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On commuting properties of endomorphisms

of formal A-modules over finite fields
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1. Introduction. There have recently been increasing studies of dis-
crete dynamical systems relevant to p-adic numbers; see, for example, [1, 2,
10]. In [10], Lubin studied the iterations of analytic transformations of the
p-adic open unit disk with a fixed point at 0 and found out that two com-
muting transformations have the same set of pre-periodic points. However,
very few interesting commuting examples are known outside endomorphisms
of formal groups. In fact, Lubin [10] conjectures that such a phenomenon is
exclusive to endomorphisms of formal group laws. There are some dynamical
system results built on these ideas (see [5, 7, 9]).

Throughout this paper O is the ring of integers of a finite extension of
Qp with maximal ideal M and residue field k = O/M. We call a power
series g(x) ∈ O[[x]] stable if g(0) = 0 and g′(0) is neither 0 nor a root of 1.
As usual, we write h(g(x)) = h◦g(x); in a less standard notation, we denote
by g◦n(x) the n-fold composition of g(x) with itself; this makes sense for
negative n in case g(x) is invertible.

Suppose F (x, y) is a formal group law over the characteristic 0 ring O.
F (x, y) is constructed by means of a series l(x) defined over the field of
fractions of O, so that

F (x, y) = l◦−1(l(x) + l(y)).

This series, the logarithm of F (x, y), plays an important role in formal dy-
namics over O. For example, for α ∈ O set g(x) = l◦−1(α · l(x)). Then
g(x) ∈ EndO(F ) if and only if g(x) ∈ O[[x]]. Hence, the map c from EndO(F )
to O given by g(x) 7→ g′(0) is an injective ring homomorphism and we will
denote g(x) by [α]F (x). Moreover, suppose that g(x) is stable. Then for
h(x) ∈ O[[x]], g(h(x)) = h(g(x)) if and only if h(x) is an endomorphism of
F (x, y).
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On the other hand, for a formal group over the field k of characteristic p,
the situation changes. The logarithm, for example, does not exist under those
circumstances and so the map c from Endk(F ) to k given by g(x) 7→ g′(0)
is no longer injective and two endomorphisms are no longer commutative
under composition.

Let F (x, y) be any formal group over O. Denote by F (x, y) the coeffi-
cient-wise reduction of F (x, y) to k. (For g(x) ∈ O[[x]], we will also denote
by g(x) ∈ k[[x]] the coefficient-wise reduction of g(x) to k.) Then F (x, y) is
clearly a formal group over k. Additionally, if F (x, y) has finite height, then
the reduced map EndO(F ) → Endk(F ) is injective. In fact, Endk(F ) can be
a rather larger ring than its characteristic counterpart.

With Lubin’s original conjecture in mind, and with some experimental
evidence, Sarkis (see [11]) makes the following conjecture:

Conjecture. Let k be a finite field and let F(x, y) be a finite-height

formal group over k. Let µ(x) be a non-torsion automorphism of F(x, y).
Suppose that ω(x) ∈ k[[x]] and µ(ω(x)) = ω(µ(x)). Then ω(x) is an endo-

morphism of F(x, y).

We remark that the assumption of µ(x) being a non-torsion automor-
phism is essential ([11]). There are some partial results supporting this con-
jecture. Let A be the ring of integers of some finite unramified extension
of Qp. We can apply results in [3, Section 21.8] to show that if F(x, y) is a
formal A-module and ω(x) commutes with all the endomorphisms of F(x, y)
which correspond to A (i.e. if ̺F : A → End(F) is the A-module structure
on F(x, y), then ω ◦ ̺F (α) = ̺F (α) ◦ ω for all α ∈ A), then ω(x) is an
endomorphism of F(x, y). In [11, Theorem 46], Sarkis shows that if µ(x) is
a unit of Zp in the endomorphism ring of F(x, y) (i.e. µ(x) = [α]F(x) with
α ∈ Z∗

p), then the conjecture is true.

Definition 1.1. Let O be the ring of integers of some finite extension
of Qp. For an element α ∈ O∗, suppose that [Qp(α) : Qp] = [Fp(α) : Fp] = n.
Then we call α a primitive unramified element of degree n.

Note that every unit in Zp is a primitive unramified element.

Our main aim is to state a generalization of Sarkis’ theorem [11, Theorem
46] and Hazewinkel’s results.

Main Theorem (Theorem 3.2). Let α be a primitive unramified ele-

ment which is not a root of 1 and let A = Z[α]. Suppose that (F(x, y), ̺F)
is a finite-height formal A-module over k. If ω(x) ∈ k[[x]] satisfies

̺F (α) ◦ ω = ω ◦ ̺F (α),

then ω(x) is an endomorphism of F(x, y).
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Our approach uses a “not quite commutative” method developed by
Honda [4]. In Section 2, we will describe some preliminary results about
Honda’s method and about Hazewinkel’s functional equation lemma for con-
structing formal groups. Then in Section 3, we will give a detailed proof of
the Main Theorem.

2. Preliminaries on formal groups over finite fields. In this sec-
tion, we provide some necessary background for studying formal groups over
the finite field k = Fq where q = ph for some prime number p. For simplicity,
we only give results which will be needed later; see [3] for more details.

Let K be the unramified extension of Qp with ring of integers O and
maximal ideal M such that the residue field O/M is k. Let A be a subring
of O and let F(x, y) be a formal A-module over k. By the existence of a
universal formal A-module (see [3]), there exists a formal A-module F (x, y)
over O that reduces modulo M to F(x, y). Hence, throughout this section,
we use the following setting: K is the unramified extension of Qp with ring of
integers O and maximal ideal M such that O/M = k, and σ ∈ Gal(K/Qp)
is the Frobenius automorphism of K over Qp.

In [3], Hazewinkel gives a method of constructing formal groups by means
of a certain recursive procedure. In our case, every formal group law F (x, y)
over O is a functional equation formal group law ([3, Proposition 20.1.3]).
In other words, there exists {s1, s2, . . .} ⊂ O such that the logarithm l(x) ∈
K[[x]] of F (x, y) satisfies the recursion formula

l(x) = g(x) +
1

p

∞∑

i=1

siσ
i
∗l(x

pi

),

where g(x) ∈ O[[x]] and σi
∗l(x) is the power series obtained from l(x) by

applying the automorphism σi to the coefficients of l(x). We remark that
the equation above is in fact a recursion formula for the coefficients of l(x).
Indeed, let

g(x) =
∞∑

i=1

cix
i and l(x) =

∞∑

i=1

aix
i.

Then the an, n = 1, 2, . . . , are recursively determined as follows. Write
n = prm where m is such that p does not divide m. Then we have

an = cn +
s1

p
σ(an/p) + · · · +

sr

p
σr(an/pr).

Moreover, F (x, y) is strictly isomorphic to a p-typical formal group law with
logarithm L(x) ∈ K[[x]] satisfying the recursion formula

L(x) = x +
1

p

∞∑

i=1

siσ
i
∗L(xpi

).
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In this case, L(x) can be written as

L(x) =

∞∑

i=0

bix
pi

,

and we have

b0 = 1, br =
s1

p
σ(br−1) + · · · +

sr−1

p
σr−1(b1) +

sr

p
.

We let Kσ[[T ]] be the non-commutative power series ring in one inde-
terminate T with the multiplication rule Ta = σ(a)T for all a ∈ K, and let
Oσ[[T ]] be the subring of Kσ[[T ]] with coefficients in O. Let

η =
∞∑

i=0

ciT
i ∈ Kσ[[T ]], f(x) =

∞∑

j=1

ajx
j ∈ K[[x]].

We define

η ∗ f(x) =
∞∑

i=0

ci

∞∑

j=1

σi(aj)(x
pi

)j .

It is obvious from the definition that for η, θ ∈ Kσ[[T ]] and f(x) ∈ K[[x]],

(η + θ) ∗ f(x) = η ∗ f(x) + θ ∗ f(x), (ηθ) ∗ f(x) = η ∗ (θ ∗ f(x)).

Now let

η = p −
∞∑

i=1

siT
i ∈ Oσ[[T ]].

We calculate that the coefficients bi of η−1p =
∑

∞

i=0
biT

i satisfy

b0 = 1, br =
s1

p
σ(br−1) + · · · +

sr−1

p
σr−1(b1) +

sr

p
.

Comparing this with the recursive relation of the functional equation lemma
for the logarithm, we have

(η−1p) ∗ i(x) = L(x), where i(x) = x.

As mentioned before, the functional equation techniques can be used to
study endomorphisms of formal group laws over characteristic 0 rings. For
example, f(x) ∈ O[[x]] is an endomorphism of a formal group over O with
logarithm l(x) if and only if l◦−1(f ′(0) · l(x)) ∈ O[[x]]. For endomorphisms
of formal group laws over finite fields, Honda [4] gives the following similar
results:

Lemma 2.1. Let F (x, y) be the formal group law over O with logarithm

l(x) satisfying the recursion formula

l(x) = x +
1

p

∞∑

i=1

siσ
i
∗l(x

pi

).
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Let ϑ ∈ Oσ[[T ]] and let

η = p −
∞∑

i=1

siT
i.

(1) Set αϑ(x) = l◦−1((ϑ∗ l)(x)). Then αϑ(x) ∈ O[[x]] if and only if there

exists an ηϑ ∈ Oσ[[T ]] such that ηϑη = ηϑ.

(2) If αϑ(x) ∈ O[[x]], then reducing modulo M, αϑ(x) is an endomor-

phism of F (x, y).
(3) If ϑ1, ϑ2 ∈ Oσ[[T ]] and αϑ1

, αϑ2
∈ O[[x]], then

αϑ1ϑ2
(x) = αϑ1

(αϑ2
(x)).

(4) If ϑ ∈ Oσ[[T ]] and αϑ ∈ O[[x]], then αϑ(x) = 0 if and only if ϑ is in

the right ideal of Oσ[[T ]] generated by η.

(5) Every element of Endk(F (x, y)) is of the form αϑ(x) for some ϑ ∈
Oσ[[T ]].

Lemma 2.1 provides us an explicit method to describe endomorphisms
of a formal group law over a finite field.

Example 2.2. Consider the formal group Fh(x, y) with logarithm

lh(x) = x +
1

p
xph

+
1

p2
xp2h

+ · · · .

Clearly, Fh(x, y) is a formal group of height h defined over Zp. Let K be the
unramified extension of Qp of degree h. Considering η = p−T h ∈ Oσ[[T ]], we
have lh(x) = (η−1p) ∗ i(x). It is easy to see that for every ϑ ∈ Oσ[[T ]], ηϑ =
ϑη. Therefore, by Lemma 2.1, EndF

ph
(F h(x, y)) is isomorphic to the non-

commutative ring Oσ[[T ]]/(η). Let Knr be the maximal unramified extension
of K and let Onr be the integral closure of O in Knr. It is easy to see that
the only series θ ∈ Onr

σ [[T ]] with ηθη = ηθ for some ηθ ∈ Onr
σ [[T ]] are the

series in Oσ[[T ]]. Therefore, by Lemma 2.1 again, we have

Eh = Endksc(F h(x, y)) = Endk(F h(x, y)),

where ksc is the separable closure of k = Fph corresponding to the residue

field of Onr. It can be checked that Eh is a free module of rank h2 over Zp.
Moreover, if we consider Dh = Eh ⊗Zp

Qp, then Dh is a central division
algebra over Qp of invariant equal to h−1.

We remark that we are interested in this example because over a sepa-
rably closed field of characteristic p > 0, the one-dimensional formal group
laws are classified by their heights ([6, Theorem IV] or [3, Theorem 19.4.1]).
In other words, every one-dimensional formal group law over a separably
closed field of characteristic p > 0 of height h is isomorphic to F h(x, y).
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3. Main Theorem. Suppose that α is a primitive unramified element
and A = Z[α]. Recall that if (F(x, y), ̺F) is a finite-height formal A-module
over k, then F(x, y) is actually a reduction of a formal group. More precisely,
there exists a field K which is an unramified extension of Qp with ring of
integers O and maximal ideal M such that the residue field O/M is k and
there exists a formal group law F (x, y) over O such that F (x, y) = F(x, y)
and [α]F (x) = ̺F (α).

First we remark that although ̺F (α) ∈ k[[x]] is of the form [α]F (x), if

G(x, y) ∈ O[[x, y]] is another formal group law such that F (x, y) = G(x, y),
it does not mean that ̺F (α) = [α]G(x).

Because all the formal groups over k of the same height are isomorphic
over ksc, without loss of generality, we can suppose that ̺F (α) = [α]F (x)
where F (x, y) = F h(x, y). (Fh(x, y) is the formal group defined in Example
2.2.) By the remark above, ̺F (α) may not be equal to [α]Fh

(x). But if we

consider End(F h(x, y)) as the maximal order of a central division algebra D
over Qp of rank h, then ̺F (α) and [α]Fh

(x) are in L1 and L2 respectively,
where L1 and L2 are subfields of D which are unramified of the same degree
over Qp. By the Skolem–Noether theorem, there exists γ ∈ D such that

γ−1 · ̺F (α) · γ = [α]Fh
(x). If ω(x) commutes with ̺F (α), then γ−1 · ω(x) · γ

also commutes with [α]Fh
(x). If we can show that γ−1 · ω(x) · γ is an en-

domorphism of F h(x, y) (in other words, γ−1 · ω(x) · γ is in the maximal
order of D), then ω(x) is also in the maximal order of D and hence is an
endomorphism of F (x, y) = F h(x, y). Therefore without loss of generality,
we assume that ̺F (α) = [α]Fh

(x) and ̺F (α)◦ω = ω ◦̺F (α), and claim that

ω(x) is an endomorphism of F h(x, y).
Let l(x) be the logarithm of Fh(x, y). Our goal is to show that there

exists η ∈ Oσ[[T ]] such that l◦−1(η ∗ l(x)) is equal to ω(x) after reducing
modulo M.

Lemma 3.1. Let µ(x) = [α]Fh
(x) ∈ k[[x]] where α is primitive unramified

of degree s and k = Fph. Suppose that f(x) ∈ ksc[[x]] is such that f(µ(x)) =

µ(f(x)). Then f(x) ≡ axpr

(modxpr+1) with a ∈ k \ {0} and r = λs for

some λ ∈ N ∪ {0}.

Proof. By a similar proof to Lubin’s [10, Main Theorem 6.3], we see that
f(x) = g(xpr

) for some g(x) ∈ ksc[[x]] with g′(0) 6= 0.
Since µ′(0) ∈ k \ {0}, by iterating µ(x) a certain number of times (say

m times), we can suppose that f(x) commutes with ξ(x) = µ◦m(x) where

ξ(x) ≡ x + b0x
pt

(modxpt+1) for some b0 ∈ k and t ∈ N,

and

ξ◦p(x) ≡ x + b1x
pt+h

(modxpt+h+1) for some b1 ∈ k.
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(This can be seen by using the fact that [α]Fh
(x) is an endomorphism of

Fh(x, y) or the fact that Height([α]Fh
(x)) = h as in [8].)

Now write f(x) ≡ axpr

(modxpr+1). The coefficient of the leading term of
f(µ(x)) is aαpr

and the coefficient of the leading term of µ(f(x)) is aα. This
shows that α ≡ αpr

(modM). Since α is primitive unramified of degree s,
it implies that r = λs for some λ ∈ N ∪ {0}.

Finally, we claim that a ∈ k. Consider the equality ξ(f(x)) = f(ξ(x)).
Since

f(ξ(x)) − f(x) = g((ξ(x))pr

) − g(xpr

) = g′(0) · (b0x
pt

)pr

+ higher terms,

the coefficient of the leading term of f(ξ(x))− f(x) is abpr

0
. Since Fh(x, y) ∈

Zp[[x, y]], we have [α]Fh
(x) ∈ Zp[α][[x]] and hence µ(x) = [α]Fh

(x) ∈ Fps [[x]]
(so that ξ(x) ∈ Fps [[x]]). In other words,

bpr

0
= bpsλ

0
= b0.

Therefore, the leading coefficient of f(ξ(x))−f(x) is ab0. On the other hand,

the leading coefficient of ξ(f(x)) − f(x) is apt

b0. Since

f(ξ(x)) − f(x) = ξ(f(x)) − f(x),

we have apt

= a. Similarly, by considering

f(ξ◦p(x)) − f(x) = ξ◦p(f(x)) − f(x),

we obtain apt+h

= a. Therefore aph

= a, and hence a ∈ k.

Now we have all the ingredients to prove our main theorem.

Theorem 3.2. Let F(x, y) be a finite-height formal group over k and let

µ(x) be a non-torsion automorphism of F(x, y). Suppose that there exists

a formal group F (x, y) ∈ O[[x, y]] such that F (x, y) = F(x, y) and µ(x) =
[α]F (x) with α a primitive unramified element. If ω(x) ∈ ksc[[x]] satisfies

µ(ω(x)) = ω(µ(x)), then ω(x) is also an endomorphism of F(x, y).

Proof. Suppose that the height of F(x, y) is h. As mentioned before,
without loss of generality, we can assume that F (x, y) = Fh(x, y), F(x, y) =
F h(x, y) and K is unramified over Qp of degree h with ring of integers O
and maximal ideal M such that O/M = k = Fph .

Let l(x) be the logarithm of Fh(x, y) and let u(x) = l◦−1(α · l(x)) =
[α]Fh

(x). Then we have µ(x) = u(x). Suppose that ω(x) commutes with
µ(x). To prove our theorem, by Lemma 2.1, it is enough to show that there
exists θ ∈ Oσ[[T ]] such that f(x) = l◦−1(θ ∗ l(x)) and ω(x) = f(x).

Suppose that α is a primitive unramified element of degree s. Let ω(x) ≡
a0x

n (modxn+1) with a0 6= 0. Then by Lemma 3.1, we have a0 ∈ k and n =
pλs. Choose any α0 ∈ O such that a0 = α0 and let θ0 = −α0T

λs ∈ Oσ[[T ]].
By Example 2.2, we have l◦−1(θ0 ∗ l(x)) ∈ O[[x]]. Let τ0(x) ∈ k[[x]] be such
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that τ0(x) = l◦−1(θ0 ∗ l(x)). Consider

ω1(x) = F(ω(x), τ0(x)).

We have

ω1(µ(x)) = F(ω(µ(x)), τ0(µ(x))),

µ(ω1(x)) = µ(F(ω(x), τ0(x))) = F(µ(ω(x)), µ(τ0(x))).

Since σs(α) = α, we have

θ0 · α = −α0σ
λs(α)T λs = −αα0T

λs = α · θ0

in Oσ[[T ]], and hence Lemma 2.1 says that τ0(µ(x)) = µ(τ0(x)). This implies
that ω1(µ(x)) = µ(ω1(x)). It is clear that the initial degree of ω1(x) is greater
than the initial degree of ω. The proof is completed by induction.

The series µ(x) in Theorem 3.2 is a reduction of an endomorphism of a
formal group over O. The series ω(x) may not be a reduction of an endo-
morphism. However, our next result shows that under a certain condition,
ω(x) does come from an endomorphism over O.

Corollary 3.3. Let K be unramified over Qp of degree h. Let F(x, y)
be a formal group over k of height h and let F (x, y) be a formal group over O
such that F (x, y) = F(x, y). Suppose that µ(x) = [α]F (x) is a non-torsion

automorphism of F(x, y) with α a primitive unramified element of degree

h and suppose that ω(x) ∈ ksc[[x]] is such that µ(ω(x)) = ω(µ(x)). Then

ω(x) = [β]F (x) for some β ∈ O.

Proof. Without loss of generality, we can assume that F (x, y) = Fh(x, y)
and F(x, y) = F h(x, y). We use the same notations as in the proof of The-
orem 3.2.

From Theorem 3.2, there exists θ ∈ Oσ[[T ]] such that f(x) = l◦−1(θ∗l(x))
and ω(x) = f(x). The commutativity of µ(x) and ω(x) also implies that
θ · α = α · θ in Oσ[[T ]]. Suppose that

θ ≡ a0 + a1T + · · · + ah−1T
h−1 (mod (p − T h))

in Oσ[[T ]]. We have

θ · α ≡ a0α + a1σ(α)T + · · · + ah−1σ
h−1(α)T h−1 (mod (p − T h)),

α · θ ≡ αa0 + αa1T + · · · + αah−1T
h−1 (mod (p − T h)).

The assumption that α is primitive unramified of degree h implies that
θ ≡ a0 (mod (p − T h)) and hence by Lemma 2.1,

ω(x) = f(x) = l◦−1(θ ∗ l(x)) = l◦−1(a0 · l(x)) = [a0]F (x).

Remark 3.4. Let A = O. In the language of formal A-modules, the
condition in Corollary 3.3 says that F(x, y) is a formal A-module of A-height
equal to 1. Therefore, every A-endomorphism actually comes from A.
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Finally, we remark that the hypothesis on µ(x) can be weakened. Con-
sider a non-primitive unramified unit α = α0 + pnα1 with n ∈ N and α0, α1

satisfying the following:

1. α1 is primitive.
2. α0 is a unit such that α0 ∈ Zp[α1] and αr

0 ≡ 1 (mod pn), where r is
the least positive integer such that α r

0 = 1 in k (i.e. r is the order of
α0 in k).

Then, for any non-negative integer s, we have αpsr = 1 + ps+nα′, with
α′ a primitive unramified element of the same degree as α1. Therefore, by
using a similar argument to the proof of Theorem 3.2, we can show that if
µ(x) = [α]F (x) is a non-torsion automorphism of F(x, y), and ω(x) ∈ ksc[[x]]
satisfies µ(ω(x)) = ω(µ(x)), then ω(x) is also an endomorphism of F(x, y).
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corps des normes, Compos. Math. 132 (2002), 57–98.
[6] M. Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France
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