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On the logarithmic factor in error

term estimates in certain additive congruence problems

by

M. Z. Garaev (Morelia)

1. Introduction. In additive number theory an important topic is the
problem of finding an asymptotic formula for the number of solutions of a
given congruence. In many additive congruences the error term estimates
of asymptotic formulas contain logarithmic factors. The aim of the present
paper is to illustrate application of double exponential sums and a multi-
dimensional smoothing argument in removing these factors for a class of
additive problems.

Let g be a primitive root modulo an odd prime number p and let K, N
and M be any integers with 1 ≤ K, N < p. We start by recalling the well
known formula of Montgomery [6]:

(1) J =
KN

p
+ O(p1/2 log2 p),

where J denotes the number of integers x ∈ [H + 1, H + K] such that
gx ∈ [M + 1, M + N ]. In this paper we establish the following statement.

Theorem 1. The following estimate holds:

(2) J − KN

p
≪ p1/2 log2(KNp−3/2 + 2).

We recall that the notations A ≪ B and A = O(B) are both equivalent
to |A| ≤ cB for some absolute positive constant c.

Estimate (2) gives the asymptotic formula J ∼ KN/p in the range

KNp−3/2 → ∞ as p → ∞,

while formula (1) gives the same asymptotic formula when

KNp−3/2 log−2 p → ∞ as p → ∞.

Moreover, if KN ≪ p3/2, then our estimate guarantees the bound J ≪
p1/2, while formula (1) provides the bound J ≪ p1/2 log2 p. Also note that
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estimate (2) improves (1) in the range KN ≤ p3/2+o(1) and coincides with (1)
for larger values of KN.

The method that we use to prove Theorem 1 is applicable to a class
of other well known additive problems. For a given integer h 6≡ 0 (modp),
denote by J1 the number of solutions of the congruence

gx − gy ≡ h (modp), 1 ≤ x, y ≤ N.

In [7] (see also [10]) the asymptotic formula

(3) J1 =
N2

p
+ O(p1/2 log2 p)

has been established. In the present paper we prove

Theorem 2. The following estimate holds:

J1 −
N2

p
≪ N2/3 log2/3(Np−3/4 + 2) + p1/2.

We see that Theorem 2 provides the asymptotic formula J1 ∼ N2/p in
the range

Np−3/4 → ∞ as p → ∞,

while (3) gives the same asymptotic formula when

Np−3/4 log−2 p → ∞ as p → ∞.

We mention that in a series of recent works it has been proved that any
residue class h (mod p) is representable in the form

h ≡ gx − gy (modp), 1 ≤ x, y ≤ cp3/4,

for a suitably chosen constant c (see [2, 5, 9]). In [3] it is shown that one
can take c = 25/4.

The following result has been obtained in [8]:

Let U ,V ⊂ {0, 1, . . . , p−1} with u and v elements respectively , and let S
and T be any integers with 1 ≤ T ≤ p. If J2 denotes the number of solutions

of the congruence

xy ≡ z (modp), x ∈ U , y ∈ V, S + 1 ≤ z ≤ S + T,

then

(4)

∣

∣

∣

∣

J2 −
uvT

p

∣

∣

∣

∣

< 2(puv)1/2 log p.

Our approach leads to

Theorem 3. The following estimate holds:

J2 −
uvT

p
≪ (puv)1/2 log(uvT 2p−3 + 2).
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From Theorem 3 we derive the asymptotic formula J2 ∼ uvT/p under
the condition

uvT 2p−3 → ∞ as p → ∞,

while estimate (4) gives the same formula only when

uvT 2p−3 log−2 p → ∞ as p → ∞.

We remark that estimate (4) (even with constant 2 on the right hand
side replaced by 1) is a consequence of the Vinogradov double exponential
sum estimate (see Lemma 5 below) and the inequality

p−1
∑

a=1

∣

∣

∣

S+T
∑

n=S+1

e2πian/p
∣

∣

∣
< p1/2 log p

(see, for example, the proof of Lemma 5 in [4, p. 109]).

Theorem 4. Let h 6≡ 0 (modp) and let J3 denote the number of solu-

tions of the congruence

xy ≡ h (modp), 1 ≤ x, y ≤ N.

Then

J3 −
N2

p
≪ p1/2 log2(Np−3/4 + 2).

In particular, the asymptotic formula J3 ∼ N2/p holds when Np−3/4

→ ∞ as p → ∞. In passing we remark that the argument of our paper can
be used in a series of other related problems.

For more information on very recent results on distribution properties of
special sequences related to our paper we refer the reader to [1]–[3], [5], [7],
[9], [10] and references therein.

2. Lemmas

Lemma 5. Let m be a positive integer , and let a be an integer coprime

to m. Then
∣

∣

∣

m−1
∑

x=0

m−1
∑

y=0

ν(x)̺(y)e2πiaxy/m
∣

∣

∣
≤

√
mXY

for any complex numbers ν(x), ̺(y) with

m−1
∑

x=0

|ν(x)|2 = X,
m−1
∑

y=0

|̺(y)|2 = Y.

The proof of this lemma can be found in [11, p. 142].
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Lemma 6. Let L1, L2, A, B and m be any integers, 1 ≤ A, B ≤ m. Then

W :=
m−1
∑

a=0

∣

∣

∣

L1+A
∑

x=L1+1

e2πiax/m
∣

∣

∣

∣

∣

∣

L2+B
∑

y=L2+1

e2πiay/m
∣

∣

∣
≪ mA log(BA−1 + 2).

Proof. If A ≥ B, then applying the Cauchy inequality we obtain

W 2 ≤
m−1
∑

a=0

∣

∣

∣

L1+A
∑

x=L1+1

e2πiax/m
∣

∣

∣

2
m−1
∑

a=0

∣

∣

∣

L2+B
∑

y=L2+1

e2πiay/m
∣

∣

∣

2
= m2AB ≤ m2A2,

whence the result.

Let A < B. Then

W ≤ 2W1 + 2W2 + 2W3,

where

W1 =
∑

0≤a≤m/B

∣

∣

∣

L1+A
∑

x=L1+1

e2πiax/m
∣

∣

∣

∣

∣

∣

L2+B
∑

y=L2+1

e2πiay/m
∣

∣

∣
,

W2 =
∑

m/B<a≤min{m/A,m/2}

∣

∣

∣

L1+A
∑

x=L1+1

e2πiax/m
∣

∣

∣

∣

∣

∣

L2+B
∑

y=L2+1

e2πiay/m
∣

∣

∣
,

W3 =
∑

min{m/A,m/2}<a≤m/2

∣

∣

∣

L1+A
∑

x=L1+1

e2πiax/m
∣

∣

∣

∣

∣

∣

L2+B
∑

y=L2+1

e2πiay/m
∣

∣

∣
.

The trivial estimate shows

W1 ≪ (m/B)AB ≤ mA.

To estimate W2 we recall that for 1 ≤ a ≤ m/2,

∣

∣

∣

L2+B
∑

y=L2+1

e2πiay/m
∣

∣

∣
≪ m

a
.

Then, estimating the sum over x trivially, we obtain

W2 ≪ A
∑

m/B<a≤m/A

m

a
≪ mA log(BA−1 + 2).

Finally, for W3 we have

W3 ≪
∑

a>m/A

m2

a2
≪ mA.

Therefore, W ≪ mA log(BA−1 + 2).
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Lemma 7. Let L1, L2, A, B be any integers with 1 ≤ A, B ≤ p− 1. Then

for any integer a with (a, p) = 1,

I :=
∣

∣

∣

L1+A
∑

x=L1+1

L2+B
∑

y=L2+1

e2πiagx+y/p
∣

∣

∣
≪ p1/2A log(BA−1 + 2).

The same estimate holds if in the exponent the function gx+y is replaced by

gx−y.

Proof. Applying the smoothing argument, we obtain

I =
1

p − 1

∣

∣

∣

p−2
∑

b=0

L1+A
∑

x=L1+1

L2+B
∑

y=L2+1

p−1
∑

z=1

e2πiagz/pe2πib(x+y−z)/(p−1)
∣

∣

∣

≤ 1

p − 1

p−2
∑

b=0

∣

∣

∣

p−1
∑

z=1

e2πiagz/pe−2πibz/(p−1)
∣

∣

∣

∣

∣

∣

L1+A
∑

x=L1+1

L2+B
∑

y=L2+1

e2πib(x+y)/(p−1)
∣

∣

∣
.

The sum over z is a Gauss sum, so its absolute value is equal to p1/2 for any
integer b 6≡ 0 (mod (p − 1)) and is equal to 1 for b ≡ 0 (mod (p − 1)). Thus,

I ≪ p−1/2
p−2
∑

b=0

∣

∣

∣

L1+A
∑

x=L1+1

e2πibx/(p−1)
∣

∣

∣

∣

∣

∣

L2+B
∑

y=L2+1

e2πiby/(p−1)
∣

∣

∣

≪ p1/2A log(BA−1 + 2),

where we have also used Lemma 6 with m = p − 1.

The estimate of the sum with gx−y in the exponent instead of gx+y is
completely analogous.

3. Proof of Theorem 1. If N > p/2 then J is equal to K minus the
number of integers x for which

H + 1 ≤ x ≤ H + K, gx ∈ [M + N + 1, M + p] (mod p),

where now p − N < p/2. For this reason it is sufficient to consider the case
N < p/2. By the same argument we may suppose that K < p/2. Also note
that if K ≤ 10 or N ≤ 10, then the estimate becomes trivial, since in this
case we have J ≤ 10. Therefore, we may assume that 10 ≤ K, N < p/2.

Let K1, N1 be some positive integers with K1 < K and N1 < N . Denote
by J ′ the number of solutions of the congruence

gx+z ≡ y + t (mod p)

subject to the conditions

H + 1 ≤ x ≤ H + (K − K1), 1 ≤ z ≤ K1,

M + 1 ≤ y ≤ M + (N − N1), 1 ≤ t ≤ N1.
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It is obvious that for fixed integers z and t the corresponding number of
solutions of the above congruence (in variables x and y) is not greater than J.
Therefore,

(5) J ≥ J ′

K1N1
.

Similarly, let J ′′ be the number of solutions to the congruence

gx−z ≡ y − t (mod p)

subject to the conditions

H + 1 ≤ x ≤ H + K + K1, 1 ≤ z ≤ K1,

M + 1 ≤ y ≤ M + N + N1, 1 ≤ t ≤ N1.

Then we have

(6) J ≤ J ′′

K1N1
.

We claim that

J ′

K1N1
− KN

p
≪ p1/2 log2(KNp−3/2 + 2)

and

J ′′

K1N1
− KN

p
≪ p1/2 log2(KNp−3/2 + 2)

for some K1, N1. To prove it we express J ′ by means of trigonometric sums:

J ′ =
1

p

p−1
∑

a=0

H+K−K1
∑

x=H+1

K1
∑

z=1

M+N−N1
∑

y=M+1

N1
∑

t=1

e2πia(gx+z−y−t)/p.

Isolating the term corresponding to a = 0 we find

J ′ =
K1N1(K − K1)(N − N1)

p

+
1

p

p−1
∑

a=1

H+K−K1
∑

x=H+1

K1
∑

z=1

M+N−N1
∑

y=M+1

N1
∑

t=1

e2πia(gx+z−y−t)/p.

For 1 ≤ a ≤ p − 1 we have, according to Lemma 7,

∣

∣

∣

H+K−K1
∑

x=H+1

K1
∑

z=1

e2πiagx+z/p
∣

∣

∣
≪ p1/2K1 log(KK−1

1 + 2).
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Therefore,

J ′ − K1N1(K − K1)(N − N1)

p

≪ p−1/2K1 log(KK−1
1 + 2)

p−1
∑

a=1

∣

∣

∣

M+N−N1
∑

y=M+1

e2πiay/p
∣

∣

∣

∣

∣

∣

N1
∑

t=1

e2πiat/p
∣

∣

∣
.

According to Lemma 6 the sum over a is ≪ pN1 log(NN−1
1 + 2). Hence,

J ′ − K1N1(K − K1)(N − N1)

p
≪ p1/2K1N1 log(KK−1

1 + 2) log(NN−1
1 + 2),

whence
J ′

K1N1
=

(K − K1)(N − N1)

p
(7)

+O(p1/2 log(KK−1
1 + 2) log(NN−1

1 + 2)).

If KN < 100p3/2, then we choose K1 = [K/2], N1 = [N/2] and obtain

J ′

K1N1
= O(p1/2) =

KN

p
+ O(p1/2 log2(KNp−3/2 + 2)).

If KN > 100p3/2, then we put

V = KNp−3/2 log−2(KNp−3/2),

and observe that 2<V ≤min{K, N}. Thus, we can choose K1 and N1 to be

K1 = [K/V ], N1 = [N/V ].

Therefore, from (7) we obtain

J ′

K1N1
− KN

p
≪ KN

pV
+ p1/2 log2 V ≪ p1/2 log2(KNp−3/2).

Thus, in both cases we have

J ′

K1N1
− KN

p
≪ p1/2 log2(KNp−3/2 + 2),

whence, in view of (5), we deduce the bound

(8) J ≥ KN

p
+ O(p1/2 log2(KNp−3/2 + 2)).

The above argument applied to J ′′ leads to

J ′′

K1N1
− KN

p
≪ p1/2 log2(KNp−3/2 + 2),

which, due to (6), implies

(9) J ≤ KN

p
+ O(p1/2 log2(KNp−3/2 + 2)).

The result now follows from (8) and (9).
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4. Proof of Theorem 2. We may suppose that N > 10 and also, due
to (3) for example, that N < p/2.

Let N1 be a positive integer to be chosen later, N1 ≤ N/4. Denote by J ′
1

the number of solutions of the congruence

gx+z − gy ≡ hg−t (mod p)

subject to the conditions

1 ≤ x ≤ N − 2N1, 1 ≤ z ≤ N1, 1 ≤ y ≤ N − N1, 1 ≤ t ≤ N1.

Let J ′′
1 denote the number of solutions of the congruence

gx−z − gy ≡ hgt (mod p)

subject to the conditions

1 ≤ x ≤ N + 2N1, 1 ≤ z ≤ N1, 1 ≤ y ≤ N + N1, 1 ≤ t ≤ N1.

Then

(10)
J ′

1

N2
1

≤ J1 ≤ J ′′
1

N2
1

.

We express J ′
1 in terms of trigonometric sums and obtain

J ′
1 =

1

p

p−1
∑

a=0

N−2N1
∑

x=1

N1
∑

z=1

N−N1
∑

y=1

N1
∑

t=1

e2πia(gx+z−gy−hg−t)/p.

Isolating the term corresponding to a = 0 and applying Lemma 7 to the
sum over x and z, we deduce

J ′
1

N2
1

− (N − 2N1)(N − N1)

p

≪ p−1/2N−1
1 log(NN−1

1 + 2)

p−1
∑

a=1

∣

∣

∣

N−N1
∑

y=1

e2πiagy/p
∣

∣

∣

∣

∣

∣

N1
∑

t=1

e2πiahg−t/p
∣

∣

∣
.

Application of the Cauchy inequality yields

p−1
∑

a=1

∣

∣

∣

N−N1
∑

y=1

e2πiagy/p
∣

∣

∣

∣

∣

∣

N1
∑

t=1

e2πiahg−t/p
∣

∣

∣

≪
(

p−1
∑

a=0

∣

∣

∣

N−N1
∑

y=1

e2πiagy/p
∣

∣

∣

2)1/2(
p−1
∑

a=0

∣

∣

∣

N1
∑

t=1

e2πiahg−t/p
∣

∣

∣

2)1/2
≤ pN1/2N

1/2
1 .

Hence,

(11)
J ′

1

N2
1

− N2

p
≪ NN1

p
+ p1/2N1/2N

−1/2
1 log(NN−1

1 + 2).
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If N < 100p3/4 then we let N1 = [N/4] and obtain

J ′
1

N2
1

= O(p1/2) =
N2

p
+ O(N2/3 log2/3(Np−3/4 + 2) + p1/2).

If N > 100p3/4, then we define

V = N4/3p−1 log−2/3(Np−3/4)

and observe that 4 ≤ V ≤ N. Now put N1 = [N/V ] and observe that in this
case from (11) we again have

J ′
1

N2
1

=
N2

p
+ O(N2/3 log2/3(Np−3/4 + 2) + p1/2).

Thus, for the N1 chosen the above asymptotic formula holds, and hence due
to (10) we have

J1 ≥ N2

p
+ O(N2/3 log2/3(Np−3/4 + 2) + p1/2).

Analogously,

J ′′
1

N2
1

=
N2

p
+ O(N2/3 log2/3(Np−3/4 + 2) + p1/2),

whence, in view of (10),

J1 ≤ N2

p
+ O(N2/3 log2/3(Np−3/4 + 2) + p1/2).

Therefore,

J1 =
N2

p
+ O(N2/3 log2/3(Np−3/4 + 2) + p1/2)

and the result follows.

5. Proof of Theorem 3. We remark that if T ≤ 10, then the statement
follows from the trivial estimates J2 ≤ 10u, J2 ≤ 10v and the fact that the
error term in this case dominates. Furthermore, without loss of generality
we may assume that T < p/2.

Let T1 ≤ T/2 be an integer to be chosen later. Denote by J ′
2 the number

of solutions of the congruence

xy ≡ z + t (modp)

subject to the conditions

x ∈ U , y ∈ V, S + 1 ≤ z ≤ S + T − T1, 1 ≤ t ≤ T1.

Let J ′′
2 denote the number of solutions of the congruence

xy ≡ z − t (modp)
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subject to the conditions

x ∈ U , y ∈ V, S + 1 ≤ z ≤ S + T + T1, 1 ≤ t ≤ T1.

Then

(12)
J ′

2

T1
≤ J2 ≤ J ′′

2

T1
.

Expressing J ′
2 via trigonometric sums, isolating the main term, applying

Lemma 5 to the double sum over x ∈ U , y ∈ V, and Lemma 6 to the
double sum over z and t, and following exactly the same lines of the proofs
of Theorems 1 and 2, we obtain

J ′
2

T1
− uvT

p
≪ uvT1

p
+ (puv)1/2 log(TT−1

1 + 2).

If T 2uv < 10000p3, then we put T1 = [T/2], and in this case obtain

J ′
2

T1
= O((puv)1/2) =

uvT

p
+ O((puv)1/2 log(uvT 2p−3 + 2)).

If T 2uv > 10000p3, then define

V = (uvT 2p−3)1/2 log−1(uvT 2p−3).

Observe that 2 ≤ V ≤ T. Let T1 = [T/V ]. Then we immediately obtain

(13)
J ′

2

T1
− uvT

p
≪ (puv)1/2 log(uvT 2p−3 + 2).

Analogously,

(14)
J ′′

2

T1
− uvT

p
≪ (puv)1/2 log(uvT 2p−3 + 2).

Putting (12)–(14) together, we deduce Theorem 3.

6. Proof of Theorem 4. For N ≤ 10 the statement is trivial. Further-
more, we have the well known asymptotic formula

J3 =
N2

p
+ O(p1/2 log2 p).

Therefore, to prove Theorem 4 we may assume that 10 < N < p/2.

Let J ′
3 be the number of solutions of the congruence

(x + u)(y + v) ≡ h (modp), 1 ≤ x, y ≤ N − K, 1 ≤ u, v ≤ K,

where K < N is a positive integer to be chosen later. By the same argument
that we have used in the previous sections, we have the inequality

J3 ≥ J ′
3

K2
.
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Next, we express J ′
3 in terms of trigonometric sums:

J ′
3 =

1

p

p−1
∑

a=0

N−K
∑

x=1

N−K
∑

y=1

K
∑

u=1

K
∑

v=1

e2πia(x+u−h(y+v)−1)/p.

Using the standard technique, we obtain

(15) J ′
3 =

1

p2

p−1
∑

a=0

p−1
∑

b=0

p−1
∑

z=1

N−K
∑

x=1

N−K
∑

y=1

K
∑

u=1

K
∑

v=1

e2πi(a(x+u−hz−1)+b(z−y−v))/p.

From the classical Weil estimate of Kloosterman sums we have

(16)
∣

∣

∣

p−1
∑

z=1

e2πi(bz−ahz−1)/p
∣

∣

∣
≤ 2p1/2

for any a 6≡ 0 (mod p). This also holds if a ≡ 0 (modp) and b 6≡ 0 (mod p)
(even with the right hand side replaced by 1). Therefore, (16) holds if at
least one of the numbers a and b is not divisible by p. Hence, in (15) isolating
the term corresponding to a = b = 0 and using (16) for other values of a
and b, we obtain

J ′
3 =

(N − K)2K2(p − 1)

p2
+ 2θp1/2

(

1

p

p−1
∑

a=0

∣

∣

∣

N−K
∑

x=1

e2πiax/p
∣

∣

∣

∣

∣

∣

K
∑

u=1

e2πiau/p
∣

∣

∣

)2

,

where |θ| ≤ 1. We use Lemma 6 to bound the sum over a. This yields

J ′
3 −

(N − K)2K2

p
≪ p1/2K2 log2(NK−1 + 2).

Hence,

(17)
J ′

3

K2
− N2

p
≪ KN

p
+ p1/2 log2(NK−1 + 2).

If N < 100p3/4, then define K = N − 1 and deduce that in this case

J ′
3

K2
− N2

p
≪ p1/2 ≪ p1/2 log2(Np−3/4 + 2).

Let N > 100p3/4. Choose

V = N2p−3/2 log−2(Np−3/4)

and note that 2 ≤ V ≤ N. Now define K = [N/V ] and observe that in this
case as well from (17) we have

J ′
3

K2
− N2

p
≪ p1/2 log2(Np−3/4 + 2).

Hence,

(18) J3 ≥ N2

p
+ O(p1/2 log2(Np−3/4 + 2)).
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To obtain a similar upper bound for J3, define J ′′
3 to be the number of

solutions of the congruence

(x − u)(y − v) ≡ h (mod p), 1 ≤ x, y ≤ N + K, 1 ≤ u, v ≤ K.

Then J3 ≤ K−2J ′′
3 and

J ′′
3 =

1

p2

p−1
∑

a=0

p−1
∑

b=0

p−1
∑

z=1

N+K
∑

x=1

N+K
∑

y=1

K
∑

u=1

K
∑

v=1

e2πi(a(x−u−hz−1)+b(z−y+v))/p.

The argument used to obtain lower bounds for J ′
3 and J3 leads to the upper

bound

J3 ≤ N2

p
+ O(p1/2 log2(Np−3/4 + 2)).

Combining this with (18), we conclude that

J3 −
N2

p
≪ p1/2 log2(Np−3/4 + 2).
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E-mail: garaev@matmor.unam.mx

Received on 29.3.2005

and in revised form on 16.3.2006 (4967)


