(kv) → R has the
following properties:

(i) λ̂i,v−λi,v can be extended to an Mk-bounded continuous function on
J(kv).
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(ii) For any positive integer m and all P ∈J(kv) with P, [m]P /∈supp(Θi),
we have

λ̂i,v([m]P ) = m2λ̂i,v(P )− log
∣∣∣∣µm,i(κ(P ))
ξi(P )m2

∣∣∣∣
v

.

Furthermore, λ̂i,v is the unique function satisfying (i) and (ii) for any fixed
integer m ≥ 2. In particular, λ̂i,v is a canonical local height function asso-
ciated with Θi in the sense of Section 4.

Proof. The proof of uniqueness is the same as that in [17, Proposition 9].
By Lemma 5.1, λ̂i,v satisfies (i). For m = 2, (ii) is satisfied by definition. In
particular, λ̂i,v is a canonical local height function associated with Θi in the
sense of Section 4. We prove (ii) for general m.

It is easy to see that

div
(
µm,i(κ(P ))
ξi(P )m2

)
= [m]∗Θi −m2Θi.

Therefore, by Theorem 4.2, there exists an Mk-constant γ such that

(5.2) λ̂i,v([m]P ) = m2λ̂i,v(P )− log
∣∣∣∣µm,i(κ(P ))
ξi(P )m2

∣∣∣∣
v

+ γ(v)

for all v ∈Mk and P ∈ J(kv) with P, [m]P /∈ supp(Θi). By the definition of
λ̂i,v, we have

γ(v) = log max
1≤j≤4

|µm,j(κ(P ))|v −m
2 log max

1≤j≤4
|ξj(P )|v(5.3)

+
∞∑
n=0

1
4n+1

logΦv([2nm]P )−m2
∞∑
n=0

1
4n+1

logΦv([2n]P )

for all P ∈ J(kv) with P, [m]P /∈ supp(Θi). Since both sides are well-defined
and continuous on J(kv), (5.3) holds for all P ∈ J(kv). If P is the identity
element of J , then κ(P ) = (0, 0, 0, 1). Therefore, by Lemma 3.9, we have
γ(v) = 0.

Corollary 5.4. Let P ∈ J(kv) and m > 0 be an integer. If P /∈
supp(Θi) and [m]P /∈ supp(Θj), then

(5.4) λ̂j,v([m]P ) = m2λ̂i,v(P )− log
∣∣∣∣µm,j(κ(P ))
ξi(P )m2

∣∣∣∣
v

.

Proof. This follows from Theorem 5.3 and (5.1).

Corollary 5.5. Let m ≥ 2 be an integer. Define the function Φm,v :
J(kv)→ R by

Φm,v(P ) =
max1≤i≤4 |µm,i(κ(P ))|v

max1≤i≤4 |ξi(P )|m2

v

.
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Then

(5.5) λ̂i,v(P ) = λi,v(P ) +
∞∑
n=0

1
m2(n+1)

logΦm,v([mn]P )

for all P ∈ JΘi(kv).

Proof. We denote the right-hand side of (5.5) by λ̂′i,v. It is sufficient to
show that λ̂′i,v satisfies (i) and (ii) for m in Theorem 5.3.

By an argument similar to that in the proof of Lemma 5.1, logΦm,v is
an Mk-bounded continuous function on J(kv). Hence λ̂′i,v satisfies (i). It is
easy to see that λ̂′i,v satisfies (ii) for m.

As is the case for elliptic curves, we have the quasi-parallelogram law.

Theorem 5.6. Let P,Q ∈ J(kv). If P,Q, P +Q,P −Q /∈ supp(Θi), then

λ̂i,v(P +Q) + λ̂i,v(P −Q) = 2λ̂i,v(P ) + 2λ̂i,v(Q)− log
∣∣∣∣Bii(κ(P ), κ(Q))
ξi(P )2ξi(Q)2

∣∣∣∣
v

.

Proof. Let σ, δ, π1, π2 : J × J → J be the homomorphisms defined by

σ(P,Q) = P +Q, δ(P,Q) = P −Q, π1(P,Q) = P, π2(P,Q) = Q.

Then

div
(
Bii(κ(P ), κ(Q))
ξi(P )2ξi(Q)2

)
= σ∗Θi + δ∗Θi − 2π∗1Θi − 2π∗2Θi.

By Theorem 4.2, there exists an Mk-constant γ such that

λ̂i,v(P+Q)+λ̂i,v(P−Q) = 2λ̂i,v(P )+2λ̂i,v(Q)−log
∣∣∣∣Bii(κ(P ), κ(Q))
ξi(P )2ξi(Q)2

∣∣∣∣
v

+γ(v).

By [15, Lemma 3.2], we can prove that γ(v) = 0 by an argument similar to
that in the proof of Theorem 5.3.

We consider the relation between global height functions and local height
functions. We define the naive height function h : J(k̄)→ R by

h(P ) =
1

[L : Q]

∑
v∈ML

[Lv : Qv] log max
1≤i≤4

|ξi(P )|v,

where L is a finite extension of k with P ∈ J(L). Then h(P ) is independent
of the choice of L and of the homogeneous coordinates for κ(P ).

We define the canonical height function ĥ : J(k̄)→ R by

ĥ(P ) = lim
n→∞

1
4n
h([2n]P ).

By general theory (see [7] or [10]), the right-hand side converges.
We decompose these height functions into local height functions.
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Theorem 5.7. Let P ∈ J(k̄) \ supp(Θi). Let L be any finite extension
of k with P ∈ J(L). Then

h(P ) =
1

[L : Q]

∑
v∈ML

[Lv : Qv]λi,v(P ),(5.6)

ĥ(P ) =
1

[L : Q]

∑
v∈ML

[Lv : Qv]λ̂i,v(P ).(5.7)

Proof. See [10, Chapter 11, Theorem 1.6] or [7, Chapter B, Theorem 9.3].

6. Application 1: height difference bounds. In this section, we
estimate the difference h − ĥ (Theorem 6.4), and provide some algorithms
to compute the bounds.

Let k be a number field. Let M0
k be the set of all non-Archimedean

absolute values in Mk and M∞k be the set of all Archimedean absolute
values in Mk. For v ∈Mk, let nv = [kv : Qv] be the local degree.

Let Ok be the ring of integers of k. We assume that the coefficients
f0, . . . , f6 belong to Ok.

We define the function Ψv : J(kv)→ R by

Ψv(P ) = −
∞∑
n=0

1
4n+1

logΦv([2n]P ).

By definition,
λi,v(P )− λ̂i,v(P ) = Ψv(P )

for all P ∈ JΘi(kv). Note that Ψv is bounded and continuous on J(kv). By
Theorem 5.7,

1
[k : Q]

∑
v∈Mk

nv inf
Q∈J(kv)

Ψv(Q) ≤ h(P )− ĥ(P )(6.1)

≤ 1
[k : Q]

∑
v∈Mk

nv sup
Q∈J(kv)

Ψv(Q)

for all P ∈ J(k).
When v is non-Archimedean, the following result is known.

Theorem 6.1. Under the above assumption, if v ∈M0
k , then

sup
Q∈J(kv)

Φv(Q) = 1, inf
Q∈J(kv)

Φv(Q) ≥ |24 disc(f)|v,

where disc(f) is the discriminant of f as a polynomial of degree 6.

Proof. See [14, Theorem 6.1 and the second remark on p. 189].

In [14] and [15], further refinements for non-Archimedean absolute values
are described.



Canonical local heights 123

From now on, we mainly consider Archimedean absolute values although
the following results also hold for non-Archimedean absolute values.

By Corollary 5.5, we have

(6.2) Ψv(P ) = −
∞∑
n=0

1
m2(n+1)

logΦm,v([mn]P )

for all P ∈ J(kv). We define

ε−1
m,v = inf

Q∈J(kv)
Φm,v(Q), δ−1

m,v = sup
Q∈J(kv)

Φm,v(Q),

Sv(m) =
log δm,v
m2 − 1

, Tv(m) =
log εm,v
m2 − 1

.

The following proposition easily follows from the definition.

Proposition 6.2. Let v ∈ Mk and m ≥ 2 be an integer. Then for all
P ∈ J(kv),

Sv(m) ≤ Ψv(P ) ≤ Tv(m).

Remark 6.3. Proposition 6.2 also holds for elliptic curves. See [17,
Proposition 14].

We can estimate the difference h− ĥ as follows:

Theorem 6.4. Let m ≥ 2 be an integer. Then

1
[k : Q]

∑
v∈M∞k

nvSv(m) ≤ h(P )− ĥ(P )

≤ 1
[k : Q]

∑
v∈M∞k

nvTv(m) +
1

3[k : Q]
logNk/Q(disc(f)) +

4
3

log 2

for all P ∈ J(k).

Proof. The theorem follows from (6.1), Theorem 6.1, Proposition 6.2,
and the product formula.

We obtain the same properties for Sv(m) and Tv(m) as those for elliptic
curves described in [17]. We omit the proofs for the following results because
they are exactly the same as those in [17].

Proposition 6.5. Let m ≥ 2 and l ≥ 1 be integers. Then

Sv(m) ≤ Sv(ml), Tv(ml) ≤ Tv(m),

that is, the bounds in Proposition 6.2 become sharper when we change m
to ml.

We can estimate the differences between the extrema of Φv and Sv(m),
Tv(m) by the following proposition and its corollaries.
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Proposition 6.6. Let m ≥ 2 be an integer. Then

0 ≤ inf
P∈J(kv)

Ψv(P )− Sv(m) ≤ 1
m2 − 1

(
sup

P∈J(kv)
Ψv(P )− inf

P∈J(kv)
Ψv(P )

)
,

0 ≤ Tv(m)− sup
P∈J(kv)

Ψv(P ) ≤ 1
m2 − 1

(
sup

P∈J(kv)
Ψv(P )− inf

P∈J(kv)
Ψv(P )

)
.

Corollary 6.7.

lim
m→∞

Sv(m) = inf
P∈J(kv)

Ψv(P ), lim
m→∞

Tv(m) = sup
P∈J(kv)

Ψv(P ).

We estimate the difference between the theoretical bounds and the bounds
in Proposition 6.2 in the following corollary.

Corollary 6.8.

0 ≤ inf
P∈J(kv)

Ψv(P )− Sv(m) ≤ 1
m2

(Tv(m)− Sv(m)),

0 ≤ Tv(m)− sup
P∈J(kv)

Ψv(P ) ≤ 1
m2

(Tv(m)− Sv(m)).

As described above, we can estimate Ψv with arbitrary accuracy at least
theoretically. However, actual computations are quite difficult because the
size of µm,i increases rapidly.

In the rest of this section, we describe some algorithms to compute the
extrema of Φm,v. First, we consider the case where kv is isomorphic to R.
We identify kv with R. We may regard Φm,v as a function on P3(R). Let
D = κ(J(R)). Note that D is not equal to K(R) although D is contained in
K(R). Thus we need the following lemma.

Lemma 6.9. Let k be an arbitrary field with char(k) 6= 2. Let P =
(ξ1, . . . , ξ4) ∈ K(k). Then P ∈ κ(J(k)) if and only if all the following num-
bers are squares in k:

S6(P ) = f0ξ
2
3ξ

2
1 + (−2f0ξ3ξ

2
2 − f1ξ

2
3ξ2)ξ1 + f0ξ

4
2

+ f1ξ3ξ
3
2 + f2ξ

2
3ξ

2
2 + f3ξ

3
3ξ2 + f4ξ

4
3 + ξ4ξ

3
3 ,

S7(P ) = (f0ξ
2
2 + f1ξ3ξ2 + f2ξ

2
3)ξ2

1 + ξ4ξ
2
3ξ1 + f6ξ

4
3 ,

S8(P ) = f0ξ
4
1 + (f4ξ

2
3 + ξ4ξ3)ξ2

1 + f5ξ
2
3ξ2ξ1 + f6ξ

2
3ξ

2
2 ,

S9(P ) = f2ξ
4
1 + (f3ξ2 + ξ4)ξ3

1 + (f4ξ
2
2 − f5ξ3ξ2 + f6ξ

2
3)ξ2

1

+ (f5ξ
3
2 − 2f6ξ3ξ

2
2)ξ1 + f6ξ

4
2 .

Furthermore, if at least one of the above numbers is a non-zero square in k,
then P ∈ κ(J(k)).

Remark 6.10. S8 and S9 have already appeared in [15, p. 172] as s2

and s1 respectively.
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To prove Lemma 6.9, we need the following lemmas:

Lemma 6.11 ([3, Lemma 3.1]). Let P ∈ J . Regarding J ⊂ P15 as in [2],
we write P = (a0, a1, . . . , a15). Let E ⊂ P9 be the image of the projection
map

(a0, a1, . . . , a15) 7→ (a0, a3, a4, a5, a10, a11, a12, a13, a14, a15).

Then K is isomorphic to E under the isomorphism ρ : K → E, where

Q = (ξ1, . . . , ξ4) 7→
(ρ0(Q), ρ3(Q), ρ4(Q), ρ5(Q), ρ10(Q), ρ11(Q), ρ12(Q), ρ13(Q), ρ14(Q), ρ15(Q)),

ρ0(Q) = ξ2
4 , ρ3(Q) = ξ3ξ4, ρ4(Q) =

1
2

(ξ2ξ4 − f1ξ
2
1 − f3ξ1ξ3 − f5ξ

2
3),

ρ5(Q) = ξ1ξ4, ρ10(Q) = ξ2
3 , ρ11(Q) = ξ2ξ3, ρ12(Q) = ξ1ξ3,

ρ13(Q) = ξ1ξ2, ρ14(Q) = ξ2
1 , ρ15(Q) = ξ2

2 − 4ξ1ξ3.

Remark 6.12. The embedding J → P15 in [2] is different from that
in [3]. Hence the above isomorphism ρ is also different from that in [3].

The following lemma is due to the referee.

Lemma 6.13. Let P ∈ K(k̄). If

(6.3) S6(P ) = S7(P ) = S8(P ) = S9(P ) = 0,

then there exists a 2-torsion point Q ∈ J(k̄) such that P = κ(Q). In partic-
ular, if P ∈ K(k) satisfies (6.3), then P ∈ κ(J(k)).

Proof. This follows from the fact that Si = a2
i in the notation of

Lemma 6.11. We omit the details.

Proof of Lemma 6.9. We can observe that for any i, j ∈ {1, 2, 6, 7, 8, 9}
there exists a defining equation of J (available from jacobian.variety/
defining.equations in [4]) of the form

aiaj = Eij(a0, a3, a4, a5, a10, a11, a12, a13, a14, a15),

where Eij is a quadratic form in 10 variables. By Lemma 6.11, for P =
(ξ1, . . . , ξ4) ∈ K, we have

(6.4) aiaj = Eij(ρ0(P ), ρ3(P ), ρ4(P ), ρ5(P ), ρ10(P ),
ρ11(P ), ρ12(P ), ρ13(P ), ρ14(P ), ρ15(P )).

The right-hand side is a quartic form in ξ1, . . . , ξ4. In particular,

a2
i = Eii(ρ0(P ), ρ3(P ), ρ4(P ), ρ5(P ), ρ10(P ),

ρ11(P ), ρ12(P ), ρ13(P ), ρ14(P ), ρ15(P )).

Therefore, putting Si(P ) = Eii(ρ0(P ), . . . , ρ15(P )), we obtain the last part
of the lemma by (6.4).

The first part follows from Lemma 6.13.

ftp://ftp.liv.ac.uk/pub/genus2/jacobian.variety/
ftp://ftp.liv.ac.uk/pub/genus2/jacobian.variety/
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Putting k = R in Lemma 6.9, we obtain the following corollary:

Corollary 6.14. Let D = κ(J(R)). Then

D = {P ∈ P3(R) | G(P ) = 0, Si(P ) ≥ 0 for i = 6, 7, 8, 9}.

By the corollary, the computation of the extrema of Φm,v reduces to the
global optimization of a continuous function with polynomial constraints.
Furthermore, we let

Di = D ∩ {(ξ1, . . . , ξi−1, 1, ξi+1, . . . , ξ4) ∈ P3(R) | |ξj | ≤ 1 for j 6= i}.
Then D = D1 ∪ · · · ∪D4. We may regard Di as a subset of R3. The function
Φm,v can be simplified on Di as follows:

Φm,v(P ) = max
1≤j≤4

|µm,j(P )|

for all P = (ξ1, . . . , ξi−1, 1, ξi+1, . . . , ξ4) ∈ Di. Let

em,i = inf
P∈Di

Φm,v(P ), dm,i = sup
P∈Di

Φm,v(P ).

Then
ε−1
m,v = min

1≤i≤4
em,i, δ−1

m,v = max
1≤i≤4

dm,i.

Thus it is sufficient to compute em,i and dm,i. This can be done by a rigorous
global optimization. There are several algorithms for rigorous global opti-
mization. The author used interval analysis (cf. [6]) to compute examples.

In practice, the constraints defining Di may be too complicated for the
algorithm used for optimization. In order to make the computations easier,
we can omit some of the constraints Si(P ) ≥ 0. Then we may have weaker
bounds; however, they are often sufficient. Note that the closure of the set
{P ∈ P3(R) | Si(P ) > 0} coincides with D for any fixed index i = 6, 7, 8, 9.
If we omit all of the constraints Si(P ) ≥ 0 and let m = 2, then our bounds
are equal to those in [5].

Next, we consider the case where kv is isomorphic to C. In this case, we
have κ(J(kv)) = K(kv). Hence we do not need to consider constraints as in
Corollary 6.14. The other parts of the algorithm are similar to the case of R.

Finally, we give some examples. In these, we treat only the case where
kv is isomorphic to R and give bounds only for Tv(2). The author’s imple-
mentation of the algorithm is available at [18].

Example 6.15. We consider the curve

Y 2 = X6 + 8X5 + 22X4 + 22X3 + 5X2 + 6X + 1,

taken from [5, Section 10]. In [5], Flynn and Smart stated that Tv(2) =
(log ε2,v)/3 ≤ 1.474. Note that Tv(2) is denoted c(v)

1 /3 in [5] and γv/3 in [14].
However, Stoll [14] pointed out that this bound was incorrect. In fact, he
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showed that Tv(2) ≥ 2.241 by giving a point on K(R). He also stated an
upper bound, namely that Tv(2) ≤ 2.6.

By using interval analysis, we can prove that Tv(2) ≤ 2.24110646. This
agrees with Stoll’s computation and is sharper than his bound. Note that
interval analysis guarantees the accuracy of the bound. In this example, the
constraints Si(P ) ≥ 0 do not affect the bound.

Example 6.16. As an example where the constraints do affect the bound,
we consider the curve

Y 2 = X(X − 1)(X − 2)(X − 5)(X − 6).

This curve is taken from [2, (8.1.1)].
When we omit all the constraints Si(P ) ≥ 0, we have Tv(2) ≤ 3.592.

However, with all the constraints, we obtain Tv(2) ≤ 2.813.

7. Application 2: computation of the canonical height. Algo-
rithms to compute the canonical height on J(k) are described in [5] and [15].
We describe a refinement of those algorithms.

Let k be a number field. We use the same notation as in Section 6. We
assume that f0, . . . , f6 ∈ Ok.

We compute the canonical height by decomposing it into the canonical
local heights. The following is important for computing the canonical local
heights.

Theorem 7.1 ([15, Theorem 4.1]). Let v ∈ M0
k and U = {P ∈ J(kv) |

Φv(P ) = 1}. Then U is a subgroup of finite index in J(kv), and Φv factors
through J(kv)/U . Furthermore, Φv(P ) = Φv(−P ).

By this theorem, we have the following corollary.

Corollary 7.2. Let v ∈ M0
k be a non-Archimedean absolute value. If

P ∈ U and P /∈ supp(Θi), then

λ̂i,v(P ) = λi,v(P ).

Combining Corollaries 5.4 and 7.2, we obtain the following proposition.

Proposition 7.3. Let v ∈M0
k and P ∈ J(kv). For a positive integer m

with [m]P ∈ U , we have

Ψv(P ) = − 1
m2

logΦm,v(P ).

Flynn and Smart [5] compute canonical heights as follows:

(i) Find m such that Φv([m]P ) = 1 for all v ∈M0
k .
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(ii) Compute

ĥ([m]P ) = h([m]P ) +
∑

v∈M∞k

nv

∞∑
n=0

1
4n+1

logΦv([2nm]P ).

(iii) Then ĥ(P ) = ĥ([m]P )/m2.

In this algorithm, the number m may be very large. In fact, we let mv be
the smallest positive integer such that Φv([mv]P ) = 1. Then we have to take
m = lcm{mv | v ∈M0

k}.
Stoll [15] computes the canonical height by using Theorem 7.1, where

it is sufficient to compute [m]P for m = max{mv | v ∈ M0
k}. However, his

computation is a little complicated since he uses only the duplication map.
By referring to Proposition 7.3, we obtain a simpler algorithm as follows:

(i) We assume that homogeneous coordinates ξi(P ) belong to Ok.
(ii) Let S = {v ∈M0

k | Φv(P ) 6= 1}.
(iii) For each v ∈ S, find a positive integer mv such that Φv([mv]P ) = 1.
(iv) For v ∈ S, we have

Ψv(P ) = − 1
m2
v

logΦmv ,v(P ).

(v) For v ∈M0
k \ S, we have Ψv(P ) = 0.

(vi) For v ∈M∞k , compute by definition

Ψv(P ) = −
∞∑
n=0

1
4n+1

logΦv([2n]P ).

We can use a floating-point approximation of the coordinates of P
here.

(vii) Then

ĥ(P ) = h(P )− 1
[k : Q]

∑
v∈Mk

nvΨv(P ).

In step (ii), we can compute S as follows: Let a, b be ideals in Ok given by

a = 〈ξ1(P ), . . . , ξ4(P )〉, b = 〈δ1(κ(P )), . . . , δ4(κ(P ))〉.
Then b · a−4 is an integral ideal and S = {v ∈M0

k | b · a−4 ⊂ pv}, where pv
is the prime ideal in Ok associated with v. If Ok is a principal ideal domain,
then we can compute greatest common divisors to make the above algorithm
simpler. See [15, Section 6].

In step (iv), note that it is not necessary to compute the polynomials
µmv ,i. We need only the values µmv ,i(κ(P )), and we can compute them by
the relations in Theorem 3.3. See also [5, Section 4]. In fact, it is sufficient to
compute the values µmv ,i(κ(P )) instead of [mv]P in step (iii). In practice, the
ideal 〈µm,1(κ(P )), . . . , µm,4(κ(P ))〉 may have a large norm, which may make
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the computation slow. To prevent this, we should divide the coordinates
µm,i(κ(P )) by an algebraic integer αm and record ordv(αm) for each v ∈ S.
The values logΦmv ,v(P ) can be computed by using ordv(αmv). IfOk is a prin-
cipal ideal domain, we can choose αm = gcd(µm,1(κ(P )), . . . , µm,4(κ(P ))).

The referee pointed out that the computation in step (iii) and (iv) can
be done modulo a sufficiently large power of pv. It may reduce the cost of
the computation.

Our algorithm computes the canonical height in almost the same time
as Stoll’s. However, our implementation, available at [18], is a little simpler
than Stoll’s.
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