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1. Introduction. A theorem of Ax and Kochen [3] provides conditional
confirmation of Artin’s conjecture. Let n, t and d1, . . . , dt be natural num-
bers. Then Ax and Kochen show that there is a positive integer p0 with
the following property. Let K be a p-adic field with [K : Qp] = n, and
suppose that f1, . . . , ft ∈ K[x] are homogeneous with respective degrees
d1, . . . , dt, and possess s > d2

1 + · · · + d2
t variables. Then whenever p > p0,

these polynomials have a common non-trivial K-rational zero. Familiar ex-
amples, involving suitable linear combinations of norm forms, demonstrate
that no such conclusion is available when the hypothesis on s is relaxed.
Investigations have consequently focused on bounding the least permissible
value of p0, an integer that we denote by M(d;n). Artin’s conjecture, for-
mulated around 1936 (see the preface to [2]), implies that for all choices of
d and n, one may take M(d;n) = 1. An example of Terjanian [30] shows
that M(4; 1) ≥ 2, thereby disproving this conjecture, and more recently
Chakri and Hanine [11] have established that M(d; 1) ≥ (1 + o(1))

√
d for

infinitely many even exponents d (see also [1], [9] and [26] for earlier work).
Reasonable upper bounds for M(d;n) are known only in a handful of cases.

The object of this paper is to obtain improvements in two cases, namely
for forms of degree 7 and 11, sufficient to place them in the latter select
category. In §3 of this paper we establish the following theorem.

Theorem 1. Let K be a field extension of Qp with residue class field
of cardinality q. Put q0(7) = 883 and q0(11) = 8053, and suppose that
f ∈ K[x] is homogeneous of degree d = 7 or 11 in more than d2 variables.
Then f has a non-trivial K-rational zero provided only that q > q0(d).
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It follows from Theorem 1 that for every natural number n, one has
M(7;n) ≤ 883 and M(11;n) ≤ 8053. For comparison, we note that
Knapp [20] has obtained bounds slightly sharper than M(7;n) < 1.04 · 1017

and M(11;n) < 3.56 · 1019. While the conclusions of Ax and Kochen do not
yield explicit estimates for M(d;n), by developing an argument stemming
from work of Cohen [12], an explicit bound for M(d; 1) has been obtained
by S. Brown [8]. Writing a ↑ b for ab, and a ↑ b ↑ c for a ↑ (b ↑ c), the estimate
of Brown takes the shape M(d; 1) ≤ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ d ↑ 11 ↑ (4d). Bounds of
more terrestrial magnitude are scarce. Hasse [18] had shown already in 1924
that M(2;n) = 1, and a quarter of a century later, Lewis [25] proved that
M(3;n) = 1 (see also [13] when the underlying residue class field has char-
acteristic different from 3). Shortly afterwards, Dem’yanov [14] established
that M(2, 2;n) = 1 (see also [7]), and then Schuur [29], building on earlier
work of Birch and Lewis [6], proved that M(2, 2, 2;n) ≤ 47, and described
how to obtain M(2, 2, 2;n) ≤ 9. The only other distinct case for which a
reasonable bound has been obtained is that of a single quintic form. Leep
and Yeomans [24] obtained the estimate M(5;n) ≤ 43, and have noted also
that an improvement due to Serre yields M(5;n) ≤ 41.

Shortly before the advent of the Ax–Kochen theorem, Laxton and
Lewis [22] (building on work of Birch and Lewis [4, 5]) presented a method
that, in principle, yields an explicitly computable bound for M(d;n) when
d = 5, 7 and 11. These ideas motivate both the work of Knapp [20] on
forms of degree 7 and 11, and the earlier work of Leep and Yeomans [24].
In order to sketch this approach, consider a form F of degree d > 1 in K[x]
having more than d2 variables. Laxton and Lewis develop a p-normalisation
procedure that utilises an invariant associated with the form. By exploiting
the compactness of K, they show that a non-trivial K-rational zero of F
exists whenever an associated form F , with coefficients in the residue class
field k of K, and having more than d variables, possesses a non-singular
k-rational zero. Consider the factorisation of F over the algebraic closure
of k. One may ensure that F possesses no linear factor, and so whenever d
fails to be represented as the sum of two non-negative composite numbers
(whence d = 2, 3, 5, 7 or 11), then amongst the factors of F there is an ab-
solutely irreducible one whose degree is unique. This factor G is essentially
fixed under conjugation, and hence is a constant multiple of a k-rational
polynomial. One now seeks a non-singular k-rational zero of G that is not
simultaneously a zero of the quotient polynomial H defined via the relation
F = GH. Such a zero may be lifted via Hensel’s lemma to the non-trivial
K-rational zero of F that we seek.

Laxton and Lewis [22] obtain the non-singular zero of the above polyno-
mial G by means of the Lang–Weil theorem (see [21]). Available versions of
the latter theorem remained inexplicit until the work of Schmidt [28], who
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combined Bertini’s first theorem with his version of Stepanov’s method.
It is this result that Knapp employs in his work on forms of degree 7
and 11. The versions of Bertini’s theorem available to Schmidt were rel-
atively crude, and only recently have substantially sharper versions become
available (see [19]). Cafure and Matera [10] employed these advances to
improve substantially the available estimates of Lang–Weil type, and such
already permits improvements to be made in the conclusions of Knapp.
We obtain further advantage by exploiting a flexible variant of Bertini’s
theorem (see Corollary 3.4 of Cafure and Matera [10]) that, rather than
ensuring absolute irreducibility, instead provides control of the degrees of
the absolutely irreducible factors of the polynomial resulting from a slicing
process.

Leep and Yeomans [24] bound M(5;n) following the strategy of Laxton
and Lewis [22], at least in the initial phases of their argument. Rather than
wrestle with explicit versions of the Lang–Weil theorem, however, Leep and
Yeomans exploit problematic singular solutions so as to isolate useful struc-
tures that simultaneously ease the construction of a concrete slicing process,
and reduce the genus of the resulting curve. Such is possible owing to the
relatively low degree of a quintic form, and the rigidity this imposes on the
anatomy of the associated polynomial. Such features would appear to be ab-
sent from septic and unidecic forms. A direct application of the arguments of
this paper, meanwhile, would yield the bound M(5;n) ≤ 137. We note also
that in common with the work of Laxton and Lewis, our methods are inap-
plicable to any exponents save 2, 3, 5, 7 and 11. In all other circumstances,
the reduced k-rational form arising in the above sketch could factor in the
shape F 2

1F
3
2 , for some k-rational polynomials F1 and F2, an eventuality that

precludes the existence of a non-singular k-rational zero to which to apply
Hensel’s lemma.

It transpires that the methods employed in our proof of Theorem 1 may
be applied to address the solubility of congruences modulo p2, for prime num-
bers p, thereby improving a theorem of Chakri and Hanine (see Theorem 3.1
of [11]) that makes explicit an earlier conclusion of Ax and Kochen [3].
In §4 we prove the following theorem.

Theorem 2. Let p be a prime number , and suppose that the polyno-
mial f ∈ Zp[x1, . . . , xs] is homogeneous of degree d. Then the congruence
f(x1, . . . , xs) ≡ 0 (mod p2) possesses a primitive zero provided only that
s > 2d and p > 1

2(3d4 − 4d3 + 5d2).

The above-cited work of Chakri and Hanine provides a conclusion of the
same shape as that of Theorem 2, but with the hypothesis on p replaced by
the more stringent condition that p > 250d5 and d(d−1)2 + (2pd5)1/2 + 2dφ
≤ p, with φ = 2dk2k

, wherein k = d(d+1)/2. For large values of d, the latter
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requires that p be rather larger than exp(exp(d2/3)), whereas Theorem 2
above is applicable whenever p > 3d4/2.

We summarise in §2 the preliminary simplifications inherent in the ar-
gument of Laxton and Lewis, and also such details of the slicing argument
of Cafure and Matera as are required in our subsequent deliberations. The
proof of Theorem 1 is then dispatched in §3, with that of Theorem 2 follow-
ing in §4 by a similar argument, on incorporating a variant of the argument
of Chakri and Hanine.

2. Preliminary manoeuvres. We begin by introducing some notation.
Let K be a field, and consider a form (that is, a homogeneous polynomial)
F ∈ K[x]. Write var(F ) for the number of variables explicit in F . Two forms
F and G in K[x1, . . . , xn] are said to be equivalent when there exist a ∈ K×

and T ∈ GLn(K) for which F (x) = aG(Tx). When F and G are equivalent
forms, there is a bijection between their zeros, and also their non-singular
zeros, provided by the latter implicit change of variables. We define ord(F )
to be the minimum value assumed by var(G) as we consider all forms G
equivalent to F . A form F is said to be non-degenerate if ord(F ) = var(F ),
and otherwise is said to be degenerate. Plainly, any degenerate form in K[x]
possesses a non-trivial K-rational zero.

Our initial manoeuvres follow the path laid by Laxton and Lewis [22].
Suppose that K is a field extension of Qp, let o be its ring of integers, and
write p = (π) for the prime ideal of o. Let q denote the cardinality of the
residue class field k ' o/p, and write k for the algebraic closure of k. We
define the valuation | · |p for α ∈ K× by putting |α|p = p−h, where h is the
unique rational integer for which π−hα is a unit of K. When F ∈ o[x], the
image of F under the natural map from o[x] to k[x] will be denoted by F ∗.
Next, given a form F in K[x1, . . . , xn], define I(F ) to be the resultant of
the partial derivatives ∂F/∂xi (1 ≤ i ≤ n). The element I(F ) of K is an
invariant amongst the forms equivalent to F under the action of SLn(K).
We say that a form F ∈ o[x] is reduced when I(F ) 6= 0, and if, in addition,
whenever G ∈ o[x] is equivalent to F , one has |I(F )|p ≥ |I(G)|p. We next
recall a consequence of Hensel’s lemma. In this context, we say that a zero
y of a form F is non-singular when some partial derivative of F is non-zero
at y.

Lemma 3. Suppose that F ∈ o[x], and that F ∗ has a non-singular k-
rational zero. Then F has a non-singular zero with coefficients in o.

Proof. This is a standard application of Hensel’s lemma (see, for exam-
ple, Greenberg [16]).

We restrict attention in §3 to the set Fd of forms F ∈ o[x] of degree d = 7
or 11, satisfying the property that ord(F ∗) > d and F ∗ has no k-rational
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linear factor. The following lemma summarises the conclusions of Laxton
and Lewis relevant to our discussion.

Lemma 4. Suppose that every form F lying in Fd possesses a non-
singular K-rational zero. Then every form G ∈ K[x] of degree d, with
var(G) > d2, possesses a non-trivial K-rational zero.

Proof. Consider a form G ∈ K[x] of degree d with var(G) > d2. We
have already noted that the existence of a non-trivial K-rational zero of G
is self-evident whenever G is degenerate. We may therefore suppose that
G is non-degenerate, and then it follows from the Corollary to Lemma 6
of [22] that in order to establish that G has a non-trivial K-rational zero, it
suffices to establish such for non-degenerate forms H with var(H) > d2 and
I(H) 6= 0. Any such form H is equivalent to a reduced form F ∈ o[x] with
ord(F ) > d2. It follows from Lemma 7 of [22] that ord(F ∗) ≥ ord(F )/d > d
(see also Lemma 1 of [27]). In addition, Lemma 9 of [22] shows that F ∗ has
no k-rational linear factor. Thus we find that F ∈ Fd, so by hypothesis we
may assume that F possesses a non-singular K-rational zero. This completes
the proof of the lemma.

We approach Theorem 1 via a modified Bertini theorem. We record next
both the latter result and such additional estimates as are required in order
to dispose of residual cases. The first lemma concerns the properties of
certain polynomials following a slicing process. Let L be a field, and consider
a polynomial f ∈ L[x0, x1, . . . , xn]. When ξ = (ξ0, ξ1, . . . , ξ3n) ∈ L3n+1, we
write f |ξ = f |ξ(X,Y ) for the sliced polynomial

f(ξ0 +X, ξ1 + ξn+1X + ξ2n+1Y, . . . , ξn + ξ2nX + ξ3nY ).

Lemma 5. Let f ∈ k[x0, . . . , xn] be an absolutely irreducible polynomial
of degree δ ≥ 2.

(i) The number of slices ξ ∈ k3n+1 for which the polynomial f |ξ is not
absolutely irreducible is at most 1

2(3δ4 − 4δ3 + 5δ2)q3n.
(ii) Let D be an integer satisfying 1 ≤ D ≤ δ − 1. Then the number of

slices ξ ∈ k3n+1 for which the polynomial f |ξ possesses a k-rational
factor of positive degree at most D does not exceed

1
8(δD(D + 1)(D + 2)(8δ −D − 3) + 16δ2)q3n.

Proof. The conclusions of the lemma are immediate from Corollaries 3.2
and 3.4 of [10].

Next we recall a version of Weil’s estimate valid for singular curves.
Here we make use of the familiar notation [β] for the largest integer not
exceeding β.
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Lemma 6. Let F,G ∈ k[x, y] be non-zero polynomials of respective degrees
d1 ≥ 1 and d2 ≥ 0. Suppose that F is absolutely irreducible, and that the
absolutely irreducible factors of G each have degree distinct from d1. Then
the number , N , of non-singular k-rational zeros of FG satisfies

N ≥ q + 1− 1
2(d1 − 1)(d1 − 2)[2

√
q]− d1d2.

Proof. Let F andG satisfy the hypotheses of the statement of the lemma.
We consider first the situation in which G is a non-zero constant polynomial.
Write S for the number of k-rational singular zeros of F . Then if the curve
defined by the equation F (x, y) = 0 has genus g, it follows from Corollary 1
to Theorem 1 of Leep and Yeomans [23] that

|N + S − (q + 1)| ≤ g[2
√
q] + 1

2(d1 − 1)(d1 − 2)− g.
On applying the latter estimate together with the bound g ≤ 1

2(d1−1)(d1−2)
− S supplied by the genus formula (see p. 201 of [15]), we obtain the lower
bound

(1) N ≥ q + 1− 1
2(d1 − 1)(d1 − 2)[2

√
q].

Suppose next that G is not a constant polynomial, so that G takes the
shape G1 . . . Gt, with each factor Gi absolutely irreducible of positive degree
ei 6= d1. Since F is absolutely irreducible, and the degree of each factor Gi is
distinct from that of F , the polynomials F and G possess no common factor
in k[x, y]. The equation F (x, y) = 0 defines an irreducible curve, moreover,
and so it follows from Bézout’s theorem (see Corollary 7.8 of Chapter I of
[17]) that the number of common k-rational zeros of F and G is at most
d1d2. The lower bound on the number of non-singular k-rational zeros of
FG asserted in the statement of the lemma now follows on applying (1) to
estimate the number of non-singular k-rational zeros of F , and accounting
for those that are simultaneously zeros of G.

3. The proof of Theorem 1. We now apply the slicing procedure
implicit in §2 within a modification of the argument developed by Laxton
and Lewis, treating the cases with degree 7 and with degree 11 separately.
It is convenient in our discussion to adopt the following convention. We say
that a polynomial G ∈ k[x] has type d = (d1, . . . , dt) when (i) one has
d1 ≥ · · · ≥ dt ≥ 1, and (ii) the polynomial G factors over k[x] in the shape
G = G1 . . . Gt, where for 1 ≤ i ≤ t, each factor Gi is absolutely irreducible of
degree di. Plainly, the type of a polynomial is uniquely defined. In addition
we refer to a polynomial f ∈ k[X,Y ] as being amenable with profile (g, h)
when f factors in the shape f = gh, in which (i) the polynomials g and h are
k-rational, (ii) g is absolutely irreducible of degree at least 2, and (iii) the
absolutely irreducible factors of h over k[X,Y ] each have degree distinct
from that of g.
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The proof of Theorem 1 for septic forms. Suppose that q > 883, and
consider a form F ∈ o[x0, x1, . . . , xn] lying in the set F7, so that F ∗ satisfies
ord(F ∗) > 7 and possesses no k-rational linear factor. Suppose that F ∗ has
type d. A modicum of computation reveals that d must be one of (7), (5, 2),
(4, 3) or (3, 2, 2). We consider these cases in turn.

(a) d = (5, 2), (4, 3) or (3, 2, 2). In these situations the polynomial F ∗

factors in the shape F ∗ = G1 . . . Gt, where Gi is absolutely irreducible of
degree di (1 ≤ i ≤ t). Note that in each case, the polynomial G1 is the only
absolutely irreducible factor of F ∗ of its degree, and so by conjugation, there
is no loss in supposing that G1 is k-rational. Since q > 750, we may apply
Lemma 5(i) to G1 with δ = d1 to deduce that a slice ξ ∈ k3n+1 exists for
whichG1|ξ is absolutely irreducible. Fix any one such slice, and fix any choice
of Ξ ∈ o3n+1 with Ξ ≡ ξ (mod p). Write f = F |∗Ξ and gi = Gi|ξ (1 ≤ i ≤ t).
Then it follows that f = gh, where g = g1 is absolutely irreducible of degree
d1, and h = g2 . . . gt is a product of polynomials whose absolutely irreducible
factors each have degree smaller than d1. We may conclude, therefore, that
f is amenable with profile (g, h).

Suppose now that f ∈ k[X,Y ] is any amenable polynomial of degree 7,
whether or not it is associated with a polynomial F ∗ of type d = (5, 2),
(4, 3) or (3, 2, 2). Writing N for the number of non-singular k-rational zeros
of f, it follows from Lemma 6 that N ≥ q + 1− 15[2

√
q]. Since q is a prime

power, our hypothesis on its value ensures that q > 884, and so f possesses a
non-singular k-rational zero. We therefore deduce from Lemma 3 that F |Ξ,
whence also F , possesses a non-singular K-rational zero.

(b) d = (7). Since q > 371, we may apply Lemma 5(ii) to F ∗, with
δ = 7 and D = 1, to deduce that a slice ξ ∈ k3n+1 exists with the property
that F ∗|ξ has no k-rational linear factor. Fix any such slice, and a choice of
Ξ ∈ o3n+1 with Ξ ≡ ξ (mod p). It follows that the polynomial f = F |∗Ξ does
not possess a k-rational linear factor, and so has type (7), (5, 2), (4, 3) or
(3, 2, 2). In each case, the absolutely irreducible factor of f over k[X,Y ] of
highest degree is the only one of that degree, hence may be supposed to be
k-rational. One consequently finds that f is amenable with some profile (g, h),
and so it follows as in the final paragraph of part (a) above that F possesses
a non-singular K-rational zero.

We have demonstrated that whenever q > 883, then every polynomial F
in F7 necessarily possesses a non-singular K-rational zero. Under the same
hypothesis on q, we infer from Lemma 4 that every septic form G ∈ K[x],
with var(G) > 49, possesses a non-trivial K-rational zero. This completes
the proof of Theorem 1 for septic forms.

The proof of Theorem 1 for unidecic forms. Suppose now that q > 8053,
and consider a form F ∈ o[x0, x1, . . . , xn] lying in the set F11, so that F ∗
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satisfies ord(F ∗) > 11 and possesses no k-rational linear factor. A smidgen
of computation in this instance reveals that the type d of F ∗ is one of (11),
(9, 2), (4, 4, 3), (3, 3, 3, 2), or else lies in the set D consisting of the elements
(8, 3), (7, 4), (7, 2, 2), (6, 5), (6, 3, 2), (5, 4, 2), (5, 3, 3), (5, 2, 2, 2), (4, 3, 2, 2),
(3, 2, 2, 2, 2). We examine these cases in turn.

(c) d ∈ D. Since q > 5280, in these cases the argument of part (a)
may be applied, mutatis mutandis, to show that a slice Ξ ∈ o3n+1 exists
for which the polynomial f = F |∗Ξ is amenable with some profile (g, h).
Suppose that f ∈ k[X,Y ] is any amenable polynomial of degree 11, whether
or not it derives from a polynomial F ∗ of type d ∈ D. Writing N for the
number of non-singular k-rational zeros of f, it follows from Lemma 6 that
N ≥ q + 1− 45[2

√
q]. Since q is a prime power, our hypothesis on its value

ensures that q > 8054, and so f possesses a non-singular k-rational zero.
We thus conclude from Lemma 3 that F |Ξ, whence also F , possesses a
non-singular K-rational zero.

(d) d = (9, 2). In this situation F ∗ factors in the shape F ∗ = G1G2,
where G1 has degree 9 and G2 has degree 2. The polynomial G1 is the only
absolutely irreducible factor of its degree, and so by conjugation there is
no loss in supposing that it is k-rational. Since q > 4617, we may apply
Lemma 5(ii) to G1, with δ = 9 and D = 3, to show that a slice ξ ∈ k3n+1

exists for which G1|ξ has no absolutely irreducible factor over k[X,Y ] of
degree 3 or less. Fix any one such slice, and observe that G1|ξ must have
type (9) or (5, 4). A choice of Ξ ∈ o3n+1 therefore exists, with Ξ ≡ ξ
(mod p), for which the polynomial f = F |∗Ξ is of type (9, 2), (9, 1, 1), (5, 4, 2)
or (5, 4, 1, 1). In each case, the absolutely irreducible factor of f over k[X,Y ]
of highest degree is the only one of that degree, hence may be supposed
to be k-rational. Thus we find that f is amenable with some profile (g, h),
and hence as in case (c) above we conclude that F possesses a non-singular
K-rational zero.

(e) d = (11). Since q > 7007, we may apply Lemma 5(ii) to F ∗, with
δ = 11 and D = 3, to deduce that a slice ξ ∈ k3n+1 exists for which F ∗|ξ
has no absolutely irreducible factor over k[X,Y ] of degree 3 or less. We
may therefore suppose that there is a choice of Ξ ∈ o3n+1 for which the
polynomial f = F |∗Ξ is of type (11), (7, 4) or (6, 5). In each of these cases we
deduce as in case (d) that f is amenable with some profile (g, h). Thus, as
in case (c), we conclude that F possesses a non-singular K-rational zero.

(f) d = (4, 4, 3) or (3, 3, 3, 2). In these cases the polynomial F ∗ factors in
the shape F ∗ = G1 . . . Gt, where Gi has degree di (1 ≤ i ≤ t), and Gt is the
only absolutely irreducible factor of its degree. By conjugation, therefore,
there is no loss in supposing that Gt is k-rational. Since Gt has lowest degree
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amongst the absolutely irreducible factors of F ∗, a slicing argument of the
type previously employed might decompose one or more of the remaining
factors so that no isolated factor remains. Such would obstruct the existence
of a non-singular k-rational point. We instead proceed without slicing. Let
the number of k-rational zeros of the polynomial Gt be M0. Then according
to Theorem 5.2 of [10], one has

(2) |M0−qn−1| ≤ (dt−1)(dt−2)qn−3/2+5d13/3
t qn−2 ≤ 2qn−3/2+585qn−2.

Since we are analysing quadratic and cubic polynomials, rather sharper es-
timates are achievable with greater effort, of course, but it transpires that
such is unnecessary.

Write f1 = Gt and f2 = G1 . . . Gt−1. Since each factor Gi is absolutely
irreducible, it follows that f1 and f2 are non-zero polynomials of degree
at most 9 without a common factor in k[x]. Lemma 2.2 of [10] therefore
ensures that the number of common k-rational zeros of f1 and f2 is at
most 81qn−2. Next we bound the number of singular zeros of Gt. The latter
polynomial is absolutely irreducible of degree dt ≤ 3, and at least one of
the partial derivatives of Gt, say ∂Gt/∂xi, is not identically zero and has
degree dt − 1 ≤ 2. Thus, again by Lemma 2.2 of [10], we see that the
number of common k-rational zeros of Gt and ∂Gt/∂xi is at most 9qn−2,
whence Gt has at most 9qn−2 singular k-rational zeros. Write M1 for the
number of non-singular k-rational zeros of F ∗. Then in view of the above
discussion, one has M1 ≥ M0 − 90qn−2, and thus it follows from (2) that
M1 ≥ qn−1−2qn−3/2−675qn−2. Since q > 729, we conclude that F ∗ possesses
a non-singular k-rational zero, and so Lemma 3 delivers a non-singular K-
rational zero of F .

We have demonstrated that whenever q > 8053, then every polynomial F
in F11 necessarily possesses a non-singular K-rational zero. Under the same
hypothesis on q, we infer from Lemma 4 that every unidecic form G ∈ K[x],
with var(G) > 121, possesses a non-trivial K-rational zero. This completes
the proof of Theorem 1 for unidecic forms.

4. The proof of Theorem 2. We now turn our attention to the re-
finement of Theorem 3.1 of Chakri and Hanine [11] embodied in Theorem 2
above. Let f ∈ Zp[x0, . . . , xn] be homogeneous of degree d, and suppose
that n ≥ 2d and p > 1

2(3d4 − 4d3 + 5d2). An inspection of the proof of
[11, Theorem 3.1] reveals that the conclusion of Theorem 2 follows at once
whenever f∗ fails to be absolutely irreducible, even in the absence of the hy-
pothesis on p. Henceforth, therefore, we may suppose that f∗ is absolutely
irreducible. Given our hypothesis on p, we may apply Lemma 5(i) to f∗ with
δ = d to deduce that a slice ξ ∈ F3n+1

p exists for which f∗|ξ is absolutely irre-
ducible. It follows that there is a slice Ξ ∈ Z3n+1

p for which f |∗Ξ is absolutely
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irreducible. Next let N denote the number of non-singular zeros of f |∗Ξ.
Then as a consequence of Lemma 6, one has N ≥ p+ 1− (d− 1)(d− 2)

√
p.

Since p > (d − 1)2(d − 2)2, we conclude that f |∗Ξ possesses a non-singular
Fp-rational zero. An application of Lemma 3 now shows that f |Ξ, and hence
also f , possesses a non-trivial p-adic zero, whence, in particular, the congru-
ence f(x0, . . . , xn) ≡ 0 (mod p2) has a primitive zero. This completes the
proof of Theorem 2.

The condition p > 1
2(3d4 − 4d3 + 5d2) in the statement of Theorem 2

can be improved, for certain smaller values of d, by employing a strategy
similar to that underlying the proof of Theorem 1 in §3. The cases d = 2, 3,
5, 7 or 11 having already been dispatched by Theorem 1, we illustrate ideas
with the case d = 13. As in our proof of Theorem 2, we consider a poly-
nomial f ∈ Zp[x0, . . . , xn] homogeneous of degree d = 13, and we suppose
that n ≥ 2d and p > 17357. We may again suppose that f∗ is absolutely
irreducible, but now we apply Lemma 5(ii) with δ = d and D = 3. Since
p > 9893, there is a slice ξ ∈ Z3n+1

p for which f |∗ξ has no absolutely irre-
ducible factor over Fp[X,Y ] of degree 3 or less. We may therefore suppose
that f |∗ξ is of type d, where d is one of (13), (9, 4), (8, 5), (7, 6) or (5, 4, 4). In
each case, the polynomial f |∗ξ factorises over Fp[X,Y ] in such a manner that
there is an absolutely irreducible factor that is the only factor of its degree.
There is no loss, therefore, in supposing that this factor is Fp-rational. The
argument deployed to prove Theorem 1 in §3 above may consequently be
applied to establish that whenever p+1 > 1

2(d−1)(d−2)[2
√
p], then f |∗ξ pos-

sesses a non-singular Fp-rational zero. The existence of a non-singular zero
of f lying in Zn+1

p now follows from Lemma 3. We conclude that the condi-
tion p > 1

2(3d4−4d3+5d2) may be replaced when d = 13 by the sharper con-
dition p > 17357. Similar observations hold for further smaller values of d.
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