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1. Introduction. Irrationality is a subject with many open questions.
In 1979 Apéry [1] succeeded in showing that ζ(3) is irrational (cf. Beukers
[2]), but the irrationality of ζ(5), ζ(7), ζ(9), . . . is still open (cf. Zudilin [14]).
Here ζ(s) =

∑∞
n=1 n

−s. In his paper Apéry observed that

ζ(3) =
5
2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .
This sum equals

5
4

∞∑
N=1

1∏N
n=2Q(n)

where Q(x) = −2x2(2x− 1)
(x− 1)3

and is the motivation to write this paper. However, we have a more modest
goal and study sums

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

with polynomials P (x), Q(x) ∈ Q[x] such that Q(n) ∈ Z for all n ∈ Z and
not with rational functions Q(x).

In 1869 Cantor [3] proved a first irrationality result for sums of the form∑∞
N=1(bN/

∏N
n=1 an) where {an}∞n=1 and {bn}∞n=1 are sequences of positive

integers with an ≥ 2 for all n. His result was generalised in various ways
by Oppenheim [10] in 1954 and their results are the basis of the results in
the present paper; see Theorem 2.1. Extensions of Oppenheim’s results were
given by Erdős and Strauss [4], [5], Hančl [6], Hančl and Tijdeman [7]–[9],

2000 Mathematics Subject Classification: Primary 11J72.
Key words and phrases: irrationality, infinite series, polynomials.
The first author supported by the grants no. 201/04/0381, 201/07/0191 and

MSM6198898701.

[37] c© Instytut Matematyczny PAN, 2008
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and Tijdeman and Yuan [13]. The authors investigated in [9] the case where
{an}∞n=1 is of the form an = an + b for fixed positive integer constants
a, b. A survey on these and related results can be found in Tijdeman [12,
Sec. 4–6]. The present paper is an extension of that part of [9] in which
an = an+ b, bn = P (n) for all n where a, b ∈ Z, P (x) ∈ Z[x].

In Sections 2 and 3 we assume that P (x) ∈ Q[x]. In Section 2 we provide
a criterion for the rationality of S in terms of polynomials which occur in
some expansion of P with respect to Q. This criterion is used in Section 3 to
derive sufficient conditions on P and Q for the irrationality of S. Finally, in
Theorem 4.1, we deal with the case that the numerators are integers which
approximate values of a polynomial and we display the underlying principle
of the paper in a more general form in Theorem 4.2.

2. An irrationality criterion for polynomial Cantor sums. We
consider sums of the form

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

where P (x) ∈ Q[x], Q(x) ∈ Q[x], P 6= 0, Q(n) ∈ Z for every integer n, the
denominators do not vanish, and the sum converges. If Q is a constant then
Q(n) is an integer a for all n and

S =
∞∑

N=0

P (N)
aN+1

∈ Q

(cf. [12, Section 4.1]). In what follows, we assume that Q is non-constant. We
use the convention that an empty product equals 1. Observe that for deciding
about rationality of S we may assume that P has integer coefficients, since
we can multiply P and S by the lowest common multiple of the denominators
of the coefficients of P .

If degP < degQ, then the irrationality of S is an immediate consequence
of more general results of Oppenheim [10].

Theorem 2.1 (Oppenheim). Let {an}∞n=1 and {bn}∞n=1 be sequences of
integers such that an > 1 for all n and bn/an → 0 as n→∞. Then

S :=
∞∑

N=1

bN∏N
n=1 an

is rational if and only if bn = 0 for n > n0.

Proof. If there is an n1 such that bn has the same sign for all n > n1,
then we apply Theorem 4 of [10] to obtain the conclusion. Otherwise we
apply Theorem 8 of the same paper to prove the statement.
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Corollary 2.1. Let P (x), Q(x) ∈ Q[x], P 6= 0, degP < degQ be such
that Q(n) ∈ Z, Q(n) 6= 0 for all positive integers n. Then

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

/∈ Q.

Proof. Without loss of generality we may assume that P (x) ∈ Z[x] and
apply Theorem 2.1.

Suppose that degP ≥ degQ. We write

(1) P (x) = A0(x) +A1(x)Q(x) + · · ·+At(x)Q(x)Q(x− 1) · · ·Q(x− t+ 1)

with Aj(x) ∈ Q[x], degAj < degQ for j = 0, 1, . . . , t and At 6= 0. Then

S =
t∑

j=0

∞∑
N=1

Aj(N)Q(N)Q(N − 1) · · ·Q(N − j + 1)∏N
n=1Q(n)

=
t∑

j=0

j∑
N=1

Aj(N)Q(0)Q(−1) · · ·Q(N − j + 1) +
t∑

j=0

∞∑
N=j+1

Aj(N)∏N−j
n=1 Q(n)

=
t∑

N=1

t∑
j=N

Aj(N)Q(0)Q(−1) · · ·Q(N − j + 1) +
t∑

j=0

∞∑
N=1

Aj(N + j)∏N
n=1Q(n)

.

We conclude that

S =
t∑

N=1

t−N∑
j=0

AN+j(N)Q(0)Q(−1) · · ·Q(−j + 1)(2)

+
∞∑

N=1

1∏N
n=1Q(n)

t∑
j=0

Aj(N + j).

The first term on the right-hand side is a rational number. To the second
term on the right-hand side we apply Corollary 2.1. As deg(

∑t
j=0Aj(x+j))

< deg(Q(x)), S ∈ Q if and only if the polynomial
∑t

j=0Aj(x+ j) vanishes
for all positive integer values of x, i.e. is identically zero. Together with
Corollary 2.1 this yields the first part of the following general result.

Theorem 2.2. Let P (x), Q(x)∈Q[x], P 6= 0, Q non-constant , Q(n)∈Z
for all positive integers n, such that

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

is a well-defined real number. Define t and A0(x), . . . , At(x) ∈ Q[x] by

P (x) = A0(x) +A1(x)Q(x) +A2(x)Q(x)Q(x− 1)
+ · · ·+At(x)Q(x)Q(x− 1) · · ·Q(x− t+ 1)
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with degAj < degQ for j = 0, 1, . . . , t and At 6= 0. Then

S ∈ Q ⇔
t∑

j=0

Aj(x+ j) ≡ 0.(3)

Moreover , if P (x), Q(x) ∈ Z[x], Q is monic and S ∈ Q, then S ∈ Z.

Proof. The first statement has already been proved. Let S ∈ Q,
P (x), Q(x) ∈ Z[x] and Q be monic. Then A0(x), . . . , At(x) ∈ Z[x]. Hence the
first term on the right-hand side of (2) is an integer. Using this we obtain,
by (3),

S ∈ Q ⇒ S ∈ Z +
∞∑

N=1

1∏N
n=1Q(n)

t∑
j=0

Aj(N + j) = Z + 0 = Z.

Remark 2.1. If Q is linear, then all the polynomials Aj are rational
constants. Hence S ∈ Q⇔

∑t
j=0Aj = 0. It follows from a general theorem

of Shidlovskĭı [11] that if
∑t

j=0Aj 6= 0, then S is transcendental.

Example 2.1. Let P (x) = p4x
4 +p3x

3 +p2x
2 +p1x+p0 ∈ Z[x], Q(x) =

q2x
2 + q1x+ q0 ∈ Z[x] with q2 6= 0. Then A2(x) = p4/q

2
2,

A1(x) =
1
q32
{(p3q

2
2 − 2p4q1q2 + 2p4q

2
2)x

+ (p2q
2
2 − p3q1q2 − 2p4q0q2 + p4q

2
1 + p4q1q2 − p4q

2
2)},

A0(x) =
1
q32

(p1q
3
2 − p2q1q

2
2 − p3q0q

2
2 + p3q

2
1q2 + 2p4q0q1q2 − p4q

3
1)x

+
1
q32

(p0q
3
2 − p2q0q

2
2 + p3q0q1q2 + p4q

2
0q2 − p4q0q

2
1).

Hence S ∈ Q if and only if

p1q
3
2 − p2q1q

2
2 − p3q0q

2
2 + p3q

2
1q2 + p3q

2
2

+ 2p4q0q1q2 − p4q
3
1 − 2p4q1q2 + 2p4q

2
2 = 0

and

p0q
3
2 − p2q0q

2
2 + p2q

2
2 + p3q0q1q2 − p3q1q2 + p3q

2
2

+ p4q
2
0q2 − p4q0q

2
1 − 2p4q0q2 + p4q

2
1 − p4q1q2 + p4q2 + p4q

2
2 = 0.

Moreover, according to the proof of Theorem 2.2, if S ∈ Q, then q32S ∈ Z.
The special case p4 = q1 = 0 has been treated in [12]. The even more

special case p4 = p2 = p1 = q1 = 0, p3 6= 0 has been dealt with in [8]. As
mentioned in [12] the condition in [8] should be read as c = 1 and b+ad = 0
in accordance with the above conditions.
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Remark 2.2. The case of an alternating sum
∞∑

N=1

(−1)N P (N)∏N
n=1Q(n)

can be reduced to the above sum by replacing Q with −Q.

3. Some sufficient conditions for irrationality. In this section we
give sufficient conditions for the irrationality of

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

where P (x), Q(x) ∈ Q[x], Q non-constant such that Q(n) ∈ Z and Q(n) 6= 0
for all n ∈ N. The following theorem will be our starting point.

Theorem 3.1. Let P (x) ∈ Q[x], P 6= 0, Q(x) ∈ Q[x], Q non-constant
and Q(n) ∈ Z, Q(n) 6= 0 for all positive integers n. Let R be a class of
polynomials which have integer values at integer points. Suppose that Q has
the property that if R ∈ R, R 6= 0 then there exist A(x), B(x) ∈ Q[x] such
that

R(x) = A(x)Q(x) +B(x),

degB < max(degQ,degR) and A(x+ 1) +B(x) ∈ R, A(x+ 1) +B(x) 6≡ 0.
Then P ∈ R implies that

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

/∈ Q.

Proof. If degP < degQ, then we can apply Corollary 2.1. Suppose
degP ≥ degQ. By our assumption there exist A(x), B(x) ∈ Q[x] such
that

P (x) = A(x)Q(x) +B(x)

with degB < max(degQ,degR) and A(x+ 1) +B(x) ∈ R, A(x+ 1) +B(x)
6≡ 0. Furthermore

S =
∞∑

N=1

A(N)Q(N) +B(N)∏N
n=1Q(n)

= A(1) +
∞∑

N=1

A(N + 1) +B(N)∏N
n=1Q(n)

.

If deg(A(x + 1) + B(x)) < degQ, then we apply Corollary 2.1 to conclude
that S /∈ Q in view of A(x+1)+B(x) 6≡ 0. If deg(A(x+1)+B(x)) ≥ degQ,
then we apply the above procedure to A(x + 1) + B(x) in place of P (x).
After at most degP iterations we will arrive at a situation where we can
apply Corollary 2.1 to conclude that S /∈ Q.
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Example 3.1. Suppose that R is the class of polynomials
∑T

i=0 rix
i ∈

Q[x] with non-negative coefficients ri and Q(x) =
∑M

i=0 cix
i ∈ Z[x], cM > 0,

ci < 0 for i = 0, 1, . . . ,M−1. We shall show in Theorem 3.2 that if P (x) ∈ R,
P 6= 0, then S /∈ Q.

Example 3.2. Suppose that R is the same class as in the previous
example and Q(x) = x2 +1. We shall show in Theorem 3.3 that if P (x) ∈ R,
P 6= 0, then S is rational if and only if P (x) = x2.

Example 3.3. Let R be the same class as in Example 3.1 and Q(x) =
x3 − x2 + x − 1. We shall show in Theorem 3.4 that if P (x) ∈ R, P 6= 0,
then S /∈ Q.

Example 3.4. Let R be the class of polynomials P (x) such that
P (x)− P (0) ∈ Z[x], P (0) ∈ Q \ Z. Let Q(x) ∈ Z[x] be monic. Then S /∈ Q.

In the remainder of this section R denotes the class of polynomials∑T
i=0 rix

i ∈ Q[x] with non-negative coefficients ri. Observe that by con-
sidering P (x + x0) in place of P (x) for a suitable integer x0 ≥ 0 we can
always secure that the coefficients of P are non-negative. Of course we then
have to consider the rationality of

S =
∞∑

N=1

P (N + x0)∏N
n=1Q(n+ x0)

=
( x0∏

n=1

Q(n)
) ∞∑

N=1

P (N)∏N
n=1Q(n)

−
x0∑

N=1

P (N)
x0∏

n=N+1

Q(n)

so that Q is translated by the same x0.
In the next theorem we allow Q to be the product of polynomials from

a certain class.

Theorem 3.2. Let P (x), Q(x) ∈ Q[x], P (x) =
∑T

i=0 aix
i with aT > 0

and ai ≥ 0 for every i = 0, 1, . . . , T − 1, Q(x) =
∏M

m=1Cm(x) with Cm(x) =∑Km
k=0 cm,kx

k ∈ R[x] for m = 1, . . . ,M such that cm,Km > 0, but cm,k ≤ 0
for k = 0, 1, . . . ,Km − 1. Assume that Q(x) is non-constant and Q(n) ∈ Z,
Q(n) 6= 0 for every positive integer n. Then

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

/∈ Q.

Proof. If degP < degQ, then from Theorem 2.1 we conclude that S /∈ Q
(even without using the fact that Q is a special product).
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Assume that degP ≥ degQ. Then we obtain, by applying division with
remainder,

P (x) = A1(x)C1(x) +B1(x), degB1 < degA1,

A1(x) = A2(x)C2(x) +B2(x), degB2 < degA2,

...
...

AM−1(x) = AM (x)CM (x) +BM (x), degBM < degAM .

Hence P (x) = A(x)Q(x) +B(x) with A(x) = A1(x) · · ·AM (x) and

B(x) = B1(x) +B2(x)C1(x)
+B3(x)C1(x)C2(x) + · · ·+BM (x)C1(x) · · ·CM−1(x).

So degB < K1 + · · · + KM = degQ. Thus A(x), B(x) ∈ Q[x]. Since
P (x) ∈ R, we find by induction on m that Am(x) and Bm(x) have non-
negative coefficients in view of

xi =
1

ci,Mj

xi−MiCi(x) +
Mi−1∑
k=0

−ci,k
ci,Mj

xi+k−Mi (i = 1, . . . ,Mj , j = 1, 2, . . .),

which is repeatedly used and yields non-negative coefficients. Therefore
A(x+ 1) +B(x) has non-negative coefficients as well. Thus A(x+ 1) +B(x)
∈ R. Moreover, since A(x) is non-trivial and A and B have non-negative
coefficients, A(x+ 1) +B(x) is also non-trivial. As before,

S =
∞∑

N=1

A(N + 1) +B(N)∏N
n=1Q(n)

.

We now repeat the above argument with P (x) replaced by A(x + 1)
+B(x). This polynomial has lower degree than P (x). If deg(A(x+1)+B(x))
< degQ, then we apply Corollary 2.1 to conclude S /∈ Q, otherwise we apply
division with remainder to A(x+ 1) +B(x) in place of P (x). After at most
degP iterations we may apply Corollary 2.1 to conclude S /∈ Q.

Example 3.5. For every positive integer k the number
∞∑

N=2

(N2 +N + 1)k∏N
n=2(n3 − 2n2 + 1)

is irrational. Indeed we have (x3 − 2x2 + 1) = (x− 1)(x2 − x− 1).

Corollary 3.1. Let P (x), Q(x) ∈ Q[x] and P (x) =
∑T

i=0 aix
i. Sup-

pose that aT > 0 and ai ≥ 0 for every i = 0, 1, . . . , T −1. Let all roots of the
polynomial Q(x) be real , non-integral and non-negative. Assume that Q(x)
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is non-constant and that Q(n) ∈ Z and Q(n) 6= 0 for all n ∈ N. Then

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

/∈ Q.

Example 3.6. For every positive integer k the number
∞∑

N=1

Nk∏N
n=1(n2 − 3n+ 1)

is irrational.

Remark 3.1. The condition that the roots of Q are non-integral is only
needed to guarantee that the terms of the series are well-defined.

Theorem 3.3. Let d, k and r be positive integers with rd ≤ k and
let P (x) =

∑T
i=0 aix

i ∈ Q[x]. Assume that aT > 0 and ai ≥ 0 for i =
0, 1, . . . , T − 1. If

S =
∞∑

N=1

P (N)∏N
n=1(nk + nk−d + · · ·+ nk−rd)

∈ Q

then k = rd. If k = rd and d > 1 then S ∈ Q if and only if P (x) =
c(xk + xk−d + · · ·+ xd) where c is a fixed positive integer.

Proof.

Step 1: The case T ≥ k + d. We write Q(x) = xk + xk−d + · · ·+ xk−rd

and

P (N) =
k+d−1∑

i=0

aiN
i +

T∑
i=k+d

aiN
i

=
k+d−1∑

i=0

aiN
i +

T∑
i=k+d

ai{(N i−k−N i−k−d)(Nk +Nk−d + · · ·+Nk−rd)

+N i−(r+1)d}
= A(N)(Nk +Nk−d + · · ·+Nk−rd) +B(N)

where

A(x) =
T∑

i=k+d

aix
i−k−d(xd − 1), B(x) =

k+d−1∑
i=0

aix
i +

T∑
i=k+d

xi−(r+1)d.

Hence

A(x+ 1) =
T∑

i=k+d

ai(x+ 1)i−k−d
d∑

j=1

(
d

j

)
xj .
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Since aT > 0 and ai ≥ 0 for i ≥ 0, the coefficient of x of A(x+1) is positive.
Furthermore,

S =
∞∑

N=1

P (N)∏N
n=1Q(n)

=
∞∑

N=1

(
A(N)∏N−1

n=1 Q(n)
+

B(N)∏N
n=1Q(n)

)

=
∞∑

N=1

A(N + 1) +B(N)∏N
n=1Q(n)

.

The degree of A(x + 1) + B(x) = P ∗(x) is at most T ∗ ≤ max(T − k,
k + d − 1, T − (r + 1)d) < T , its coefficients are non-negative integers and
the coefficient of x in P ∗(x) is positive. We may iterate this procedure with
P ∗ in place of P and continue until deg(P ∗) < k + d. From now on we
assume that the conditions of Theorem 3.3 are satisfied with T < k+ d and
remember that the coefficient of x is positive if we have applied Step 1.

Step 2: The case T < k+ d. If T < k, then it follows immediately from
Corollary 2.1 that S /∈ Q if we have not applied Step 1. However, if we have
applied Step 1, then the coefficient of x is positive and also we have S /∈ Q.
Therefore we suppose k ≤ T < k + d. We write P (x) =

∑T
i=0 aix

i for the
present numerator of S. Hence

P (N) =
k−1∑
i=0

aiN
i +

T∑
i=k

aiN
i

=
k−1∑
i=0

aiN
i +

T∑
i=k

aiN
i−k(Nk +Nk−d + · · ·+Nk−rd)

−
T∑

i=k

ai(N i−d + · · ·+N i−rd)

= A(N)(Nk +Nk−d + · · ·+Nk−rd) +B(N)

where

A(x) =
T∑

i=k

aix
i−k, B(x) =

k−1∑
i=0

aix
i −

T∑
i=k

ai(xi−d + · · ·+ xi−rd).

Hence

A(x+ 1) =
T−k∑
i=0

ai+k(x+ 1)i

has positive coefficients in view of aT > 0, ai ≥ 0 for i = k, . . . , T , and

S =
∞∑

N=1

A(N + 1) +B(N)∏N
n=1Q(n)
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where P ∗(x) := A(x + 1) + B(x) has rational coefficients and degree < k.
We distinguish between two cases.

Case 2A: Let k > rd. Then we have P ∗(0) =
∑T−k

i=0 ai+k + a0 ≥ aT > 0
so that P ∗ is non-trivial. By Corollary 2.1 we obtain S /∈ Q.

Case 2B: Let k = rd and d > 1. Then we have P ∗(0) =
∑T−k

i=0 ai+k +a0

and this is positive if T > k. Thus S /∈ Q if T > k by Corollary 2.1.
Suppose T = k. Then the coefficient of x of P ∗(x) equals a1 because of
T = k = rd and d > 1. If a1 > 0, then we know that S /∈ Q by Corol-
lary 2.1. This is certainly the case if we have applied Step 1. We conclude
that a1 = 0 is only possible if the original T equals k. Then A(x) = ak

and B(x) =
∑k−1

i=0 aix
i − ak(xk−d + xk−2d + · · · + 1). According to Corol-

lary 2.1, S ∈ Q if and only if A(x + 1) + B(x) ≡ 0. Hence S ∈ Q if and
only if

P (x) =
k∑

i=0

aix
i = akx

k + ak(xk−d + xk−2d + · · ·+ 1)− ak

= ak(xk + xk−d + · · ·+ xd).

This completes the proof of the theorem.

Example 3.7. Let T, k ∈ N. Then
∞∑

N=1

NT∏N
n=1(nk + nk−1 + · · ·+ n)

/∈ Q.

Example 3.8. Let T ∈ N. By applying Theorem 3.3 with P (x) = xT

and Q(x) = 1
2(xk + xk−1) we obtain

∞∑
N=1

2NNT∏N
n=1(nk + nk−1)

/∈ Q.

Remark 3.2. The following example shows that we cannot omit the
condition d > 1 if k = rd in Theorem 3.3:
∞∑

N=1

N5 + 2N3 +N2∏N
n=1(n3 + n2 + n+ 1)

=
∞∑

N=1

(N2 −N + 2)(N3 +N2 +N + 1)−N2 −N − 2∏N
n=1(n3 + n2 + n+ 1)

=
∞∑

N=1

(
N2 −N + 2∏N−1

n=1 (n3 + n2 + n+ 1)
− N2 +N + 2∏N

n=1(n3 + n2 + n+ 1)

)
= 1 ∈ Q.
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Theorem 3.4. Let d, k and r be positive integers with rd ≤ k and
let P (x) =

∑T
i=0 aix

i ∈ Q[x]. Assume that aT > 0 and ai ≥ 0 for i =
0, 1, . . . , T − 1. Then

S =
∞∑

N=2

P (N)∏N
n=2(nk − nk−d + · · ·+ (−1)rnk−rd)

/∈ Q.

Proof. Let T < k. Then we apply Corollary 2.1 to conclude S /∈ Q.
Assume that T ≥ k. Now the proof splits into two cases.

Case 1: Suppose that r is odd. If T ≥ k + d then we use

xi = xi−k−d(xk+d − xk−rd) + xi−(r+1)d

= xi−k−d(xd + 1)(xk − xk−d + · · · − xk−rd) + xi−(r+1)d

to write
P (x) = A(x)(xk − xk−d + · · · − xk−rd) +B(x)

where A(x), B(x) ∈ Q[x], degB < T , degA ≤ T−k, A(x)+B(x) 6≡ 0 and the
polynomials A, B have non-negative coefficients. Hence A(x+1)+B(x) 6≡ 0
and, as before,

S = q +
∞∑

N=2

A(N + 1) +B(N)∏N
n=2(nk − nk−d + · · · − nk−rd)

where q is some rational number. We iterate this procedure with P (x) re-
placed by A(x+ 1) +B(x) until we get

S = q∗ +
∞∑

N=2

P ∗(N)∏N
n=2(nk − nk−d + · · · − nk−rd)

where P ∗(x) ∈ Q[x], P ∗ 6= 0, T ∗ := deg(P ∗) < k + d and all coefficients of
P ∗ are non-negative.

For k ≤ T ∗ < k + d we use

xi = xi−k(xk − xk−d + xk−2d − · · · − xk−rd)

+ xi−d − xi−2d + xi−3d + · · ·+ xi−rd

to write
P ∗(x) = A∗(x)(xk − xk−d + · · · − xk−rd) +B∗(x)

where A∗(x), B∗(x) ∈ Q[x], deg(B∗) < k, deg(A∗) < d, B∗ 6= 0. The poly-
nomial A∗ has non-negative coefficients. Since A∗(1) + B∗(0) 6= 0, we have
A∗(x+ 1) +B∗(x) 6≡ 0. In this way we get a representation

S = q∗∗ +
∞∑

N=2

P ∗∗(N)∏N
n=2(nk − nk−d + · · · − nk−rd)
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where q∗∗ is some rational number, P ∗∗(x) := A∗(x + 1) + B∗(x) 6≡ 0 and
deg(P ∗∗) < k. We apply Corollary 2.1 to conclude S /∈ Q.

Case 2: Suppose that r is even. If T ≥ k + (r + 2)d then we use

xi = xi−k−(r+2)d(xd + 1)(xk − xk−d + · · ·+ xk−rd)(x(r+1)d − 1) + xi−2(r+1)d

to obtain

P (x) =: A1(x)(xk − xk−d + · · ·+ xk−rd) +B1(x)

where A1(x+1), B1(x) ∈ Q[x], degB < T , degA1 ≤ T−k, A1(x+1)+B1(x)
6≡ 0 and the polynomials A1(x + 1), B1(x) have non-negative coefficients.
As in the first case we get

S = q0 +
∞∑

N=2

A1(N + 1) +B1(N)∏N
n=2(nk − nk−d + · · ·+ nk−rd)

where q0 is some rational number. We iterate this procedure until we obtain

S = q1 +
∞∑

N=2

P1(N)∏N
n=2(nk − nk−d + · · ·+ nk−rd)

where q1 ∈ Q, P1(x) ∈ Q[x], P1 6= 0, degP1 < k+(r+2)d and all coefficients
of P1 are non-negative. Let T1 be the degree of P1.

If k + (r + 1)d ≤ T1 < k + (r + 2)d then we use

xi = (xi−k + xi−k−d − xi−k−(r+1)d)(xk − xk−d + · · ·+ xk−rd)

− xi−(r+2)d + xi−(r+3)d − · · ·+ xi−(2r+1)d

= A2(x)(xk − xk−d + · · ·+ xk−rd) +B2(x)

where A2(x) = xi−k + xi−k−d − x−k−(r+1)d and B2(x) = −xi−(r+2)d +
xi−(r+3)d − · · · + xi−(2r+1)d. The polynomial A2(x + 1) = (x + 1)i−k +
(x+1)i−k−d−(x+1)i−k−(r+1)d = (x+1)i−k−(r+1)d((x+1)(r+1)d+(x+1)rd−1)
has positive coefficients and degB2 < k. Therefore the coefficients in the
polynomial A2(x+1)+B2(x) of powers xm with m ≥ k are all non-negative
and A2(1) +B2(0) > 0. In this way we obtain a representation

S = q2 +
∞∑

N=2

P2(N)∏N
n=2(nk − nk−d + · · ·+ nk−rd)

with q2 ∈ Q, P2(x) ∈ Q[x], degP2 < k + (r + 1)d and all the coefficients
of xm in P2 with m ≥ k non-negative and P2(0) > 0. Let T2 be the degree
of P2.

If k + d ≤ T2 < k + (r + 1)d then we use

xi = (xi−k + xi−k−d)(xk − xk−d + · · ·+ xk−rd)− xi−(r+1)d

= A3(x)(xk − xk−d + · · ·+ xk−rd) +B3(x)
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where A3(x) = xi−k + xi−k−d and B3(x) = −xi−(r+1)d. The coefficients in
the polynomial A3(x+ 1) +B3(x) = (x+ 1)i−k + (x+ 1)i−k−d− xi−(r+1)d of
powers xm with m ≥ k are all non-negative and A3(1) + B3(0) > 0. In this
way we obtain a representation

S = q3 +
∞∑

N=2

P3(N)∏N
n=2(nk − nk−d + · · ·+ nk−rd)

with q3 ∈ Q, P3(x) ∈ Q[x], degP3 < k + d and all the coefficients of xm in
P3 with m ≥ k non-negative and P3(0) > 0. Let T3 be the degree of P3.

Next, if k ≤ T3 < k + d, then we use

xi = xi−k(xk−xk−d + · · ·+ xk−rd)+xi−d−xi−2d + · · ·+ xi−(r−1)d − xi−rd

= A4(x)(xk − xk−d + · · ·+ xk−rd) +B4(x)

where A4(x) = xi−k and B4(x) = xi−d − xi−2d + · · · + xi−(r−1)d − xi−rd.
Hence A4(x+1)+B4(x) = (x+1)i−k +xi−d−xi−2d + · · ·+xi−(r−1)d−xi−rd

satisfies deg(A4(x+ 1) +B4(x)) < k and A4(1) +B4(0) > 0. This leads to

S = q4 +
∞∑

N=2

P4(N)∏N
n=2(nk − nk−d + · · ·+ nk−rd)

where q4 ∈ Q, P4(x) ∈ Q[x], degP4 < k and P4 6= 0. Finally we apply
Corollary 2.1 to conclude S /∈ Q.

Example 3.9. As an immediate consequence of Theorem 3.4 we obtain
∞∑

N=2

(3N + 5)7 + (3N − 5)7∏N
n=1(n5 − n4 + n3 − n2 + n− 1)

/∈ Q.

Example 3.10. Let a1, b1, c1, a2, b2, c2 and d be integers with a1 ≥ |a2|,
b1 ≥ |b2|, c1 ≥ |c2| and d > 0. Then, by Theorem 3.4,

∞∑
N=2

(a1N
2 + b1N + c1)d + (a2N

2 + b2N + c2)d∏N
n=1(n4 − n3 + n2 − n+ 1)

∈ Q

if and only if a1 = −a2, b1 = −b2, c1 = −c2 and d is odd.

4. Some variations. In this section we present two theorems which
deal with sums related to those studied in the previous sections. In the first
theorem the numerator attains integer values, but behaves approximately
like a polynomial.

Theorem 4.1. Let P (x), Q(x) ∈ Q[x] be such that Q is non-constant
and Q(n) ∈ Z, Q(n) 6= 0 for all positive integers n. Let f : N → Z
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be a sequence such that f(N) = P (N) + o(Q(N)) as N → ∞. Define
A0(x), . . . , At(x) ∈ Q[x] by (1). If

S =
∞∑

N=1

f(N)∏N
n=1Q(n)

∈ Q,

then there exists N0 such that

f(N) = P (N)−
t∑

j=0

Aj(N + j) for N > N0.(4)

Proof. Let A be a common denominator of the coefficients of A0, A1, . . . ,
At, P . Then, by (1) and (2),

A

∞∑
N=1

f(N)∏N
n=1Q(n)

= A
∞∑

N=1

P (N)∏N
n=1Q(n)

+A
∞∑

N=1

f(N)− P (N)∏N
n=1Q(n)

=
t∑

N=1

t−N∑
j=0

AAN+j(N)Q(0)Q(−1) · · ·Q(−j + 1)

+
∞∑

N=1

A∏N
n=1Q(n)

t∑
j=0

Aj(N + j) +A
∞∑

N=1

f(N)−P (N)∏N
n=1Q(n)

∈ Z +
∞∑

N=1

A
∑t

j=0Aj(N + j)+A(f(N)−P (N))∏N
n=1Q(n)

.

The numerator of the fraction is, for every positive integer N , an integer
which is o(Q(N)) as N → ∞. Hence, by Theorem 4 of Oppenheim [10] if
the denominator has ultimately a fixed sign and by Theorem 8 of the same
paper otherwise, the infinite sum is rational if and only if

∑t
j=0Aj(N + j)

+ f(N)− P (N) = 0 for N > N0. Thus S ∈ Q if and only if (4) holds.

Remark 4.1. Note that
∑t

j=0Aj(x + j) ∈ Q[x] so that, for N large,
f(N) has to be the value at N of a polynomial f(x) ∈ Z[x].

Remark 4.2. By adjusting the method from Hančl and Tijdeman [9]
it can be proved that if in the above theorem it is only assumed that
P (x) ∈ R[x], then S ∈ Q implies that P (x) ∈ Q[x].

Example 4.1. By applying Theorem 4.1 with P (x) = x3, Q(x) = x2+1,
we obtain

∞∑
N=1

[
N3 − 1

2N
]∏N

n=1(n2 + 1)
/∈ Q,

∞∑
N=1

[N3 −N
√

2]∏N
n=1(n2 + 1)

/∈ Q.
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Theorem 4.2. Let t ∈ N. Let {an}∞n=−t and {bn}∞n=1 be two integer
sequences such that an > 1 and bn =

∑t
j=0 bn,janan−1 · · · an−j+1 for n =

1, 2, . . . , where the bn,j are integers and
∑t

j=0 bn+j,j = o(an) as n → ∞.
Then

S =
∞∑

N=1

bN∏N
n=1 an

∈ Q

if and only if
∑t

j=0 bN+j,j = 0 for all N larger than some N0.

Proof. We have, similarly to the derivation of (2),

S =
∞∑

N=1

∑t
j=0 bN,jaN · · · aN−j+1∏N

n=1 an

=
t∑

j=1

j∑
N=1

bN,ja0a−1 · · · aN−j+1 +
t∑

j=0

∞∑
N=j+1

bN,j∏N−j
n=1 an

=
t∑

N=1

t−N∑
j=0

bN,N+ja0a−1 · · · a−j+1 +
∞∑

N=1

1∏N
n=1 an

t∑
j=0

bN+j,j .

The first term on the right-hand side is a rational integer. Suppose∑t
j=0 bN+j,j = o(aN ) as N →∞. Then by Oppenheim’s Theorems 4 and 8

of [10], S ∈ Q if and only if
∑t

j=0 bN+j,j = 0 for N > N0.

Corollary 4.1. Suppose bn,j ≥ 0 for all n and j in Theorem 4.2. If∑t
j=0 bn+j,j = o(an) as n →∞, then S ∈ Q if and only if bn = 0 for all n

larger than some n0.

Example 4.2. Let k ∈ N and d(n) be the number of divisors of n. Then
∞∑

N=2

d(N)Nk∏N
n=2(n− d(n))

/∈ Q.
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11–13.

[2] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc.
11 (1979), 268–272.
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