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On commuting properties of endomorphisms
of formal A-modules over finite fields

by

HuAa-CHIeH L1 (Taipei)

1. Introduction. There have recently been increasing studies of dis-
crete dynamical systems relevant to p-adic numbers; see, for example, [1, 2,
10]. In [10], Lubin studied the iterations of analytic transformations of the
p-adic open unit disk with a fixed point at 0 and found out that two com-
muting transformations have the same set of pre-periodic points. However,
very few interesting commuting examples are known outside endomorphisms
of formal groups. In fact, Lubin [10] conjectures that such a phenomenon is
exclusive to endomorphisms of formal group laws. There are some dynamical
system results built on these ideas (see [5, 7, 9]).

Throughout this paper O is the ring of integers of a finite extension of
Q, with maximal ideal M and residue field £ = O/ M. We call a power
series g(z) € O[[z]] stable if g(0) = 0 and ¢’(0) is neither 0 nor a root of 1.
As usual, we write h(g(z)) = hog(x); in a less standard notation, we denote
by ¢°"(x) the n-fold composition of g(z) with itself; this makes sense for
negative n in case g(z) is invertible.

Suppose F(z,y) is a formal group law over the characteristic 0 ring O.
F(z,y) is constructed by means of a series I(z) defined over the field of
fractions of O, so that

F(z,y) = 1" (I(z) + (1))-

This series, the logarithm of F(x,y), plays an important role in formal dy-
namics over O. For example, for a € O set g(z) = I°"}(a - (x)). Then
g(x) € Endop(F) if and only if g(x) € O[[z]]. Hence, the map ¢ from Endp (F)
to O given by g(x) — ¢’(0) is an injective ring homomorphism and we will
denote g(x) by [a]r(x). Moreover, suppose that g(z) is stable. Then for
h(z) € O][z]], g(h(z)) = h(g(x)) if and only if A(x) is an endomorphism of
F(x,y).
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On the other hand, for a formal group over the field k of characteristic p,
the situation changes. The logarithm, for example, does not exist under those
circumstances and so the map ¢ from Endg(F) to k given by g(z) — ¢'(0)
is no longer injective and two endomorphisms are no longer commutative
under composition.

Let F(z,y) be any formal group over O. Denote by F(z,y) the coeffi-
cient-wise reduction of F(z,y) to k. (For g(x) € OJ[x]], we will also denote
by g(z) € k[[z]] the coefficient-wise reduction of g(z) to k.) Then F(x,y) is
clearly a formal group over k. Additionally, if F'(x,y) has finite height, then
the reduced map Endp(F) — Endy(F) is injective. In fact, Endg(F) can be
a rather larger ring than its characteristic counterpart.

With Lubin’s original conjecture in mind, and with some experimental
evidence, Sarkis (see [11]) makes the following conjecture:

CONJECTURE. Let k be a finite field and let F(x,y) be a finite-height
formal group over k. Let u(x) be a non-torsion automorphism of F(z,vy).
Suppose that w(x) € k[[z]] and p(w(x)) = w(pu(x)). Then w(x) is an endo-
morphism of F(x,y).

We remark that the assumption of p(x) being a non-torsion automor-
phism is essential ([11]). There are some partial results supporting this con-
jecture. Let A be the ring of integers of some finite unramified extension
of Q. We can apply results in [3, Section 21.8] to show that if F(z,y) is a
formal A-module and w(z) commutes with all the endomorphisms of F(z,y)
which correspond to A (i.e. if pr : A — End(F) is the A-module structure
on F(x,y), then wo gr(a) = pr(a) ow for all & € A), then w(x) is an
endomorphism of F(z,y). In [11, Theorem 46|, Sarkis shows that if p(z) is
a unit of Z, in the endomorphism ring of F(z,y) (i.e. p(x) = [a]#(x) with
« € Zy), then the conjecture is true.

DEFINITION 1.1. Let O be the ring of integers of some finite extension
of Q. For an element o € O, suppose that [Q,(«a) : Qp] = [Fp(@) : Fp] = n.
Then we call a a primitive unramified element of degree n.

Note that every unit in Z, is a primitive unramified element.
Our main aim is to state a generalization of Sarkis’ theorem [11, Theorem
46] and Hazewinkel’s results.

MAIN THEOREM (Theorem 3.2). Let a be a primitive unramified ele-
ment which is not a root of 1 and let A = Z[a]. Suppose that (F(x,y), or)
is a finite-height formal A-module over k. If w(z) € k[[z]] satisfies

or(a) ow =woor(a),

then w(x) is an endomorphism of F(z,y).
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Our approach uses a “not quite commutative” method developed by
Honda [4]. In Section 2, we will describe some preliminary results about
Honda’s method and about Hazewinkel’s functional equation lemma for con-
structing formal groups. Then in Section 3, we will give a detailed proof of
the Main Theorem.

2. Preliminaries on formal groups over finite fields. In this sec-
tion, we provide some necessary background for studying formal groups over
the finite field £ = IF; where ¢ = pl* for some prime number p. For simplicity,
we only give results which will be needed later; see [3] for more details.

Let K be the unramified extension of @, with ring of integers O and
maximal ideal M such that the residue field O/ M is k. Let A be a subring
of O and let F(z,y) be a formal A-module over k. By the existence of a
universal formal A-module (see [3]), there exists a formal A-module F(zx,y)
over O that reduces modulo M to F(z,y). Hence, throughout this section,
we use the following setting: K is the unramified extension of Q, with ring of
integers O and maximal ideal M such that O/ M =k, and o € Gal(K/Q,)
is the Frobenius automorphism of K over Q,.

In [3], Hazewinkel gives a method of constructing formal groups by means
of a certain recursive procedure. In our case, every formal group law F'(x,y)
over O is a functional equation formal group law ([3, Proposition 20.1.3]).
In other words, there exists {s1, s2,...} C O such that the logarithm [(x) €
K][z]] of F(x,y) satisfies the recursion formula

l(2) = g(@) + = 3 siotl(a),
p =1

where g(x) € O[[z]] and otl(z) is the power series obtained from I(x) by
applying the automorphism o to the coefficients of I(z). We remark that
the equation above is in fact a recursion formula for the coefficients of I(x).
Indeed, let

g(x) = i ciz' and I(z) = iaixi.
i=1 i=1

Then the a,, n = 1,2,..., are recursively determined as follows. Write
n = p"m where m is such that p does not divide m. Then we have

S1 S
ap = Cp + ? U(an/p) +ot ;T Ur(an/lf)'

Moreover, F(z,y) is strictly isomorphic to a p-typical formal group law with
logarithm L(z) € K[[x]] satisfying the recursion formula

I o,
L(z)=z+ - E sioy L(z?).
P~

=1
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In this case, L(x) can be written as
> .
L(z) = Z bia?',
=0

and we have

bo:l, br: 8—10'(b7,_1)_|_..._|_ Sr—1
p P

We let K,[[T]] be the non-commutative power series ring in one inde-
terminate 7" with the multiplication rule T'a = o(a)T for all a € K, and let
O,[[T]] be the subring of K,[[T]] with coefficients in O. Let

n=>Y aT' € KJ[T]], flx)= Z aja? € K[[z]).

=0

r—1 Sr
o b))+ —.
(b1) )

We define
nx fe) = ey ol(a) (=),

i=0 j=1

It is obvious from the definition that for 1,0 € K, [[T]] and f(z) € K[[z]],
(n+0)* f(z) =nx f(x) +0* f(x),  (00)* f(z) =nx(0xf(z))
Now let
n=p-— ZsiTi € O.[[T]).

i=1

We calculate that the coefficients b; of n~1p = Yo b;T" satisfy
bo=1, br="o(b 1)+ -+ Lo ) +
p p p

Comparing this with the recursive relation of the functional equation lemma
for the logarithm, we have

(n~'p) xi(x) = L(z), where i(z) = .

As mentioned before, the functional equation techniques can be used to
study endomorphisms of formal group laws over characteristic 0 rings. For
example, f(z) € O[[z]] is an endomorphism of a formal group over O with
logarithm I(z) if and only if I°~1(f/(0) - [(z)) € O[[z]]. For endomorphisms
of formal group laws over finite fields, Honda [4] gives the following similar
results:

LEMMA 2.1. Let F(x,y) be the formal group law over O with logarithm
l(x) satisfying the recursion formula

e~ .
(x) =2+ — sioel(z?).
(2) p; ()
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Let ¥ € Oy[[T]] and let
n=p-— Z ;T
i=1

(1) Set ag(x) =1°71((9*1)(x)). Then ay(z) € O[[x]] if and only if there
exists an nyg € Og[[T]] such that ngn = nv.

(2) If ag(x) € O[[z]], then reducing modulo M, @y(x) is an endomor-
phism of F(z,y).

(3) If V1,92 € O,[[T]] and ay,,ay, € Ol[x]], then

QY19 (.%') =y, (6192 (.%')) :

(4) If 9 € O,[[T]] and oy € Ol[z]], then @y(x) = 0 if and only if ¥ is in
the right ideal of Os[[T]] generated by n.

(5) Every element of Endy(F(x,y)) is of the form ay(z) for some 9 €
O, [[T]]-

Lemma 2.1 provides us an explicit method to describe endomorphisms
of a formal group law over a finite field.

ExAMPLE 2.2. Consider the formal group Fj,(z,y) with logarithm
1 1
Ih(x) — 4 -2 +—2mp2h+~-.
p p

Clearly, Fj(z,y) is a formal group of height h defined over Z,. Let K be the
unramified extension of Q, of degree h. Considering n = p—T" € O,[[T]], we
have I, (z) = (n7!p) *i(x). It is easy to see that for every ¥ € O,[[T]], 9 =
9n. Therefore, by Lemma 2.1, End]th (Fp(z,y)) is isomorphic to the non-
commutative ring Oy [[T]]/(n). Let K™ be the maximal unramified extension
of K and let O™ be the integral closure of O in K™ . It is easy to see that
the only series § € OY[[T]] with ngn = n for some ny € OY[[T]] are the
series in O, [[T]]. Therefore, by Lemma 2.1 again, we have

Ep, = Endgse (Fy(2,9)) = Endg(Fi(z,y)),

where £*¢ is the separable closure of k = [, corresponding to the residue
field of O™ . It can be checked that Ej, is a free module of rank h? over L.
Moreover, if we consider Dy, = Ej, ®z, Qp, then Dy is a central division
algebra over Q, of invariant equal to h™1.

We remark that we are interested in this example because over a sepa-
rably closed field of characteristic p > 0, the one-dimensional formal group
laws are classified by their heights ([6, Theorem IV] or [3, Theorem 19.4.1]).
In other words, every one-dimensional formal group law over a separably
closed field of characteristic p > 0 of height h is isomorphic to Fj,(z,y).
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3. Main Theorem. Suppose that « is a primitive unramified element
and A = Z[a]. Recall that if (F(x,y), or) is a finite-height formal A-module
over k, then F(z,y) is actually a reduction of a formal group. More precisely,
there exists a field K which is an unramified extension of @@, with ring of
integers O and maximal ideal M such that the residue field O/ M is k and
there exists a formal group law F(z,y) over O such that F(z,y) = F(z,y)

and [0](z) = o(a).

First we remark that although gz () € k[[z]] is of the form [a]p(x), if
G(z,y) € O[[z,y]] is another formal group law such that F(z,y) = G(z,y),
it does not mean that or(a) = [a]4(2).

Because all the formal groups over k of the same height are isomorphic
over k%, without loss of generality, we can suppose that or(a) = [op(z)
where F(z,y) = Fj(z,y). (Fy(z,y) is the formal group defined in Example
2.2.) By the remark above, gr(«) may not be equal to th (z). But if we

consider End(F'j,(z,y)) as the maximal order of a central division algebra D
over , of rank h, then or(a) and [a]p, (z) are in Ly and Ly respectively,
where L1 and Lo are subfields of D which are unramified of the same degree

over Q,. By the Skolem—Noether theorem, there exists v € D such that
bw(z) -y
~w(x) - 7y is an en-

v lor(a) -y = [a]f, (). If w(z) commutes with oz (), then v~
1

also commutes with [a]f, (7). If we can show that v~

domorphism of Fp,(x,y) (in other words, v~ - w(x) - 7 is in the maximal

order of D), then w(z) is also in the maximal order of D and hence is an
endomorphism of F(xz,y) = Fj,(x,%). Therefore without loss of generality,
we assume that or(a) = th () and gr(a)ow = wo gr(a), and claim that
w(r) is an endomorphism of Fj,(x,y).

Let I(x) be the logarithm of Fj(x,y). Our goal is to show that there
exists 1 € Oy[[T]] such that [°7!(n * I(z)) is equal to w(x) after reducing
modulo M.

LEMMA 3.1. Let p(z) = th (x) € k[[z]] where cv is primitive unramified
of degree s and k = F,.. Suppose that f(x) € k*[[x]] is such that f(u(x)) =
p(f(x)). Then f(x) = az?” (modaP 1) with a € k\ {0} and r = \s for
some A\ € NU{0}.

Proof. By a similar proof to Lubin’s [10, Main Theorem 6.3], we see that
f(z) = g(aP") for some g(z) € k°°[[z]] with ¢’(0) # 0.

Since p/(0) € k\ {0}, by iterating u(x) a certain number of times (say
m times), we can suppose that f(x) commutes with £(x) = p°"(x) where

Ex)=x+ bga:pt (mod ;rptﬂ) for some by € k and ¢t € N,

and
EP(x)=x+ bt (mod ;rthH) for some b; € k.
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(This can be seen by using the fact that [a]p, () is an endomorphism of
Fp(x,y) or the fact that Height([aF, (z)) = h as in [8].)

Now write f(x) = az?” (mod z”" *1). The coefficient of the leading term of
f(p(x)) is aa@®" and the coefficient of the leading term of u(f(z)) is a@. This
shows that a = o (mod M). Since « is primitive unramified of degree s,
it implies that » = As for some A\ € NU {0}.

Finally, we claim that a € k. Consider the equality £(f(x)) = f(&(x)).
Since

r

F(E@) = f(x) = g((&@))") = g(a?") = g'(0) - (bpa” )*" + higher terms,
the coefficient of the leading term of f({(x)) — f(x) is abgr._Since Fp(z,y) €
Zp|[x, yl], we have [a]F, () € Zp[a][[z] and hence p(x) = [a]p, () € Fps [[]
(so that £(z) € Fps[[z]]). In other words,

bgr _ bgsA _ bo'
Therefore, the leading coefficient of f(£(x))— f(x) is aby. On the other hand,
the leading coefficient of £(f(x)) — f(z) is a? by. Since

fE(x) = fz) = &(f(2) — f(=),
we have a? = a. Similarly, by considering
f(&P(x)) = f(z) = €F(f(z)) — f(a),
we obtain a?" = a. Therefore a?" = a, and hence a € k. n
Now we have all the ingredients to prove our main theorem.

THEOREM 3.2. Let F(x,y) be a finite-height formal group over k and let
wu(x) be a non-torsion automorphism of F(x,y). Suppose that there exists
a formal group F(x,y) € O[[x,y]] such that F(z,y) = F(z,y) and u(z) =
[a] () with o a primitive unramified element. If w(x) € k*[[z]] satisfies
plw(x)) = w(p(x)), then w(x) is also an endomorphism of F(x,y).

Proof. Suppose that the height of F(z,y) is h. As mentioned before,
without loss of generality, we can assume that F'(z,y) = Fp(x,y), F(z,y) =
Fp(z,y) and K is unramified over Q, of degree h with ring of integers O
and maximal ideal M such that O/M =k =TF .

Let I(z) be the logarithm of Fj,(z,y) and let u(x) = I°" Yo - I(x)) =
[a]F, (z). Then we have pu(xz) = u(x). Suppose that w(z) commutes with
w(x). To prove our theorem, by Lemma 2.1, it is enough to show that there
exists 0 € O,[[T]] such that f(z) =1°"%(0 = I(z)) and w(z) = f(z).

Suppose that « is a primitive unramified element of degree s. Let w(z) =
apr™ (mod 2" with ag # 0. Then by Lemma 3.1, we have ag € k and n =
p**. Choose any ag € O such that ag = @y and let 6y = —apT™ € O [[T7]).
By Example 2.2, we have [°71(6y x [(z)) € O[[z]]. Let 7o(x) € k[[z]] be such
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that 7o(z) = 1°= (A = I(x)). Consider
wi(z) = F(w(z), 0())-
We have
wi(p(z)) = Flw(u(z)), ro(p(x))),
p(wi(z)) = p(F(w(x), 70(2))) = F(p(w(z)), p(ro(x)))-
Since o*(a) = «, we have
0 - o = —ago (a )T)‘S = —aagT™ = a0y

in Oy[[T]], and hence Lemma 2.1 says that 7o(u(z)) = p(79(z)). This implies
that wi (p(z)) = p(wi(x)). It is clear that the initial degree of wq () is greater
than the initial degree of w. The proof is completed by induction. =

The series p(x) in Theorem 3.2 is a reduction of an endomorphism of a
formal group over O. The series w(x) may not be a reduction of an endo-
morphism. However, our next result shows that under a certain condition,
w(z) does come from an endomorphism over O.

COROLLARY 3.3. Let K be unramified over Q, of degree h. Let F(x,y)
be a formal group over k of height h and let F(x,y) be a formal group over O
such that F(z,y) = F(z,y). Suppose that u(x) = [o]p(z) is a non-torsion
automorphism of F(x,y) with a a primitive unramified element of degree
h and suppose that w(x) € k%[[z]] is such that pu(w(z)) = w(u(x)). Then

w(x) = [B]p(x) for some B € O.

Proof. Without loss of generality, we can assume that F'(z,y) = Fj,(z,y)
and F(x,y) = Fpr(x,y). We use the same notations as in the proof of The-
orem 3.2.

From Theorem 3.2, there exists 6 € O, [[T]] such that f(x) = 1°7(0x(x))
and w(z) = f(x). The commutativity of u(z) and w(x) also implies that
0-a=a-60in O,[[T]]. Suppose that

0=ao+arT+ - +a, ,T" (mod(p —T"))
in O,[[T]]. We have
0-a=aa+ac(@)T+ - +ap_10" ()T (mod (p — TT)),
o-0=aay+ o T+ -+ aap T (mod (p — TM)).
The assumption that « is primitive unramified of degree h implies that
= ag (mod (p — T")) and hence by Lemma 2.1,

w(z) = f(z) = 71O+ () = 1°"L(ao - U(2)) = [ao]p(«). w
REMARK 3.4. Let A = O. In the language of formal A-modules, the

condition in Corollary 3.3 says that F(z,y) is a formal A-module of A-height
equal to 1. Therefore, every A-endomorphism actually comes from A.
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Finally, we remark that the hypothesis on p(z) can be weakened. Con-

sider

a non-primitive unramified unit o = a9 + p" a1 with n € N and ag, ay

satisfying the following:

1.
2.

«q is primitive.

ag is a unit such that oy € Zp[a] and af = 1 (modp™), where 7 is
the least positive integer such that @j =1 in k (i.e. r is the order of
Qo in k)

Then, for any non-negative integer s, we have o’" = 1 4 p*t"a/, with
o' a primitive unramified element of the same degree as . Therefore, by
using a similar argument to the proof of Theorem 3.2, we can show that if

()

= [a] p(z) is a non-torsion automorphism of F(z,y), and w(x) € k*[[z]]

satisfies p(w(x)) = w(p(z)), then w(x) is also an endomorphism of F(x,y).

[10]
[11]
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