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Local solvability of diagonal equations (again)

by

Christopher Skinner (Ann Arbor, MI)

1. Introduction. In this paper we return to the problem considered
in [B] and [S], namely that of giving an upper bound on the integer Γ (d),
defined for each positive integer d as the least integer such that any diagonal
equation

(1) a1x
d
1 + · · ·+ asx

d
s = 0

with coefficients ai in a p-adic field K (i.e., a finite extension of Qp) has
a solution 0 6= (x1, . . . , xs) ∈ K

s whenever s > Γ (d) (that is, (1) has a
non-trivial solution in K). Here and throughout, p is taken to be a fixed
prime. Of course, implicit in providing an upper bound on Γ (d) is a proof
of its existence!
Let d = pτm with p ∤m. The main result of [B] asserts that

Γ (d) < (2τ + 3)d(d21d)
d−1, d1 = (d, q − 1)

with q the size of the residue field of K. In [S] we claimed that Γ (d) ≤
d((d+ 1)2τ+1 − 1). Unfortunately, there is a simple but serious error in the
final step of the proof in [S]: an appeal is made to Hensel’s lemma in a
situation where it might not apply (1). As a consequence, the main result
of that paper is only proved (2) for d = pτ . In this paper we present a
modification of the arguments in [S], obtaining a bound for all d:

Theorem A. Γ (d) ≤ d(p3τm2)2τ+1.

In particular, Γ (d) ≤ d6τ+4.

2000 Mathematics Subject Classification: Primary 11D72, 11D88, 11E76.
Research supported in part by a fellowship from the David and Lucile Packard Foun-

dation and a grant from the National Science Foundation.

(1) The author discovered this error shortly after the publication of [S]. The error is
cited in [K]. The author’s interest in this problem was recently rekindled by a conversation
with David Leep.

(2) In [R] it is shown that the methods of [S] extend to the case (d, q − 1) = 1 giving
the same bound for Γ (d) as claimed in [S].
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We prove Theorem A by demonstrating that the existence of a non-trivial
solution in K to an equation as in (1) can be deduced from the existence
of a non-trivial solution in K to a certain system of additive equations of
degree m. So we are naturally led to investigate the solvability of systems

(2) a1jx
m
1 + · · ·+ asjx

m
s = 0, j = 1, . . . , R,

with coefficients aij in K.
If we let Γ (R,m) be the smallest integer such that any system as in (2)

has a solution 0 6= (x1, . . . , xs) ∈ K
s whenever s > Γ (R,m), then

Theorem B ([BG, Theorem 3]). Γ (R,m) ≤ R2m2.

To be precise, Brüdern and Godinho only state and prove their theorem
for the case K = Qp. However, it is easily checked that all the results used
in that proof carry over to any K. For the interested reader as well as for a
semblance of completeness, in Section 3 we indicate how to carry over these
arguments.
The connection between Theorems A and B is the observation that

Γ (d) ≤ d(pτΓ (pτ ,m))2τ+1 (compare Lemmas 1 and 2).

2. Reducing Theorem A to Theorem B. We let O denote the in-
teger ring of the local field K, fix a uniformizer π ∈ O, and let k = O/(π)
be the residue field of K. We denote by Γ1(d) the smallest integer such that
any additive equation as in (1) with each ai ∈ O

× has a non-trivial solution
in K. For each positive integer r we denote by Φ(d, r) the smallest integer
such that if s > Φ(d, r) then any congruence equation

(3) a1x
d
1 + · · ·+ asx

d
s ≡ 0 (mod p

r), ai ∈ O,

has a solution (x1, . . . , xs) ∈ O
s with some xj ∈ O

×. Of course, these
notations only make sense provided the integers in question exist.

Lemma 1. Let d = pτm with p ∤m. If Φ(d, 1) exists then so do Γ (d),
Γ1(d), and Φ(d, r) (any r > 0). In particular ,

(i) Φ(d, r + 1) ≤ Φ(d, 1)Φ(d, r).
(ii) Γ1(d) ≤ Φ(d, 2τ + 1).
(iii) Γ (d) ≤ dΓ1(d).
(iv) Γ (d) ≤ dΦ(d, 1)2τ+1.

This is just Lemma 1 of [S]. In any event, these reductions are elemen-
tary and involve only standard techniques. For example, (ii) is a simple
consequence of a version of Hensel’s lemma.

Lemma 2. Let d = pτm with p ∤m. If Γ (pτ ,m) exists, then so does
Φ(d, 1) and

Φ(d, 1) ≤ pτΓ (pτ ,m).
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Proof. Assume that Γ (pτ ,m) exists. Suppose a1x
d
1 + · · ·+ asx

d
s to be as

in (3). Writing each ai as ai = π
ri+p

τ tibi with 0 ≤ ri < p
τ and bi ∈ O

×,
we see that if s > pτΓ (pτ ,m), then at least Γ (pτ ,m) + 1 of the ri’s are the
same. Let N = Γ (pτ ,m) + 1. Relabeling our variables if necessary, we can
assume that r1 = · · · = rN . It follows that the congruence (3) with r = 1
has a solution (x1, . . . , xs) ∈ O

s with some xi ∈ O
× if the congruence

(4) πp
τ t1b1x

d
1 + · · ·+ π

pτ tN bNx
d
N ≡ 0 (mod p)

has a solution (x1, . . . , xN ) ∈ O
N with some xi ∈ O

×.
For α ∈ k we define uα ∈ O as follows. If α = 0 then uα = 0, but if α 6= 0

then uα is the unique element in O such that u
q−1
α = 1 and uα mod π = α,

where q is the order of k. The existence and uniqueness of uα is an easy
consequence of Hensel’s lemma. The association α 7→ uα is multiplicative:
uαuβ = uαβ . We let T = {uα : α ∈ k}. Then for any r ≥ 0 the map T→ T,
u 7→ up

r

, is a bijection. Also, since T is a complete set of representatives for
the residue field k, each x ∈ O can be uniquely written as x =

∑

∞

n=0 vnπ
n,

vn ∈ T.
Writing bi =

∑

∞

n=0 vn,iπ
n, vn,i ∈ T, we let hn,i ∈ T be the unique

element such that hp
τ

n,i = vn,i. Putting f = [e/p
τ ] where e is defined by

(p) = (πe), we then let

ci,j =

f
∑

n=0

hpτn+j,iπ
n, j = 0, . . . , pτ − 1.

Since

cp
τ

i,j ≡

f
∑

n=0

hp
τ

pτn+j,iπ
pτn ≡

f
∑

n=0

vpτn+j,iπ
pτn (mod p),

we have

bi ≡

pτ−1
∑

j=0

πjcp
τ

i,j (mod p).

From this we see that the congruence (4) has a solution of the desired type
if the system of congruence equations

(5) (πt1c1,j)
pτxd1+ · · ·+(π

tN cN,j)
pτxdN ≡ 0 (mod p), j = 0, . . . , pτ −1,

has a solution (x1, . . . , xN ) ∈ O
N with some xi ∈ O

×. But, since d = pτm,

(

N
∑

i=1

πtici,jx
m
i

)pτ

≡
N
∑

i=1

(πtici,j)
pτxdi (mod p).

Therefore, the system (5) has a solution of the sought-for type if the system

(6) πt1c1,jx
m
1 + · · ·+ π

tN cN,jx
m
N ≡ 0 (mod p), j = 0, . . . , pτ − 1,
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has such a solution. And finally we note that (6) has such a solution if the
system of equations

(7) πt1c1,jx
m
1 + · · ·+ π

tN cN,jx
m
N = 0, j = 0, . . . , pτ − 1,

has a non-trivial solution in K (for by homogeneity such a non-trivial solu-
tion (x1, . . . , xN ) can always be scaled so that each xi is in O and not all the
xi’s are divisible by π). Since N > Γ (p

τ ,m), (7) has a non-trivial solution
in K.

Assuming Theorem B, we obtain Theorem A by combining part (iv) of
Lemma 1 with Lemma 2.

3. Remarks on the proof of Theorem B. We begin by noting that
if R = 1 then the bound in Theorem B follows from part (i) of Lemma 1
together with the observation that since p ∤m, the theorem of Chevalley–
Warning together with Hensel’s lemma implies that Γ1(m) ≤ m.
Next we indicate how to obtain the same bound on Γ (R,m) for a general

K as that given in [BG, Theorem 3] for K = Qp (when R ≥ 2 this bound is
slightly better than that stated in Theorem B). More precisely, we explain
how to modify the statements of the results used in the proof in [BG] so
that they apply to the general situation, that is, to the situation where
“systems” are systems of equations or congruences with coefficients in O
and “solutions” are solutions with entries in O. We use without explanation
some of the terminology and notation from [BG].
First we note that the notions of p-normalized systems of additive equa-

tions and p-equivalence have immediate generalizations to π-normalized sys-
tems and π-equivalence: one merely replaces p with π in the definition. Simi-
larly, p must be replaced by π in the definition of the level of a variable. Then
all the results from [DL] quoted in [BG] continue to hold for π-normalized
systems; the proofs are exactly the same. In particular, [BG, Lemma 1] holds
with p replaced by π and “integer coefficients” meaning coefficients in O.
Next we note that the result from [LPW] quoted in [BG] also holds

for π-normalized systems. In [LPW] this result is deduced by reducing the
system modulo p and applying a combinatorial result about matrices over
fields. Since this combinatorial result is proved in [LPW] for any field (and
so for k) the same argument applies to the reduction modulo π of a π-
normalized system. Thus [BG, Lemma 2] holds with p replaced by π.
We also note that the version of Hensel’s lemma quoted in [BG, Lemma 3]

also holds over K without change, but in the definition of a non-singular
solution of a system of congruences such as [BG, (10)], p gets replaced by π
(i.e., the condition is xi1 · · ·xiR det(ai1 . . .aiR) 6≡ 0 (modπ)).
Similarly, [BG, Lemma 4] holds with the p in the congruence [BG, (12)]

replaced by π, the p − 1 in the definition of δ replaced by q − 1 with q the
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order of the residue field k of K, and with the cij ’s allowed to be in O; this is
still the theorem of Chevalley–Warning. It then follows that [BG, Lemma 5]
holds with p replaced by π; the same proof works.
Combining the modified versions of [BG, Lemmas 1–5] then implies that

Γ (R,m) ≤ Rm(R(m, q − 1) − R + 2), where q is the order of the residue
field of K.

A final remark. Finally, we note that an elementary argument of Leep
and Schmidt (cf. [LS, (2.11)]) shows that a system of R equations as in (1)
has a non-trivial solution in K provided s > (Γ (d) + 1)R, so in particular if
s > (d6τ+4 + 1)R. However, it should be possible to adapt the methods of
this paper to prove that there is an integer c such that a non-trivial solution
exists if s > (Rd)cτ .
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