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A remark on real radical extensions

by

C. U. Jensen (Copenhagen)

1. Introduction and statement of the results. One of the most
famous results in classical Galois theory is the fact that the roots of a poly-
nomial can be expressed by radicals if and only if the Galois group of the
polynomial is solvable. If the base field is real (i.e. a subfield of R) and the
polynomial has real roots it may happen that these roots can be expressed
by radicals of complex numbers, but not by real radicals (i.e. the roots are
contained in a radical extension of the base field, but not in a real radi-
cal extension of the base field, cf. Section 2). The best known case is the
“casus irreducibilis” for a cubic polynomial: If K is a real field and f(x) a
cubic irreducible polynomial in K[X] with three real roots, none of these
can be expressed in terms of real radicals. In this direction there are two
more general results, due to Hölder and Loewy.

Theorem A (Hölder (cf. [7], p. 346). Let f(x) be an irreducible polyno-
mial over a real field K. If all the roots of f(x) are real and expressible by
real radicals, then the Galois group of f(x) over K is a 2-group.

Theorem B (Loewy [5]). Let f(x) be an irreducible polynomial over a
real field K for which the degree is n = 2µu, u an odd number. If f(x) has r
real roots expressible by real radicals, then there are at least r(u−1) non-real
roots. In particular , if the degree of f(x) is odd there is at most one real root
expressible by real radicals; in this case all other roots are non-real.

If f(x) is an irreducible polynomial over a real field K, and the degree
of f(x) is an odd prime p, it follows that a necessary condition for f(x) to
have a real root expressible by real radicals is that the Galois group of f(x)
over K is solvable and f(x) has just one real root. It has been proved in
[4] that this condition is sufficient if p is a Fermat prime (i.e. of the form
1 + a power of 2). In [4] the question was raised whether this property
actually characterizes the Fermat primes. In [1] an example is given of an
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irreducible polynomial in Q of degree 7 and the Frobenius group of order
42 as Galois group having 6 non-real roots and one real root which is not
expressible by real radicals.

We shall show that the above question in [4] can be answered in the
affirmative by proving

Theorem C. Let n be an integer > 2 and f(x) an irreducible polynomial
in Q[X] of degree n such that the Galois group of f(x) over Q is the dihedral
group Dn of order 2n. Assume further that f(x) has at least one real root.

(1) If n is odd , then f(x) has a root α expressible by real radicals if
and only if α is the only real root and every prime divisor of n is a Fermat
prime.

(2) If n is even, but not a power of 2, then f(x) has a root expressible
by real radicals if and only if f(x) has exactly 2 real roots and every odd
prime divisor of n is a Fermat prime.

(3) If n is a power of 2 the real roots of f(x) are expressible by real
radicals.

Remark. Since for every n > 2 every imaginary quadratic number field
is contained in a Galois extension of Q with Galois group Dn, the Fermat
primes are characterized by the property described above.

Finally, we give an application concerning class fields over an imaginary
quadratic number field Q(

√
−D),D a square-free natural number. If O is

an order in Q(
√
−D) and A the corresponding (ring) class group, the ring

class field is an abelian extension of Q(
√
−D) which is Galois over Q and the

Galois group over Q is the semi-direct product of A with respect to the cyclic
group of order 2 consisting of the identity and the complex multiplication
τ , the latter operating on A by inversion.

The ring class field can be obtained as Q(α,
√
−D), where α is a real

algebraic number whose degree with respect to Q is the order hO of the ring
class group. (If O is the ring of all integers in Q(

√
−D), the ring class field

is, of course, just the absolute class field of Q(
√
−D) and hO is the usual

absolute class number of Q(
√
−D).)

Theorem D. With the above notation α can be expressed by real radicals
if and only if every odd prime divisor of hO is a Fermat prime.

Theorem D can also be expressed in terms of the class fields of complex
multiplication. Indeed, let j(ω), for a complex number ω with positive imag-
inary part, denote the absolute invariant of the modular group, known from
the theory of elliptic modular functions, usually defined by

j(ω) = 1728
g2(ω)3

∆(ω)
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where ∆(ω) stands for the discriminant of the complex lattice generated
by 1 and ω, and g2(ω) is the Weierstrass invariant of this lattice.

If 1 and ω, Im(ω) > 0, form a Z-basis for the order O in Q(
√
−D) then

j(ω) is a real algebraic number and the ring class field is Q(
√
−D, j(ω)).

(More details on the theory of ring class fields and complex multiplication
can be found in [3] or [6].) Therefore Theorem D implies

Theorem E. If 1 and ω (Im(ω) > 0) form a Z-basis for an order O
in an imaginary quadratic field Q(

√
−D), then j(ω) is expressible by real

radicals if and only if every odd prime divisor of the order of the class group
of O is a Fermat prime.

In particular , if 1 and ω, Im(ω) > 0, form an integral basis for Q(
√
−D),

then j(ω) is expressible by real radicals if and only if every odd prime divisor
of the class number of Q(

√
−D) is a Fermat prime.

2. Proofs of Theorems C and D. Firstly we fix some terminology.
All fields in this paper are number fields.

A field extension L/K is called a simple radical extension if L = K(α),
where α is an element in L \K for which αp ∈ K for some prime number p.
If L is a real number field, L/K is called a real simple radical extension.

A field extension L/K is called a radical extension if there is chain of
fields between L and K such that each field in the chain is a simple radical
extension of the preceding field. If L is a real number field, L/K is called a
real radical extension.

A real number is then expressible by real radicals over K if it is contained
in a real radical extension of K.

A basic result for the following is due to F. Barrera-Mora and W. Y. Vélez
[2, Theorem 2.3], which we here only formulate for number fields and simple
radical extensions.

Descent Theorem. Let L/K be an extension of degree p with M the
Galois closure of L/K and let ζp denote a primitive pth root of unity. Assume
there exists a finite extension Λ/K for which M(ζp)∩Λ = K and LΛ/Λ is a
simple radical extension of degree p. Then L/K is a simple radical extension
of degree p.

For the proof of Theorems C and D we need two lemmas.

Lemma 1. Let K be a real number field and pt a power of a Fermat
prime p. If f(x) is an irreducible polynomial in K[X] of degree pt such that
f(x) has exactly one real root α and the Galois group of f(x) over K is
the dihedral group Dpt of order 2pt, then α is contained in a real radical
extension of K.
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Proof. We proceed by induction on t. For t = 1 the statement follows
from [4, Theorem 9.2]. Assume the lemma is proved for polynomials of degree
pt−1 and consider a polynomial of the described type of degree pt.

Let N be the splitting field of f(x) over K. The degree over K of the
unique real root α of f(x) is pt and there exists a number β ∈ K(α) whose
degree over K is p. The Galois group of the Galois closure over K of K(β)
is the dihedral group Dp of order 2p. Hence by the above result K(β) is
contained in a real radical extension of K. The degree of the minimal poly-
nomial g(x) of α with respect to K(β) is pt−1. The polynomial g(x) has α
as its only real root and the Galois group of g(x) over K(β) is the dihedral
group Dpt−1 . By the induction hypothesis α is contained in a real radical
extension of K(β) and hence also in a real radical extension of K.

Lemma 2. Let A be an abelian p-group, where p is a Fermat prime, and
let G be the semi-direct product of A by the cyclic group {e, τ} of order 2,
where τ operates on A by inversion of elements. If f(x) is an irreducible
polynomial of degree |A| over a real number field K such that f(x) has
exactly one real root α and G is the Galois group of f(x) over K, then α
lies in a real radical extension of K.

Proof. The splitting field of f(x) over K is a compositum of Galois
extensions {Ni} of K, whose Galois groups are dihedral groups of order
2 · (a power pti of p). Each Ni is the splitting field of an irreducible poly-
nomial fi(x) ∈ K[X] of degree pti having exactly one real root αi. By the
preceding lemma each αi lies in a real radical extension of K. Since K(α)
is the compositum of the fields K(αi) it follows that α lies in a real radical
extension of K.

Lemma 3. Let M/K be a Galois 2-extension of a real number field K.
The maximal real subextension of M is a radical extension of K.

Proof. If M is real the assertion is obvious. Otherwise let τ denote com-
plex conjugation. The maximal real subextension is the subfield fixed by τ .
The statement then follows by choosing a composition series of Gal(M/K)
starting with the subgroup {e, τ} of order 2.

For the sake of completeness we list the next lemma, which is just an
elementary exercise in Galois theory.

Lemma 4. If L/K is a simple radical extension of prime degree p such
that L/K is a Galois extension, then Gal(L/K) is cyclic and the base field
K contains the pth roots of unity.

We are now in a position to prove Theorem C.
Assertion (3) is an immediate consequence of Lemma 3.
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We first prove the “if” part of assertion (1). Let n = pt11 . . . ptrr , where
p1, . . . , pr are distinct Fermat primes. The splitting field N of f(x) is a
compositum of fields Ni, 1 ≤ i ≤ r, where each Ni is a Galois extension of
Q with the dihedral group Dpi as Galois group, and each Ni is the splitting
field of a polynomial fi(x) ∈ Q[X] which has degree pti and exactly one real
root αi. By Lemma 1 each αi lies in a real radical extension of Q. The unique
real root α of f(x) is in the compositum of the fields Q(αi) and therefore
also in the real radical extension of Q.

As for the “if” part of assertion (2) the two real roots of f(x) generate
the same number field over Q. This real field is the compositum of subfields
each of which has the form Q(α) where the minimal polynomial of α over Q
is either of the type described in (1) or has degree a power of 2 and a dihedral
2-group as Galois group. The result from the “if” part of (1) combined with
Lemma 3 yields the assertion.

Now the “only if” part of assertion (1): By virtue of Theorem B the
polynomial f(x) has exactly one real root α. For each prime divisor p of n
there exists a number αp such that αp lies in Q(α) and the minimal poly-
nomial of αp has degree p, has no other real roots and has Dp as Galois
group over Q. If α lies in a real radical extension of Q so does αp. Hence
without loss of generality we may assume that n is a prime number p. We
have to show that p is necessarily a Fermat prime. If p were not a Fermat
prime, we could write p − 1 = 2su, where s ≥ 1 and u is an odd integer
> 1.

Since f(x) has only one real root α, the splitting field M of f(x) can
be written Q(α,

√
−D), where D is a square-free natural number. The cy-

clotomic field Q(ζp) is a compositum Γ0Γ1, where Gal(Γ0/Q) is the cyclic
group C2s of order 2s and Gal(Γ1/Q) is the cyclic group Cu of order u.
Now, Γ1 is a real number field and Γ0 = Γ+

0 (
√
−δ), where Γ+

0 is the max-
imal real subfield of Γ0 and δ is a positive number in Γ+

0 . Consequently,
we get M(ζp) = Q(α,

√
−D)Γ+

0 (
√
−δ)Γ1 and the maximal real subfield of

M(ζp) is Γ+
0 (
√
Dδ)Γ1(α). (Here Dδ may be a square in Γ+

0 , namely if p ≡ 3
mod 4 and D = p, but that does not affect the following argument.)

The maximal 2-subextension of M(ζp) is Γ+
0 (
√
−D,

√
−δ) and the

maximal real subfield F of that field is Γ+
0 (
√
Dδ). Here the Galois group

Gal(M(ζp)/F ) is Dp × Cu.
We need the following observation: Let L be a real subfield of M(ζp)

containing F . If [L : F ] is divisible by p, then L contains F (α), which has
degree p over F . If [L : F ] is not divisible by p, then L is contained in FΓ1,
which has degree u over F .

If there were a real radical extension of Q containing α there would also
be a real radical extension of F containing α.
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Now, let Λ0  Λ1  . . .  Λn be a tower of simple real radical extensions
of F for which Λn contains α. We may assume that Λn−1 does not contain α.
We now apply the Descent Theorem with K = F , L = F (α) and Λ = Λn−1.

By the above observation we see that the intersection M(ζp) ∩ Λn−1

must be a field between F and FΓ1. Hence M(ζp) ∩ Λn−1 is an abelian
extension of F contained in a real radical extension of the real number
field F . Since the degree is an odd number Theorem A implies that the
intersection M(ζp)∩Λn−1 is exactly F . Clearly, Λn−1(α) = Λn. Hence by the
Descent Theorem F (α) is a simple radical extension of F . Then F (α,

√
−D)

would be a simple radical extension of F (
√
−D). But F (α,

√
−D) is a Galois

extension of F with Dp as Galois group. In particular, F (α,
√
−D) is a cyclic

extension of F (
√
−D) of degree p. However, in a cyclic radical extension of

degree p, by Lemma 4 the base field necessarily contains the pth roots of
unity. Since u > 1 this is not the case in our situation. This yields the desired
contradiction.

Finally, we have to show the “only if” part of assertion (2). Since the
Galois group of f(x) over Q is Dn, the number of real roots is 0, 2 or n.
In view of Theorem B we see that in this situation there must be exactly
2 real roots. They generate the same field N over Q, namely the maximal
real subfield of the splitting field M of f(x). For each odd prime divisor p
of n the field N contains a real root of an irreducible polynomial in Q[X]
of degree p with Dp as Galois group. We proceed then as above to conclude
that p is necessarily a Fermat prime.

The proof of Theorem C is now complete.

As for Theorem D the ring class field may not be a dihedral extension of
Q, but for any odd prime divisor p in the order of the ring class group the
maximal real subfield of the ring class field will contain a number α whose
minimal polynomial is of the type described above. This shows the “only if”
part of Theorem D. The “if” part follows from the fact that the ring class
field is a compositum of 2-extensions and extensions of the type considered
in Lemma 2.
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