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1. Introduction. Shortly after the celebrated work of Vinogradov on
the sum of three primes in 1937, Hua showed that every sufficiently large odd
integer can be written as a sum of nine cubes of primes, and established an
asymptotic formula for the number of such representations, taking advantage
of Vinogradov’s method on estimating exponential sums over primes (see
Hua [12] for a proof). The corresponding result for the sum of eight or
fewer cubes of primes seems to be still now beyond the grasp of the existing
technology. In the series of papers [3] and [4], Brüdern came up with an
approach to research in this direction, which is based on a combination of
the circle method and the linear sieve. In particular, he succeeded in proving
that every sufficiently large integer can be written as a sum of seven cubes
of almost primes. To state this theorem precisely, we recall the familiar
terminology from sieve theory. When a natural number n has at most r
prime divisors counted according to multiplicity, n is called a Pr, or a Pr-
number. Then Brüdern [4] established that every sufficiently large integer n
can be written as

(1.1) n = p3 + x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + y3,

where p is a prime, x1, . . . , x5 are P5-numbers, and y is a P69. This result
may be also regarded as an interesting refinement of Linnik’s seven cube
theorem.

As Brüdern mentioned in [2], various combinations of almost primes
may be substituted in this theorem. Namely, for various choices of natural
numbers r1, . . . , r7, one may prove that every sufficiently large integer n can
be written in the form

(1.2) n = x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 + x3
7,
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where xj is a Prj for 1 ≤ j ≤ 7. As regards this kind of conclusions, the
author takes a great interest in the following three questions:

(I) Make the maximum of {r1, . . . , r7} as small as possible.
(II) Make r1 + · · ·+ r7 as small as possible.

(III) Make the number of primes in the representation (that is, the num-
ber of variables xj with rj = 1) as many as possible.

The purpose of this article is to discuss these problems.
Prior to the statement of our result, we make a relevant observation on

solutions of the associated congruence

n ≡ x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 + x3
7 (mod q),

namely, if, and only if, n is odd and 9 -n, this congruence has a solution with
(q, x1x2 · · ·x7) = 1 for every natural number q (see Brüdern [4, p. 217]).
This condition concerns our problem naturally, because if n violates it, then
the numbers xj in the representation (1.2) receive some restriction on their
prime factors. In relation to this issue, we introduce the numbers an,2 and
an,3 defined by

(1.3) an,2 =

{
1 when n is odd,

2 when n is even,
an,3 =

{
1 when 9 -n,

3 when 9 |n.

These numbers an,2 and an,3 are defined so that for all natural numbers n
and q, the congruence

n ≡ x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + (an,2x6)3 + (an,3x7)3 (mod q)

may have a solution with (q, x1x2 · · ·x7) = 1 (see Section 4 below). Under
this notation, Brüdern [4] showed the aforementioned result on (1.1) with
y = an,2an,3y

′ for a P67-number y′, to be precise.
Now, by using the numbers an,2 and an,3, we may state the main theorem

of this paper, which provides the best answers at present to questions (I)
and (II) above.

Theorem 1. Every sufficiently large integer n can be written as

(1.4) n = x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + (an,2x6)3 + (an,3x7)3,

with a P4-number x1, P3-numbers x2, . . . , x6, and a P2-number x7. In partic-
ular , every sufficiently large integer can be written as a sum of seven cubes
of P4-numbers.

In this conclusion, we may actually restrict the variables x2, x3, x4 and
x6 to the products of exactly three distinct primes, and x7 to the product
of two distinct primes. This shall be transparent from our proof below.

To prove Theorem 1, we basically follow the strategy of Brüdern [4],
and we remark here on what we add to his proof. There are two points on
the circle method, and one more on sieve methods. The first thing is our
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Lemma 2 below. This lemma is within reach of the methods of Vaughan [18],
but seems to be new. The second one is concerned with Vaughan’s iterative
method restricted to minor arcs. Brüdern [4] appealed to its simplified form
in Vaughan [19], and we may gain by the method in the form of Vaughan [17].
These technical efforts enlarge the level of distribution in our application of
the linear sieve. Finally, the third point is that we use the idea of switching
principle due to Iwaniec [13] and Chen [10], instead of the weighted sieve
employed by Brüdern [4].

One may regard Lemma 5 below as the essence of this work. This lemma
may be easily applied to other combinations of almost primes. If one confines
one variable in (1.4) to a prime as in the Theorem of Brüdern [4], then one
may for example derive the following conclusion from the lemma.

Theorem 2. Every sufficiently large integer n can be written in the form
(1.4) with a prime number x1, a P6-number x2, and P3-numbers x3, . . . , x7.

We then turn to question (III). After all, it seems hard for now to confine
four variables to primes in the representation (1.2), but three variables can
be restricted to primes. Actually, we point out that the following result had
been implicitly obtained in literature.

Theorem 3. Every sufficiently large integer can be written as a sum of
three cubes of primes and four cubes of natural numbers.

This is in fact immediate from the work of Vaughan [16] and Brüdern
[1]. For a large integer n, let N be the number of natural numbers of the
form n − p3

1 − p3
2 − p3

3 with primes pj . Then, for any fixed ε > 0, the lower

bound N � n8/9−ε follows by the method of Vaughan [16], while Brüdern [1]
proved that, except for O(n37/42+ε) possible exceptions, all natural numbers
less than n can be written as a sum of four cubes of natural numbers. Since
8/9 > 37/42, Theorem 3 follows.

Moreover, it is possible to confine the remaining four cubes of natural
numbers in Theorem 3 to those of almost primes. In view of the argument of
Brüdern [1], the best result in this direction would be obtained, presumably,
via the ideas of vector sieve of Brüdern and Fouvry [5]. But it is possible
to obtain a conclusion of this kind via the sieve procedure of this paper. To
this end, however, one needs to make minor modifications to our Lemma 5
so that especially the lemma becomes compatible with application of the
Theorem of Vaughan [16], and also to construct appropriate sets of almost
primes according to the methods of Wooley [21] and [22]. These tasks re-
quire some additional work in practice, and thus, for now, we just announce
the next theorem without proof. In the theorem, we include an example of
a conclusion in which two variables are confined to primes, following the
referee’s suggestion.
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Theorem 4. Every sufficiently large integer n can be written in the form
(1.4) with each of the following restrictions on the variables:

(i) x1, x2 and x3 are prime numbers, x4 is a P23-number , and x5, x6

and x7 are P9-numbers.
(ii) x1 and x2 are prime numbers, x3, x4 and x5 are P6-numbers, and

x6 and x7 are P5-numbers.

Here we pause to respond to an enquiry of the referee about sums of
cubes of what is called smooth numbers. Since smooth numbers are natural
numbers that have small prime factors only, the latter question may be
regarded as the opposite one to our main topic, in a sense. Such a problem
was recently discussed by Harcos [11] and Brüdern and Wooley [9], and in
particular Brüdern and Wooley [9] proved that every large natural number
n can be written as a sum of eight cubes of natural numbers, each of which
has no prime factor exceeding exp(c(logn log logn)1/2) with some positive
constant c.

As for the sum of seven cubes, it follows from Theorem 1.2 of Wooley [21],
without substantial difficulty, that every large integer n can be written in
the form (1.2) with confining x1, . . . , x6 to smooth numbers in the sense just
mentioned. But if we focus on the largest prime factor of x1x2 · · ·x7 in the
representation (1.2), then it seems that no non-trivial result has appeared in
the literature hitherto. On the latter problem, we may provide the following
conclusion, as a by-product of our Lemma 5 below.

Theorem 5. Let A (P,R) denote the set of natural numbers up to P
having no prime factor exceeding R, and put

ξ =

√
2833− 43

41
, φ =

14ξ − 1

8ξ + 21
, θ =

4(5− 16ξ − ξ2)

8ξ + 21
.

Then for each sufficiently small positive number ε, there exists an η with
0 < η < ε such that every sufficiently large integer n can be written in the
form

n = x3 + ($1x1)3 + ($2x2)3 + ($3x3)3 + y3
1 + y3

2 + y3
3,

where nφ/3 < $j ≤ 2nφ/3, xj ∈ A (n(1−φ)/3, nη), yj ∈ A (n1/3, nη) for

j = 1, 2 and 3, and x is a natural number ≤ n1/3 that has a divisor d with
nθ/3−ε < d ≤ 2nθ/3−ε.

In particular , therefore, every large n can be written as the sum of seven
cubes of natural numbers having no prime factor exceeding n(1−θ)/3+ε.

We remark that (1− θ)/3 is slightly smaller than 0.278413, and that the
above value of ξ comes from the theorem of Wooley [22]. In fact, there is
no difficulty to alter the proof of Lemma 5 below so that one can derive
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Theorem 5 using the latter theorem of Wooley [22], and the proof of this
theorem is therefore omitted.

We use the standard notation in number theory, but we mention the
following. The letter p, with or without subscript, always denotes a prime
number. We adopt the familiar convention on the letter ε, that is, each
statement involving ε holds for any fixed, small positive value of ε. We write
e(α) = exp(2πiα), and ‖α‖ denotes the distance from α to the nearest
integer.

Acknowledgements. This work was essentially done while the author
visited the University of Michigan at Ann Arbor from April to June, 1997,
and enjoyed the benefits of a Fellowship from the David and Lucile Packard
Foundation through the courtesy of Professor Trevor D. Wooley. The author
expresses his sincere gratitude to Professor Wooley for generous hospitality.
He also appreciates the valuable comments of the referee.

2. Auxiliary integrals. Throughout what follows, P and M denote
positive, large real numbers. We denote by P(M) the set of prime numbers
$ satisfying

M < $ ≤ 2M, $ ≡ 2 (mod 3).

In Sections 2–4, we suppose that A is a set of natural numbers up to 2P/M ,
and that every number in A has no prime divisor in P(M). In the proof
of Theorem 1, we shall take A as a certain set of P2-numbers satisfying the
latter restriction. We then define

(2.1) AM = {$x : $ ∈P(M), x ∈ A , P < $x ≤ 2P}.
When B is a finite set of natural numbers, we write

g(α; B) =
∑

x∈B

e(x3α).

We also write

h(α,$) =
∑

x∈A
P/$<x≤2P/$

e(($x)3α),

for $ ∈P(M), so that one has

(2.2) g(α; AM) =
∑

$∈P(M)

h(α,$).

Further we set

I =

1�

0

|g(α; A )|6 dα.
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We begin with providing a couple of auxiliary mean value estimates.
These are minor modifications of Lemmata 2 and 3 of Vaughan [19], suitable
for our later argument.

Lemma 1. If M ≤ P 1/7, then

1�

0

|g(α; AM)|6 dα� P 3+εM2 + P 7/6+εM3/2I2/3.

Proof. On putting

I0($1, . . . ,$6) =

1�

0

6∏

j=1

h((−1)jα,$j) dα,

by (2.2) we have

(2.3)

1�

0

|g(α; AM)|6 dα =
∑

$1,...,$6∈P(M)

I0($1, . . . ,$6).

By using Hölder’s inequality, and then by considering the underlying dio-
phantine equations, one finds that

1�

0

6∏

j=1

|h(α,$j)| dα ≤
6∏

j=1

(1�

0

|h(α,$j)|6 dα
)1/6

(2.4)

≤
6∏

j=1

(1�

0

|g($3
jα; A )|6 dα

)1/6
= I,

whence |I0($1, . . . ,$6)| ≤ I. Also, in view of the underlying diophantine
equations and the assumption that A ⊂ [1, 2P/M ], it follows by Hua’s
inequality ([20, Lemma 2.5]) that

(2.5) I ≤
(1�

0

|g(α; A )|4 dα
)1/2(1�

0

|g(α; A )|8 dα
)1/2

�
(
P

M

)7/2+ε

.

Therefore it is easily seen that

(2.6)
∑

$1,...,$6∈P(M)
card{$1,...,$6}≤2

I0($1, . . . ,$6)�M2I � P 7/6+εM5/6I2/3.

Next, when i and j are integers with 1 ≤ i < j ≤ 6, write Wi,j for
the set of sextuplets ($1, . . . ,$6)∈P(M)6 such that for every k satisfying
1 ≤ k ≤ 6, k 6= i and k 6= j, one has $k 6= $i and $k 6= $j. A simple com-
binatorial argument reveals that whenever card{$1, . . . ,$6} ≥ 3, one can
choose two from the latter six primes that are different from the remaining
four, in other words, ($1, . . . ,$6) belongs to some Wi,j . Since I0($1, . . . ,$6)
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is always non-negative as the number of solutions of a certain diophantine
equation, one thus finds that

∑

$1,...,$6∈P(M)
card{$1,...,$6}≥3

I0($1, . . . ,$6) ≤
∑

1≤i<j≤6

∑

($1,...,$6)∈Wi,j

I0($1, . . . ,$6).

For ($1, . . . ,$6) ∈ Wi,j , we denote the four primes $k in the sextuplet with
k 6= i, j by $k1 , . . . ,$k4 , and observe that the inner sum above does not
exceed

∑

$k1
,...,$k4

∈P(M)

1�

0

|h(α,$k1) · · ·h(α,$k4)|

×
∣∣∣

∑

$i∈P(M)
$i 6=$k1

,...,$k4

h(α,$i)
∣∣∣
∣∣∣

∑

$j∈P(M)
$j 6=$k1

,...,$k4

h(α,$j)
∣∣∣ dα.

Also one has |h(α,$k1) · · ·h(α,$k4)| ≤ |h(α,$k1)|4 + · · · + |h(α,$k4)|4.
Therefore, by symmetry, and by considering the underlying diophantine
equation together with the assumption on the set A , we deduce that

(2.7)
∑

$1,...,$6∈P(M)
card{$1,...,$6}≥3

I0($1, . . . ,$6)

�
∑

$1,...,$4∈P(M)

1�

0

|h(α,$1)|4
∣∣∣

∑

$∈P(M)
$ 6=$1,...,$4

h(α,$)
∣∣∣
2
dα�M3V,

where V denotes the number of solutions of

x3
1 − x3

2 = $3
1(y3

1 + y3
2 − y3

3 − y3
4),

subject to

1 ≤ x1, x2 ≤ 2P, $1 ∈P(M), $1 -x1x2, y1, . . . , y4 ∈ A .

Note here that for every solution counted by V , one necessarily has x1 ≡ x2

(mod$3
1), because $1 ≡ 2 (mod 3). Thus an upper bound for V is essentially

given by Lemma 3.7 of Vaughan [18]. To confirm this, we first modify the
definition of Ts(P,R, θ) of Vaughan [18] for k = s = 3, substituting our set A
for the set A (P 1−θ, R) at (2.6) of [18]. One may easily observe that even after
this alteration, Lemma 3.7 of [18] is still valid on simply replacing S3(Q,R)
by our I, without substantial change in the proof. We then apply the latter
lemma to T3(27P, 2, θ) (on setting k = 3 and M = P θ) which is a trivial
upper bound for our V . Note that the requirement for this application of
Vaughan’s lemma is 2M ≤ (27P )1/7, which is ensured by our assumption. In
this way, the proof of Lemma 3.7 of Vaughan [18] may be straightforwardly
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modified to establish the inequality

(2.8) V � P 3+εM−1 + P 7/6+εM−3/2I2/3.

The desired conclusion follows from (2.3) and (2.6)–(2.8).

Lemma 2. If M ≤ P 1/7, then

1�

0

( ∑

$∈P(M)

|h(α,$)|
)6
dα� P 3+εM3 + P 7/6+εM2I2/3.

Proof. We may basically follow the pattern of the proof of the previous
lemma. In this case, we put

I1($1, . . . ,$6) =

1�

0

6∏

j=1

|h(α,$j)| dα,

and observe that

(2.9)

1�

0

( ∑

$∈P(M)

|h(α,$)|
)6
dα =

∑

$1,...,$6∈P(M)

I1($1, . . . ,$6).

But it is immediate from (2.4) and (2.5) that

(2.10)
∑

$1,...,$6∈P(M)
card{$1,...,$6}≤2

I1($1, . . . ,$6)�M2I � P 7/6+εM5/6I2/3.

To estimate the remaining part, we first imitate the argument leading to
(2.7), and then use Cauchy’s inequality and consider the underlying dio-
phantine equation. In this way, we may observe that

(2.11)
∑

$1,...,$6∈P(M)
card{$1,...,$6}≥3

I1($1, . . . ,$6)

�M
∑

$1,...,$4∈P(M)

∑

$∈P(M)
$ 6=$1,...,$4

1�

0

|h(α,$1)|4|h(α,$)|2 dα�M4V1,

where V1 denotes the number of solutions of

(2.12) $3(x3
1 − x3

2) = $3
1(x3

3 + x3
4 − x3

5 − x3
6)

subject to

(2.13) x1, . . . , x6 ∈ A , $,$1 ∈P(M), $ 6= $1.

Let V2 and V3 be the numbers of solutions counted by V1 with x1 = x2

and x1 > x2, respectively, so that by symmetry one has

(2.14) V1 � V2 + V3.
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When x1 = x2, the equation is equivalent to x3
3 + x3

4 = x3
5 + x3

6. Since A is
a set of natural numbers up to 2P/M , it is easy to see that

(2.15) V2 � (P/M)M2(P/M)2+ε � P 3+εM−1.

To estimate V3, we work harder than in the proof of Lemma 3 of Vaughan
[19], appealing to estimates in Vaughan [18]. We first note that the condi-
tions (2.12) and (2.13) imply x1 ≡ x2 (mod$3

1), since $1 ≡ 2 (mod 3) and
$1 -x1x2 by our conventions on P(M) and A . Next, put h = (x1−x2)/$3

1

and x = x1 + x2 for solutions counted by V3. Then 1 ≤ h ≤ 2PM−4 and
1 ≤ x ≤ 4P/M , while the equation (2.12) gives the relation

$3h(3x2 + h2$6
1) = 4(x3

3 + x3
4 − x3

5 − x3
6).

Therefore, on introducing the exponential sum

F (α) =
∑

$∈P(M)

∑

1≤h≤2PM−4

∑

1≤x≤4P/M

e(3h$3x2α)
∑

M<m≤2M

e(h3$3m6α),

we may find that

(2.16) V3 ≤
1�

0

F (α)|g(4α; A )|4 dα ≤
(1�

0

|F (α)|3 dα
)1/3

I2/3.

To estimate F (α), we consider the sums

F1(α) =
∑

$∈P(M)

∑

1≤h≤2PM−4

∣∣∣
∑

1≤x≤4P/M

e(3h$3x2α)
∣∣∣
2
,(2.17)

F2(α) =
∑

$∈P(M)

∑

1≤h≤2PM−4

∣∣∣
∑

M<m≤2M

e(h3$3m6α)
∣∣∣
2
.(2.18)

Our treatment of F1(α) is based on Lemma 3.1 of Vaughan [18], and to
make the comparison easier, we temporarily write

P1 = 2P/M, H1 = 2PM−4 = P1/M
3, Q1 = 2PM−2 = P1/M,

which, respectively, correspond to P , H and Q in the latter lemma of
Vaughan [18]. Now according to Dirichlet’s theorem ([20, Lemma 2.1]), for
$ ∈P(M), we take integers r and b such that

1 ≤ r ≤ 2P1H1, (r, b) = 1, |r$3α− b| ≤ (2P1H1)−1.

Then Lemma 3.1 of Vaughan [18] yields the estimate

(2.19)
∑

1≤h≤H1

∣∣∣
∑

1≤x≤2P1

e(3h$3x2α)
∣∣∣
2
� P 2+ε

1 H1

r +Q3
1|r$3α− b| + P 1+ε

1 H1.

Our next trouble will be to play a simultaneous game with the rational
approximations of α and of $3α, with $ varying. To this end, we define q
to be the least natural number such that ‖qα‖ ≤ (P1H1)−1 for each α. It
is convenient to regard q as a function of α for a while. Note that one has
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always q ≤ P1H1 by Dirichlet’s theorem, and the integer a determined by
‖qα‖ = |qα − a| is necessarily coprime to q. So if the above integer r does
not exceed P1/20, then

|ar$3 − qb| ≤ r$3|qα− a|+ q|r$3α− b|
≤ (P1/20)(2M)3(P1H1)−1 + P1H1(2P1H1)−1

= 2M7P−1/5 + 1/2 < 1,

since M ≤ P 1/7, whence $3a/q = b/r. In this case, therefore, we have

r = q/(q,$3), |r$3α− b| = ‖qα‖$3/(q,$3).

Unless r ≤ P1/20, on the other hand, the right hand side of (2.19) is
O(P 1+ε

1 H1). Hence, on putting

ξ(q) =
∑

$∈P(M)

(q,$3), Ψ(α) = (q + (P/M)3‖qα‖)−1,

we deduce from (2.17) and (2.19) that

(2.20) F1(α)� P 2+ε
1 H1ξ(q)Ψ(α) + P 1+ε

1 H1M.

As regards ξ(q), we have

(2.21) ξ(q) =
∑

$∈P(M)
$ - q

1 +
∑

$∈P(M)
$|q

(q,$3)�M3 log(2q).

We also see that ξ(q) ≥ card P(M) � M(logM)−1, by the prime number
theorem for arithmetic progressions. Therefore the right hand side of (2.20)
is O(P 1+ε

1 H1M) when q > P1M
2, and is O(P 2+ε

1 H1ξ(q)Ψ(α)) when Ψ(α)

> P−1
1 . Accordingly we define

F3(α) =

{
P 2

1H1ξ(q)Ψ(α) when q ≤ P1M
2,

0 when q > P1M
2,

F4(α) =

{
P1H1M when Ψ(α) ≤ P−1

1 ,

0 when Ψ(α) > P−1
1 ,

and note that the conditions q > P1M
2 and Ψ(α) > P−1

1 are incompatible.
Then we may express the inequality (2.20) as

(2.22) F1(α)� P ε(F3(α) + F4(α)).

Turning to F2(α), we put l = h$ in the definition (2.18). Since every
natural number l has at most O(log l) prime divisors, we see that

F2(α)� (logP )
∑

1≤l≤4PM−3

∣∣∣
∑

M<m≤2M

e(l3m6α)
∣∣∣
2
.
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The sum on the right hand side can be estimated by Lemma 3.4 of Vaughan
[18], on setting H = 4PM−3, R = 2 and X = P1H1 in that lemma. Mak-
ing use of Ψ(α) defined above, one may eventually find that the lemma of
Vaughan yields the estimate

(2.23) F2(α)� P 1+εM−1Ψ(α)1/3 + P 1+εM−2.

Now we write

V4 =

1�

0

(F3(α)F2(α))3/2 dα, V5 =

1�

0

(F4(α)F2(α))1/2|F (α)|2 dα.

Since |F (α)| ≤ F1(α)1/2F2(α)1/2, we deduce from (2.22) that

1�

0

|F (α)|3 dα� P ε
1�

0

(F3(α)F2(α))1/2|F (α)|2 dα+ P εV5.

But the first term on the right hand side does not exceed

P εV
1/3

4

(1�

0

|F (α)|3 dα
)2/3

by Hölder’s inequality, so ultimately we have

(2.24)

1�

0

|F (α)|3 dα� P ε(V4 + V5).

We first handle V5. On the one hand, we deduce from (2.23) and the
definition of F4(α) that

F4(α)F2(α)� P1H1M · P 1+εM−2 � P 3+εM−6

for all α ∈ [0, 1], because unless F4(α) = 0, one has Ψ(α) ≤ P−1
1 ≤ M−3 by

our assumption. On the other hand, by considering the number of solutions
of the underlying diophantine equation, we may see that

1�

0

|F (α)|2 dα� P εM(PM−4)(P/M)M = P 2+εM−3.

These two estimates lead to the bound

(2.25) V5 � (P 3+εM−6)1/2P 2+ε/2M−3 = P 7/2+εM−6.

To evaluate V4, we use (2.23), recall the definitions, and assort the inte-
gral by the value of q. Then we see straightforwardly that (discarding the
definition of q as the function of α at this point)

(2.26) V4 � P 6+εM−12
∑

1≤q≤PM
ξ(q)3/2(M3/2I2(q) + I3/2(q)),
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where we put, for σ = 2 and 3/2,

Iσ(q) =

1�

0

(q + (P/M)3‖qα‖)−σ dα.

For these values of σ, we have simply

(2.27) Iσ(q) ≤ 2q

(2q)−1�

0

(q + (P/M)3qα)−σ dα� q1−σ(P/M)−3.

Next, applying Hölder’s inequality to the expression for ξ(q) that ap-
peared in (2.21), we have

ξ(q)3/2 �M3/2 + (logP )1/2
∑

$∈P(M)
$|q

(q,$3)3/2.

So, in view of the trivial estimate (q,$3)3/2 ≤ (q,$3)($3)1/2, it follows that

ξ(q)3/2 � (logP )M3/2
∑

$∈P(M)

(q,$3).

Thus simple calculation reveals, for σ = 2 and 3/2, that
∑

1≤q≤PM
ξ(q)3/2q1−σ �M3/2(logP )

∑

$∈P(M)

∑

1≤q≤PM
(q,$3)q1−σ(2.28)

�M5/2(PM)2−σ+ε.

By (2.26)–(2.28), we conclude that

(2.29) V4 � P 3+εM−9(M4 + P 1/2M3)� P 7/2+εM−6.

The proof of the lemma is now completed immediately by combining
(2.9)–(2.11), (2.14)–(2.16), (2.24), (2.25) and (2.29).

3. Minor arc estimates. The basis of this section is Vaughan’s iter-
ative method restricted to minor arcs, devised by Vaughan in [17, §§5–8].
This idea was summarised by Brüdern and Wooley in the shape of Lemma 4
of [8]. Our later argument shall require to generalise this abstracted lemma
of Brüdern and Wooley [8] just slightly. In fact, Lemma 4 of Brüdern and
Wooley [8] corresponds to the case m = 1 in the next lemma, but it should
be noted that our lower limit for M is relaxed in comparison with the cor-
responding one in Lemma 4 of [8] by virtue of a trick of Vaughan (see the
last inequality on p. 214 of Vaughan [19]).

Although one needs essentially nothing beyond the work of Vaughan [17]
and [19] to prove the next lemma, we nonetheless present an account for the
convenience of the reader.
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Lemma 3. Let X and M be real numbers with 1 ≤ M ≤ X1/7, let
S : R → [0,∞) be a Riemann integrable function of period 1, and for $ ∈
P(M), put

f$(α) =
∑

X<x≤2X
$ - x

e(x3α).

Moreover let m be a natural number , and denote by m the set of real numbers
α ∈ [0, 1) such that whenever q is a natural number with ‖qmα‖ ≤M 3X−2,
one has q > XM3. Then

∑

$∈P(M)
$ -m

�

m

|f$(mα)|2S($3α) dα� X3/2+εM−5/2
1�

0

S(α) dα.

Proof. Let n denote the set of real numbers α ∈ [0, 1) such that whenever
q is a natural number with ‖qmα‖ ≤M 3X−2, then q > X/8. If $ ∈P(M)
and ‖rmα$3‖ ≤ M3X−2 for some integer r with 1 ≤ r ≤ X/8, then α
cannot belong to m because r$3 ≤ XM3. We therefore notice that whenever
α ∈ m and $ ∈ P(M), one may write α$3 = β + k with β ∈ n and an
integer k with 0 ≤ k < $3. This observation leads to the inequality

�

m

|f$(mα)|2S($3α) dα ≤ $−3
$3−1∑

k=0

�

n

∣∣∣∣f$
(
m(β + k)

$3

)∣∣∣∣
2

S(β) dβ,

for $ ∈P(M). By the definition of the function f$, we see that

$−3
$3−1∑

k=0

∣∣∣∣f$
(
m(β + k)

$3

)∣∣∣∣
2

=
∑∑

X<x,y≤2X
$ - xy

m(x3−y3)≡0 (mod$3)

e(m(x3 − y3)β/$3).

When $ ≡ 2 (mod 3) and $ -m, the congruence appearing in the summation
condition is tantamount to x ≡ y (mod$3), so that the double sum in
question is

$3∑

r=1
$ - r

∣∣∣
∑

X<x≤2X
x≡r (mod$3)

e(mx3β/$3)
∣∣∣
2
≤

$3∑

r=1

∣∣∣
∑

X<x≤2X
x≡r (mod$3)

e(mx3β/$3)
∣∣∣
2

= Ψ$(β),

say. We thus find that

(3.1)
∑

$∈P(M)
$ -m

�

m

|f$(mα)|2S($3α) dα ≤
�

n

∑

$∈P(M)

Ψ$(α)S(α) dα.
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Also, denoting the real part of a complex number ζ by <ζ, we have

Ψ$(α) = 2<
∑∑

X<y<x≤2X
x≡y (mod$3)

e(m(x3 − y3)α/$3) +O(X)

for each $ ∈P(M), and by the substitution h = (x−y)/$3 and z = x+y,
the double sum on the right hand side becomes

(3.2)
∑

1≤h≤XM−3

e

(
1

4
mαh3$6

) ∑

2X+h$3<z≤4X−h$3

z≡h (mod 2)

e

(
3

4
mαhz2

)
.

Concerning the last inner sum over z, we write

F (β, γ;h) =
∑

2X<z≤4X
z≡h (mod 2)

e

(
3

4
βz2 − γz

)
, K(γ, r) =

∑

2X+r<z≤4X−r
e(γz),

and η = X−2. Then the inner sum at (3.2) may be expressed as

1−η�

η

F (hmα, γ;h)K(γ, h$3) dγ +O(1).

Accordingly it follows that

(3.3)
∑

$∈P(M)

Ψ$(α) = 2<
1−η�

η

∑

1≤h≤XM−3

F (hmα, γ;h)

×
∑

$∈P(M)

K(γ, h$3)e

(
1

4
mαh3$6

)
dγ +O(XM).

Here we have

K(γ, h$3) =
e(γ)

e(γ)− 1
(e(γ([4X]− h$3))− e(γ([2X] + h$3))),

when 2h$3 ≤ [4X] − [2X], and K(γ, h$3) = 0 otherwise. Therefore, on
defining

Gh(%, σ) =
∑

$∈P(M)
2h$3≤[4X]−[2X]

e

(
1

4
%$6 + σ$3

)
,

one easily obtains the inequality

∑

$∈P(M)

K(γ, h$3)e

(
1

4
mαh3$6

)
� ‖γ‖−1

∑

θ∈{1,−1}
|Gh(αmh3, θγh)|,
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whence by (3.3),

(3.4)
∑

$∈P(M)

Ψ$(α)

� XM + (logX) sup
γ,θ∈R

∑

1≤h≤XM−3

|F (αmh, γ;h)Gh(αmh3, θγh)|.

We then derive from Lemma 7 of Vaughan [17] (regarding our αm as α
in that lemma) that

sup
α∈n
γ∈R

∑

1≤h≤XM−3

|F (αmh, γ;h)|2 � (XM−3)X1+ε = X2+εM−3.

Also, as Brüdern and Wooley pointed out on p. 27 of [8], the proof of
Lemma 8 of Vaughan [17] yields the bound

sup
α∈n
γ∈R

∑

1≤h≤XM−3

|Gh(αmh3, γh)|2 � Xε(XM−3)M = X1+εM−2,

whenever (XM−3)3/4M2 ≤ (XM−3)M . Hence, by (3.4) and Cauchy’s in-
equality, we have

sup
α∈n

∑

$∈P(M)

Ψ$(α)� X3/2+εM−5/2,

and the conclusion of the lemma is immediate from (3.1).

The next lemma is our variant of Lemma 10 of Vaughan [17].

Lemma 4. Let P and M be large real numbers, and d be a natural num-
ber satisfying P 1/10 < M ≤ (P/d)1/7. Let AM and I be as in the preamble
to Lemma 1, and define the function

f(α; d) =
∑

P/d<x≤2P/d

e(d3x3α).

Moreover , denote by md the set of real numbers α ∈ [0, 1) such that whenever
q is a natural number with ‖qd3α‖ ≤M3(d/P )2, one has q > PM3/d. Then

�

md

|f(α; d)2g(α; AM)6| dα� (PM/d)3/2+ε(P 3 +MI).

Proof. Recalling the expression (2.2) for g(α; AM), we first eliminate
from it the primes $ dividing d. Note that the number of such primes is
O(logP ), and that |f(α; d)| � (P/d)3/4+ε for α ∈ md by Weyl’s inequality
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([20, Lemma 2.4]). Thus it follows by Hölder’s inequality that

�

md

|f(α; d)|2
∣∣∣
∑

$∈P(M)
$|d

h(α,$)
∣∣∣
6
dα�

(
P

d

)(3+ε)/2 ∑

$∈P(M)
$|d

1�

0

|h(α,$)|6 dα(3.5)

� (P/d)3/2+εI.

We then denote by Pd(M) the set of $ ∈ P(M) with $ - d. For each
prime $ ∈ Pd(M), moreover, we put f0(α; d,$) = f(α; d$) for conve-
nience, and write

f1(α; d,$) =
∑

P/d<x≤2P/d
$ - x

e(d3x3α),

so that f(α; d) = f0(α; d,$) + f1(α; d,$). Accordingly we set

Uj =
�

md

( ∑

$∈Pd(M)

|fj(α; d,$)1/3h(α,$)|
)6
dα

for j = 0 and 1, and see that

(3.6)
�

md

|f(α; d)|2
∣∣∣
∑

$∈Pd(M)

h(α,$)
∣∣∣
6
dα� U0 + U1.

Next, by Dirichlet’s theorem ([20, Lemma 2.1]), there is a natural number
r ≤ (P/d)2M−3 satisfying ‖rd3$3α‖ ≤ M3(d/P )2. But whenever α ∈ md

and $ ∈Pd(M), one necessarily has r > P/(8d) in view of the assumption
on md, and consequently it follows by Weyl’s inequality ([20, Lemma 2.4])
that

|f(α; d$)| �
(
P

d$

)1+ε(
r−1 +

d$

P
+ r

(
d$

P

)3)1/4

�
(
P

dM

)3/4+ε

.

The latter bound and Lemma 2 yield the estimate

(3.7) U0 � (P/(dM))3/2+ε(P 3M3 + P 7/6M2I2/3).

As regards U1, we have by Hölder’s inequality

(3.8) U1 �M5
∑

$∈Pd(M)

�

md

|f1(α; d,$)2h(α,$)6| dα.

At this point, some comments may be in order. We could substitute the func-
tion

∑
$∈P(M) g($3α; A ) for g(α; AM), without any substantial change in

our proof, as in Vaughan [17] and Brüdern [4]. If we did that, we would
have g($3α; A ) instead of h(α,$) at (3.8), and then the argument about
U1 would be slightly easier, because the integral on the right hand side of
(3.8) may be estimated directly by Lemma 3. We have nonetheless adopted
g(α; AM) in our situation, with a view to facilitating the description of a
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routine argument on the major arc contribution below. In any case, this is
not essential at all. We may transform h(α,$) into g($3α; A ) essentially,
removing dependence upon $ from the summation condition in the defini-
tion of h(α,$). This is done by the technique of Vaughan which is contained
also in the proof of the previous lemma.

We define the functions

K$(γ) =
∑

P/$<x≤2P/$

e(xγ), g(α, γ; A ) =
∑

x∈A

e(x3α+ xγ),

K∗(γ) = min{P/M, ‖γ‖−1}.
By orthogonality, we see plainly

h(α,$) =

1�

0

g($3α, γ; A )K$(−γ) dγ.

For M < $ ≤ 2M , we know the bound |K$(−γ)| � K∗(γ), and via an
application of Hölder’s inequality, we have

|h(α,$)|6 �
(1�

0

K∗(γ) dγ
)5(1�

0

K∗(γ)|g($3α, γ; A )|6 dγ
)
.

But it follows immediately from the definition that

(3.9)

1�

0

K∗(γ) dγ �
M/P�

0

P

M
dγ +

1/2�

M/P

1

γ
dγ � logP,

so we deduce from (3.8) that

U1 �M5+ε
1�

0

K∗(γ)
∑

$∈Pd(M)

�

md

|f1(α; d,$)2g($3α, γ; A )6| dαdγ.

Now we apply Lemma 3 with X = P/d, m = d3, m = md and S(α) =
|g(α, γ; A )|6. We may then observe that f1(α; d,$) coincides with f$(mα)
in Lemma 3, and that

1�

0

|g(α, γ; A )|6 dα ≤
1�

0

|g(α; A )|6 dα = I,

in view of orthogonality. Therefore Lemma 3 yields the estimate
∑

$∈Pd(M)

�

md

|f1(α; d,$)2g($3α, γ; A )6| dα� (P/d)3/2+εM−5/2I,

which is enough to conclude that

(3.10) U1 � (P/d)3/2+εM5/2I,
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by virtue of (3.9) again. Since M � P 1/10, we see that

P 7/6M−1I2/3 � PM2/3I2/3 = (P 3)1/3(MI)2/3 � P 3 +MI,

and the lemma follows from (3.5)–(3.7) and (3.10).

4. The circle method and the linear sieve. This section is devoted
to establishing the base of our proof, by applying the circle method and
the linear sieve. Previous to its statement, we introduce some notation, and
record preliminary results on it.

Throughout, let n be a given, large natural number, and put

(4.1) P =
1

2
n1/3, L = logP.

We define

u(β) =

2P�

P

e(βt3) dt, v(β) =

2P�

P

e(βt3)

log t
dt.

By partial integration one may derive the familiar bounds

(4.2) u(β)� P (1 + P 3|β|)−1, v(β)� P (logP )−1(1 + P 3|β|)−1.

We then define

I(n) =

∞�

−∞
u(β)v(β)6e(−nβ) dβ.

The absolute convergence of the latter integral is ensured by (4.2). One may
also show that

(4.3) P 4(logP )−6 � I(n)� P 4(logP )−6.

In fact, the upper bound follows immediately by (4.2), and the lower bound
may be confirmed by using Fourier’s inversion formula (for example, see
p. 46 of [6], the proof of the lower bound for I(n)).

We next introduce the exponential sums

S(q, a) =

q∑

r=1

e(ar3/q), S∗(q, a) =

q∑

r=1
(r,q)=1

e(ar3/q).

Then, recalling the numbers an,2 and an,3 defined by (1.3), we define, for an
integer d,

Ad(q, n) =

q∑

a=1
(a,q)=1

S(q, ad3)S∗(q, a)4S∗(q, a3
n,2a)S∗(q, a3

n,3a)

qϕ(q)6
e

(
−an
q

)
,

where ϕ(q) denotes Euler’s totient function. Lemma 8.5 of Hua [12] states

that S∗(q, a) � q1/2+ε whenever (q, a) = 1, and obviously the same bound
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holds even if a is replaced by 8a or 27a. Thus, using the trivial bound
|S(q, ad3)| ≤ q, we have

(4.4) Ad(q, n)� ϕ(q)q(q1/2+ε/7)6q−1ϕ(q)−6 � q−2+ε.

Then we write

Sd(n) =
∞∑

q=1

Ad(q, n), S(n) = S1(n),

observing that the infinite series converges absolutely by (4.4). All the nec-
essary information on these singular series Sd(n) is essentially recorded in
Brüdern [4], and we recall it here. First, the function Ad(q, n) is multiplica-
tive with respect to q (see Lemma 8.1 of Hua [12] and Lemmata 2.10 and
2.11 of Vaughan [20]). We next define γ = γ(p), by γ = 1 for p 6= 3 and
γ = 2 for p = 3. Then by Lemma 8.3 of Hua [12], S∗(pl, a) = 0 whenever
l > γ and p - a, whence Ad(p

l, n) = 0 whenever l > γ. When 0 ≤ l ≤ γ, one
finds that Ad(p

l, n) is equal to either A0(pl, n) or A1(pl, n) according as p | d
or not. Thus, on putting

Bd(p, n) =

γ∑

l=0

Ad(p
l, n),

we have

(4.5) Sd(n) =
∏

p

Bd(p, n) =
∏

p|d
B0(p, n)

∏

p - d
B1(p, n).

Imitating the proof of Lemma 2.12 of Vaughan [20], one may see that

(4.6) Bd(p, n)

=

pγ∑

a=1

S(pγ , ad3)S∗(pγ , a)4S∗(pγ , a3
n,2a)S∗(pγ , a3

n,3a)

pγϕ(pγ)6
e

(
−an
pγ

)

= ϕ(pγ)−6Md(p, n),

where Md(p, n) denotes the number of solutions of the congruence

(4.7) (dx)3 + y3
1 + · · ·+ y3

4 + (an,2y5)3 + (an,3y6)3 ≡ n (mod pγ)

with 1 ≤ x ≤ pγ , 1 ≤ yj ≤ pγ and p - yj for 1 ≤ j ≤ 6. Further we
write M∗d (p, n) for the number of solutions counted by Md(p, n) with the
additional restriction p -x. As for the latter, all we shall need is to check
that one always has M∗1 (p, n) ≥ 1, in the case d = 1. In fact, this is trivial
for p = 2, and may be confirmed directly by hand for p = 3, and here is the
point of the definitions of an,2 and an,3. When p ≥ 5, on the other hand,
we notice by repeated application of the Cauchy–Davenport theorem (see
Vaughan [20, Lemma 2.14]) that at least min{p, 6(p − 1)/(3, p − 1) − 5}
residue classes modulo p may be represented by x3 +y3

1 + · · ·+y3
4 +(an,2y5)3
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with p -xy1 · · · y5. But one easily has 6(p − 1)/(3, p − 1) − 5 ≥ p for p ≥ 5,
so it follows that M∗1 (p, n) ≥ 1 in this case as well.

Now, on denoting by M ′(p, n) the number of solutions of

y3
1 + · · ·+ y3

4 + (an,2y5)3 + (an,3y6)3 ≡ n (modpγ)

with 1 ≤ yj ≤ pγ and p - yj for 1 ≤ j ≤ 6, we have, of course, M0(p, n) =
pγM ′(p, n). Also it is trivial that there are pγ−1M ′(p, n) solutions counted
by M1(p, n) with p |x. In addition, we know M ∗1 (p, n) ≥ 1, whence

(4.8) M1(p, n) ≥ pγ−1M ′(p, n) + 1 = p−1M0(p, n) + 1.

So we have, in particular, B1(p, n) ≥ p−12 by (4.6), while we see that
Bd(p, n) = 1 +O(p−2+ε) by (4.4). Therefore, by (4.5), we have

(4.9) 1� S(n)� 1.

Now we may define

(4.10) ω(d) =
Sd(n)

S(n)
=
∏

p|d

B0(p, n)

B1(p, n)
=
∏

p|d

M0(p, n)

M1(p, n)
.

Apparently ω(d) is multiplicative, and by (4.4), (4.6) and (4.8), we have for
all primes p,

(4.11) 0 ≤ ω(p) < p and ω(p) = 1 +O(p−2+ε).

These results will allow us to apply the linear sieve to our problem.
We further require some notation concerning the linear sieve. For z ≥ 2,

we define

Π(z) =
∏

p<z

p, V (z) =
∏

p<z

(1− ω(p)/p),

and note that, by (4.8) and (4.11), one has

(4.12) (log z)−1 � V (z)� (log z)−1.

We denote the Euler constant by γ0, and recall the well known functions
φ0(s) and φ1(s) associated with the linear sieve, which are defined by

φ0(s) = 0 and φ1(s) = 2eγ0/s for 0 < s ≤ 2,

and by the differential-difference equations

(sφ0(s))′ = φ1(s− 1) and (sφ1(s))′ = φ0(s− 1) for s ≥ 2.

In particular, it is known that for 2 ≤ s ≤ 3, one has

(4.13) φ0(s) = 2eγ0s−1 log(s− 1), φ1(s) = 2eγ0s−1.

Finally we introduce a special notation which facilitates the statement
of the next lemma. For positive real numbers X and δ with 2 ≤ X ≤ P ,
we define A(X, δ) to be the family of sets B having the following property:
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B is a set of natural numbers, and there exists a function w(β) of a real
variable β such that

(4.14)

∣∣∣∣w(β)− δ
2X�

X

e(βt3)

log t
dt

∣∣∣∣ ≤ δXL−3/2,

and whenever integers q and a satisfy |α − a/q| ≤ 27L500P−3 and 1 ≤ q ≤
L500 (here q and a may not be coprime), then

|g(α; B)− ϕ(q)−1S∗(q, a)w(α− a/q)| ≤ δPL−2000.

Now we can write down the next lemma, using the notation introduced
here and in the preamble to Lemma 1 (in particular, recall AM and I).

Lemma 5. Let M , D and z be real numbers satisfying

(4.15) max{P 1/10, P 1/9D−1/3} < M ≤ (P/D)1/7, D ≥ z ≥ 2.

Let δ0, . . . , δ3 be positive real numbers, and B1, B2 and B3 be sets of natural
numbers up to 2P . Suppose that AM ∈ A(P, δ0), B1 ∈ A(P, δ1) and Bj ∈
A(P/a3

n,j , δj) for j = 2 and 3. Write ∆ = δ3
0δ1δ2δ3(an,2an,3)−1 and

J =

1�

0

|g(α; B1)g(a3
n,2α; B2)g(a3

n,3α; B3)|2 dα.

Finally , write R(n, z) for the number of representations of n in the form

(4.16) n = x3 + x3
1 + x3

2 + x3
3 + y3

1 + (an,2y2)3 + (an,3y3)3,

where P < x ≤ 2P , (x,Π(z)) = 1, and

(4.17) xj ∈ AM , yj ∈ Bj , for 1 ≤ j ≤ 3.

Then, on putting s = (logD)/(log z), we have

R(n, z) > (φ0(s) +O((logL)−3/10))∆V (z)S(n)I(n)− E,(4.18)

R(n, z) < (φ1(s) +O((logL)−3/10))∆V (z)S(n)I(n) + E,(4.19)

with

E � P 4L−50(4.20)

+P 3/4+εM3/4D1/4J1/2(P 3/2+(MI)1/2+(PI)1/3M3/2D1/4).

Proof. We define Rd(n) to be the number of representations of n in the
form (4.16) with P < x ≤ 2P , d |x and (4.17). For now, we denote by rn(x)
the number of solutions of (4.16) subject to (4.17), regarding (4.16) as an
equation in xj , yj (1 ≤ j ≤ 3), for given n and x. Then we have the trivial
formulae

Rd(n) =
∑

P<x≤2P
x≡0 (mod d)

rn(x), R(n, z) =
∑

P<x≤2P
(x,Π(z))=1

rn(x).
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Therefore, as in Brüdern [3] and [4], estimates for R(n, z) may be derived
from appropriate information on Rd(n) via sieve theory.

We investigate Rd(n) via the circle method. We write

G(α) = g(α; AM)3g(α; B1)g(a3
n,2α; B2)g(a3

n,3α; B3),

for short, and define, for B ⊂ [0, 1),

Rd(n; B) =
�

B

f(α; d)G(α)e(−nα) dα,

recalling the function f(α; d) defined in the statement of Lemma 4. We write
P for the set of real numbers α ∈ [0, 1) such that there exist coprime integers
q and a satisfying

(4.21) |α− a/q| ≤ L500P−3, 1 ≤ q ≤ L500, 0 ≤ a ≤ q,
and we put p = [0, 1) \P. Then we have

(4.22) Rd(n) = Rd(n; [0, 1)) = Rd(n; P) +Rd(n; p).

The evaluation of Rd(n; P) is routine. We temporarily put B0 = AM ,
and an,0 = an,1 = 1 for convenience. By the assumptions, there exist func-
tions w0(β), . . . , w3(β) such that whenever α, q and a satisfy (4.21), one
has

(4.23) g(a3
n,jα; Bj) =

S∗(q, a3
n,ja)

ϕ(q)
wj(a

3
n,j(α− a/q)) +O(δjPL

−2000)

for j = 0, . . . , 3. The functions wj(β) also satisfy the conditions correspond-
ing to (4.14). Since

2P/a3
n,j�

P/a3
n,j

e(βa3
n,jt

3)

log t
dt = a−1

n,j

2P�

P

e(βt3)

log(t/an,j)
dt = a−1

n,jv(β) +O(PL−2),

we have

(4.24) wj(a
3
n,jβ) = δja

−1
n,jv(β) +O(δjPL

−3/2).

Here we pause to compute the integral

Ĩ(n) =

L500/P 3�

−L500/P 3

u(β)w0(β)3w1(β)w2(a3
n,2β)w3(a3

n,3β)e(−nβ) dβ.

By (4.2) and (4.24), we have simply

Ĩ(n) = ∆

L500/P 3�

−L500/P 3

u(β)v(β)6e(−nβ) dβ +O

(L500/P 3�

0

∆P 7L−13/2

1 + P 3β
dβ

)
,

and then, making use of (4.2) and (4.3), we see that

(4.25) Ĩ(n) = ∆I(n)+O(∆P 4L−13/2 logL) = ∆I(n)(1 +O(L−1/3)).
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Next, by Theorem 4.1 of Vaughan [20], whenever α, q and a satisfy (4.21),
one has

f(α; d) = q−1S(q, ad3)

2P/d�

P/d

e(β(dt)3) dt+O(L500+ε)(4.26)

= (dq)−1S(q, ad3)u(β) +O(d−1PL−2000)

for 1 ≤ d ≤ PL−2501. Now we note that D ≤ P 3/10 by (4.15), and the
measure of P is O(P−3L1500). Thus it follows straightforwardly from (4.23)
and (4.26) that

Rd(n; P) = d−1Ĩ(n)
∑

1≤q≤L500

Ad(q, n) +O(∆d−1P 4L−10)

for 1 ≤ d ≤ D, and the formula is still valid when we replace the last sum
over q by the series Sd(n), in view of (4.4), (4.3) and (4.25). Inserting the
latter result for Rd(n; P) into (4.22), and recalling (4.10), we conclude thus
far that for 1 ≤ d ≤ D, one has

Rd(n) = d−1ω(d)S(n)Ĩ(n) +O(∆d−1P 4L−10) +Rd(n; p).

By this formula and the conditions on the multiplicative function ω(d)
recorded in (4.11), one may now apply the linear sieve in order to estimate
R(n, z). Here we use Rosser’s linear sieve in the form of Theorem 9 of Mo-
tohashi [15], and obtain the lower bound

R(n, z) > (φ0(s) +O((logL)−3/10))V (z)S(n)Ĩ(n)

−
∑

1≤d≤D
(|Rd(n; p)|+O(∆d−1P 4L−10)),

together with the corresponding upper bound, in which φ0 and the minus
sign on the right hand side are replaced respectively by φ1 and the plus sign,
and the inequality sign is of course reversed. Recalling (4.25), and observing
by (4.3), (4.9) and (4.12) that

∑

1≤d≤D
O(∆d−1P 4L−10)� ∆V (z)S(n)I(n)L−2,

we notice that the desired inequalities (4.18) and (4.19) are valid with

(4.27) E =
∑

1≤d≤D
|Rd(n; p)|.

Thus it only remains to establish the estimate (4.20) for this sum E.
For each natural number d, we denote by Md the set of real numbers

α ∈ [0, 1) such that there exists a natural number q ≤ PM 3/d satisfying
‖qd3α‖ ≤M3(d/P )2, and put md = [0, 1) \Md, noting that this md satisfies
the requirement in Lemma 4. It is easy to check that P ⊂ Md whenever
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1 ≤ d ≤ D, and we have

(4.28) Rd(n; p) = Rd(n; p ∩Md) +Rd(n; md).

As for Rd(n; md), Schwarz’s inequality yields the estimate

|Rd(n; md)| ≤ J1/2
( �

md

|f(α; d)2g(α; AM)6| dα
)1/2

,

and we may apply Lemma 4 to the latter integral in parentheses. Accordingly
we have ∑

1≤d≤D
|Rd(n; md)| �

∑

1≤d≤D
J1/2((PM/d)3/2+ε(P 3 +MI))1/2(4.29)

� P 3/4+εM3/4D1/4J1/2(P 3/2 +M1/2I1/2).

We turn to Rd(n; p∩Md). By the definition of Md, if α ∈Md, then there
exist integers r and b satisfying

(4.30) 1 ≤ r ≤ PM3/d, |rd3α− b| ≤M3(d/P )2, (r, b) = 1.

One may simply confirm that this pair of r and b is unique for given d and α.
Therefore, for α ∈Md, we may define

f∗(α; d) = r−1S(r, b)

2P/d�

P/d

e(t3(d3α− b/r)) dt,

and then, by Theorem 4.1 of Vaughan [20], we have

(4.31) f(α; d) = f∗(α; d) +O((PM3/d)1/2+ε).

To estimate f∗(α; d), we introduce the multiplicative function κ(q) by
defining

κ(p3u+1) = 2p−u−1/2, κ(p3u+2) = κ(p3u+3) = p−u−1,

for non-negative integers u. It is known that whenever (r, b) = 1, one has
S(r, b)/r � κ(r), by Lemmata 4.3–4.5 of Vaughan [20]. Combining this
bound with an estimate corresponding to the first inequality in (4.2), we
have

(4.32) f∗(α; d)� Pd−1κ(r)(1 + (P/d)3|d3α− b/r|)−1.

Next, we denote by M′
d the set of real numbers α ∈ Md for which the

integers r and b determined by (4.30) satisfy the stronger constraints

(4.33) 1 ≤ r ≤ 2−1(P/(dM3))3/2, |rd3α− b| ≤ 2−1(d/(PM3))3/2.

Noticing that κ(r) � r−1/3 by the definition, we observe by (4.32) that
when α ∈Md \M′d, one has

f∗(α; d)� (P/d)(r + (P/d)3|rd3α− b|)−1/3 � (PM3/d)1/2.
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Accordingly we define

f †(α; d) =

{
f∗(α; d) when α ∈M′

d,

0 when α 6∈M′
d,

and remark that for α ∈ Md, the formula (4.31) is valid with f †(α; d) in
place of f∗(α; d). Thus naturally we have

|Rd(n; p ∩Md)| �
�

p

|f †(α; d)G(α)| dα+ (PM3/d)1/2+ε
1�

0

|G(α)| dα,

whence

(4.34)
∑

1≤d≤D
|Rd(n; p ∩Md)| �

�

p

|F (α)G(α)| dα+ P εẼ,

where we write

F (α) =
∑

1≤d≤D
|f †(α; d)|, Ẽ = (PDM3)1/2

1�

0

|G(α)| dα.

Hereafter, for X ≥ 1, we denote by N(X) the set of real numbers α ∈
[0, 1) such that there exist integers q and a satisfying

(4.35) 1 ≤ q ≤ X, |qα− a| ≤ XP−3, (q, a) = 1.

We shall estimate F (α) for a given α. This concerns only natural numbers
d ≤ D with α ∈ M′

d, in view of the definitions of f † and F , and for each
such d (if any), we take coprime integers r and b satisfying (4.33). Since our
assumption (4.15) implies DM−3 ≤ PM−10 < 1, we have swiftly

(4.36) rd3 < 2−1P 3/2, |rd3α− b| < 2−1P−3/2,

which tells that there are q and a satisfying (4.35) with X = 2−1P 3/2. One
may easily check that this pair of q and a is unique for the given α, so that
one has b/(rd3) = a/q and r = q/(q, d3), and thus

f †(α; d)� Pd−1κ(q/(q, d3))(1 + P 3|α− a/q|)−1,

by (4.32). Since we have
∑

1≤d≤D
d−1κ(q/(q, d3))� qεκ(q)L,

by Lemma 2.3 of Kawada and Wooley [14] (note that our κ(q) is almost
the same as the function w3(q) in the notation of [14], and indeed one has

κ(q) ≤ w3(q)� qεκ(q)), we conclude that whenever α ∈ N(2−1P 3/2), q and
a satisfy (4.35) with X = 2−1P 3/2, then one has

(4.37) F (α)� qεκ(q)PL(1 + P 3|α− a/q|)−1.

In addition, we have already observed implicitly that F (α) = 0 unless α ∈
N(2−1P 3/2). In fact, our argument around (4.36) reveals that if α ∈M′

d for
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some d with 1 ≤ d ≤ D, then α ∈ N(2−1P 3/2). Or, if α 6∈ N(2−1P 3/2), then
f †(α; d) = 0 for 1 ≤ d ≤ D.

By (4.37) with the trivial bound κ(q)� q−1/3, we find that

(4.38) sup
α∈[0,1)\N(X)

|F (α)| � PLXε−1/3.

In particular, unless α ∈ N(P ), we have F (α) � P 2/3+ε, but we see that

P 2/3 � (PDM3)1/2 by (4.15). Consequently, it follows from (4.34) that

(4.39)
∑

1≤d≤D
|Rd(n; p ∩Md)| �

�

p∩N(P )

|F (α)G(α)| dα+ P εẼ.

Moreover, by Schwarz’s inequality and Lemma 1, we observe that

Ẽ � (PDM3)1/2J1/2
(1�

0

|g(α; AM)|6 dα
)1/2

(4.40)

� P 1/2+εM5/2D1/2J1/2(P 3/2 + P 7/12M−1/4I1/3).

We next put

T1 =

1�

0

|g(α; AM)|8 dα, T2 =

1�

0

3∏

j=0

|g(a3
n,jα; Bj)|2 dα,

recalling the convenient convention on B0, an,0 and an,1, and set

Υ =
�

p∩N(P )

|F (α)3g(α; AM)2| dα.

The bounds Tj � P 5 for j = 1 and 2 follow immediately from Theorem
2 of Vaughan [17], by considering the underlying diophantine equations.
Meanwhile, the technique of estimating integrals like Υ may be found in a
number of articles in this area nowadays, and it indeed yields the estimate

(4.41) Υ � P 2L−150.

Assuming the latter bound for the moment, we deduce via application of
Hölder’s inequality that

(4.42)
�

p∩N(P )

|F (α)G(α)| dα� Υ 1/3T
1/6
1 T

1/2
2 � P 4L−50.

The required bound (4.20) now follows straightforwardly from (4.27)–(4.29),
(4.39), (4.40) and (4.42). (It may be rather helpful to note that one has
P 1/2M5/2D1/2 � P 3/4M3/4D1/4 by (4.15), when we compare the right hand
side of (4.29) with that of (4.40).)

What remains now is to confirm (4.41). To this end, we put

Υ1(X) =
�

N(2X)

|F (α)2g(α; AM)2| dα,



Sums of seven cubes of almost primes 239

and estimate it for 1 ≤ X ≤ P . By (4.37),

Υ1(X)� P 2L2Xε
∑

1≤q≤2X

κ(q)2

×
q∑

a=1
(a,q)=1

1/(qP 2)�

−1/(qP 2)

(1 + P 3|β|)−2|g(a/q + β; AM)|2 dβ.

We see that
q∑

a=1
(a,q)=1

|g(a/q + β; AM)|2 =
∑

x,y∈AM

e((x3 − y3)β)

q∑

a=1
(a,q)=1

e((x3 − y3)a/q),

and the last inner sum is at most (q, x3− y3) in modulus by the well known
estimate for the Ramanujan sum. Thus we have

Υ1(X)� P 2L2Xε
∑

1≤q≤2X

κ(q)2
∑

1≤x,y≤2P

(q, x3 − y3)

∞�

−∞
(1 + P 3|β|)−2 dβ.

But it was shown in the proof of Lemma 3.3 of Brüdern, Kawada and Wooley
[7] that ∑

1≤q≤2X

κ(q)2
∑

1≤x,y≤2P

(q, x3 − y3)� P 2Xε

for 1 ≤ X ≤ P (see (3.9), (3.10) and the displayed inequality following
(3.10) of [7]). So we have

Υ1(X)� P 2L2Xε/2 · P 2Xε/2 · P−3 � PL2Xε.

Now we write N∗(X) = N(2X) \N(X). Then, combining the last result
with (4.38), we deduce for 1 ≤ X ≤ P that

�

N∗(X)

|F (α)3g(α; AM)2| dα� sup
α∈N∗(X)

|F (α)|Υ1(X)� P 2L3Xε−1/3.

Since N(L500) ⊂ P, we notice that p ∩ N(P ) is covered by the union of
N∗(X) for X = 2kL500 with integers k such that L500 ≤ X ≤ P . Hence, by
summing the last inequality over such values of X, we obtain (4.41) at once,
and the proof of the lemma is complete at last.

5. Switching principle. Now that Lemma 5 is established, our strat-
egy may be transparent. We apply the latter lemma with the sets A and
Bj taken to be appropriate sets of almost primes. We shall define these sets
so that the integrals I and J are immediately estimated by the mean value
theorems recorded in Brüdern [2]. We require that the bound (4.20) gets a
shape like E � P 4L−50, and this demand gives restrictions on D in terms
of P and M . At this stage we may determine the optimal value of M , so
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that D, the parameter called the level of distribution, may be as large as
possible. Then, with an appropriate choice of z, we apply Lemma 5 and
the idea of switching principle. In this way one may get various conclusions
similar to Theorem 1.

Here we fix our setting for the proof of Theorem 1. First we define pa-
rameters by

M = 2P 1/8, D = P 9/122, z = P 1/40,

recalling (4.1). It is trivial that the requirements (4.15) are fulfilled. Next,
let Ω(x) denote the number of prime divisors of x, counted according to
multiplicity, and for a natural number r, introduce the set

Cr = {P < x ≤ 2P : (x,Π(z)) = 1, Ω(x) = r}.
Hereafter we use the symbol x ∼ X as a shorthand for X < x ≤ 2X, and
then define various sets of almost primes as follows:

B1 =
3⋃

r=1

Cr, B′1 =
40⋃

r=5

Cr,

B2 = {p1p2p3 : p1 ∼ P 15/113, p2 ∼ P 14/113, p3 ∼ P/(an,2p1p2)},

B3 = {p1p2 : p1 ∼ P 1/7, p2 ∼ P/(an,3p1)},

A = {p1p2 : p1 ∼ (P/M)1/7, 1 ≤ p2 ≤ 2(P/(Mp1))}.
For this set A , moreover, we define AM by (2.1), noting that every number
in A has indeed no prime divisor in P(M), as we supposed in Section 2.

By the Theorem of Brüdern [2], we have

(5.1) I =

1�

0

|g(α; A )|6 dα� (P/M)23/7+ε.

Also, the Proposition of Brüdern [2] means that for any set B of natural
numbers up to 2P , one has

1�

0

|g(α; B)2g(a3
n,jα; Bj)

4| dα� P λj+ε

for j = 2 and 3, with λ2 = 369/113 and λ3 = 23/7, and an obvious applica-
tion of Schwarz’s inequality leads to the bound

(5.2)

1�

0

|g(α; B)g(a3
n,2α; B2)g(a3

n,3α; B3)|2 dα� P 2591/791+ε.

This provides upper bounds for integrals corresponding to J , when we apply
Lemma 5 with the current sets B2 and B3.



Sums of seven cubes of almost primes 241

The above choice of M results from the optimisation mentioned in the
opening paragraph of this section. Actually, making use of (5.1) and (5.2)
to estimate I and J , we find, after simple calculation, that the inequality
(4.20) turns into

E � P 4L−50 + P 4−467/25312+εD1/4 + P 4−2983/75936+εD1/2 � P 4L−50.

In the definition of D, therefore, the exponent 9/122 could be any fixed real
number strictly less than (but appropriately near to) 467/6328. Further, one
may say that our choice of z is not optimal if one takes interest in better
quality of the lower bound for the number of representations in Theorem 1
(that is, to get the largest possible value in place of the constant 0.86 in
(5.8) below). In the latter sense, the best choice of z would be approximately
P 0.02113.

We next check some conditions concerning the notation A(X, δ) intro-
duced in the preamble to Lemma 5, although this task may be regarded as a
basic exercise in this area. We take AM as an example. By the Siegel–Walfisz
Theorem and partial summation, one may show that whenever α = a/q+β
with 1 ≤ q ≤ L500 and |β| ≤ 27L500P−3 (even if (q, a) > 1), then one has

∑

p2∼P/($p1)

e(($p1p2)3α)

=
S∗(q, ($p1)3a)

ϕ(q)

2P/($p1)�

P/($p1)

e(($p1t)
3β)

log t
dt+O

(
P

$p1
L−3000

)
,

for $ ∈ P(M) and p1 ∼ (P/M)1/7 (refer to Hua [12, Lemmata 7.14 and
7.15]). Since (q,$p1) = 1, one has S∗(q, ($p1)3a) = S∗(q, a), so by a change
of variable in the integral (rewrite $p1t as t again), one obtains

g(α; AM) =
S∗(q, a)

ϕ(q)

2P�

P

δ0(t)
e(βt3)

log t
dt+O(PL−3000),

where we put

δ0(t) =
∑

$∈P(M)

∑

p1∼(P/M)1/7

log t

$p1 log(t/($p1))
.

But, for P ≤ t ≤ 2P , one has log t = logP +O(1), whence δ0(t) = δ0(P )(1+
O(L−1)). On putting δ0 = δ0(P ), one has δ0 � L−2, and one may thus
conclude that AM ∈ A(P, δ0). Similarly, on putting

δ2 =
∑

p1∼P 15/113

p2∼P 14/113

logP

p1p2 log(P/(p1p2))
, δ3 =

∑

p1∼P 1/7

logP

p1 log(P/p1)
,
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one may confirm that Bj ∈ A(P/an,j , δj) for j = 2 and 3, together with the
bounds δ2 � L−2 and δ3 � L−1.

To deal with the sets B1 and B′1, we first define C1(s) = 1 or 0 according
as s ≥ 1 or s < 1, and then define Cr(s) inductively for r ≥ 2 by

Cr(s) =

max{s,r}�

r

Cr−1(t− 1)

t− 1
dt.

We may notice that Cr ∈ A(P,Cr(40)) by Lemma 2.2 of Brüdern and
Kawada [6] (with a trifling modification on the length of the interval in
the latter lemma). Consequently, on writing

δ1 =
3∑

r=1

Cr(40), δ′1 =
40∑

r=5

Cr(40),

we see that B1 ∈ A(P, δ1) and B′1 ∈ A(P, δ′1).
With respect to the constants δ1 and δ′1, we shall require numerical es-

timates. We have C1(40) = 1 and C2(40) = log 39 by the definition, while
numerical integration gives the bounds

C3(40) > 5.914, C4(40) > 5.676.

On the other hand, Brüdern and Kawada [6] pointed out (see (6.35) of [6])
that as a consequence of simple application of the linear sieve, one may
derive the estimate

40∑

r=1

Cr(40) ≤ 40e−γ0φ1(40) < 40e−γ0(1 + 10−9),

recalling the notation introduced in the preamble to Lemma 5. Thus we may
confirm the numerical bounds

(5.3) δ1 > 10.577, δ′1 < 6.205.

By the definitions and preliminary results above, we state that when we
apply Lemma 5 with these sets AM , B1, B2 and B3, we have

∆ = δ3
0δ1δ2δ3(an,2an,3)−1 � L−9,

and the estimate (4.20) implies that

(5.4) E � P 4L−50 � ∆V (z)S(n)I(n)L−34,

by recalling (4.3), (4.9) and (4.12). So the inequalities (4.18) and (4.19) are
valid with E deleted in this case, and in this respect the situation is the
same when we replace B1 with B′1.

Proof of Theorem 1. Under the notation fixed in this section, now we
write R(n, z) for the number of representations of n in the form
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(5.5) n = x3 + x3
1 + x3

2 + x3
3 + y3

1 + (an,2y2)3 + (an,3y3)3,

subject to P < x ≤ 2P , (x,Π(z)) = 1, and

(5.6) x1, x2, x3 ∈ AM , y1 ∈ B1, y2 ∈ B2, y3 ∈ B3.

Then, in view of (5.4), Lemma 5 gives the lower bound

(5.7) R(n, z) >

(
φ0

(
180

61

)
+O((logL)−3/10)

)
δ3

0δ1δ2δ3

an,2an,3
V (z)S(n)I(n).

Next we write R′(n, z) for the number of representations of n in the form
(5.5) subject to x ∈ B′1 and (5.6). By our choice of z, when P < x ≤ 2P
and (x,Π(z)) = 1, one necessarily has Ω(x) ≤ 40. Therefore, if we could
show that R(n, z)−R′(n, z) > 0, then we conclude that n can be written in
the form (5.5) with the variables satisfying (5.6) and Ω(x) ≤ 4. This clearly
means that the conclusion of Theorem 1 is true, because every number in
AM , B1 or B2 is P3, and every member of B3 is P2.

Removing the implicit condition Ω(y1)≤3 from the definition of R′(n, z),
we denote the number of such representations by R′′(n, z). Namely, R′′(n, z)
is the number of representations of n in the form (5.5) subject to P < y1 ≤
2P , (y1,Π(z)) = 1, and

x1, x2, x3 ∈ AM , x ∈ B′1, y2 ∈ B2, y3 ∈ B3.

Trivially we see that R′(n, z) ≤ R′′(n, z). We apply Lemma 5 to R′′(n, z), ex-
changing the roles of x and y1 in the apparent manner. By the note following
(5.4), we thus obtain the upper bound

R′′(n, z) <

(
φ1

(
180

61

)
+O((logL)−3/10)

)
δ3

0δ
′
1δ2δ3

an,2an,3
V (z)S(n)I(n).

By (4.13), (5.7) and the last inequality, we deduce that

R(n, z)−R′(n, z) ≥ R(n, z)−R′′(n, z)

>

(
δ1 log

119

61
− δ′1 +O((logL)−3/10)

)
φ1

(
180

61

)

× δ3
0δ2δ3(an,2an,3)−1V (z)S(n)I(n).

But by (5.3), a modicum of computation shows that

(5.8) δ1 log
119

61
− δ′1 > 0.86,

whence R(n, z)−R′(n, z) > 0 as required, and Theorem 1 follows.

Finally, we record the necessary changes in the above proof required
to establish Theorem 2. To this end, we set M = P 2277/18419, D = P 1/11

and z = P 1/33, for instance. We define the sets B2, A and AM as above,
but redefine B1 to be the set of primes p ∼ P , and B′1 to be the set of
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natural numbers x ∼ P satisfying (x,Π(z)) = 1 and Ω(x) ≥ 7. Moreover,
B3 is redefined to be the set identical with B2 in this case, except for the
trivial modification that an,2 is now replaced by an,3 in the definition of B2

above. Then Theorem 2 can be proved in the same way as Theorem 1 with
these alterations, by appealing to the numerical bounds C3(33) > 5.214,
C4(33) > 4.596, C5(33) > 2.689, and C6(33) > 1.118, so we omit the further
details.
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