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1. Introduction. Let r and s be nonzero integers such that ∆ = r2 +
4s 6= 0 and let α, β be the two roots of the quadratic equation x2−rx−s = 0.
We assume further that α/β is not a root of 1. Let (un)n≥0 and (vn)n≥0 be
the Lucas sequences of the first and second kind with roots α and β, given
by un = (αn − βn)/(α − β) and vn = αn + βn for all n ≥ 0, respectively.
These sequences can also be defined by u0 = 0, u1 = 1, v0 = 2, v1 = r and
the recurrence relations un+2 = run+1 + sun and vn+2 = rvn+1 + svn for all
n ≥ 0. When r = s = 1, the resulting sequences (un)n≥0 and (vn)n≥0 are
the sequences of Fibonacci numbers (Fn)n≥0 and Lucas numbers (Ln)n≥0,
and when r = 3, s = −2, the resulting sequence un = 2n− 1 for n ≥ 0 is the
sequence of Mersenne numbers.

In [7], we investigated Diophantine equations of the form

(1)
k∏
i=1

un+i = bym,

in integers k > 1, n ≥ 0, |y| > 1, m > 1 and b such that P (b) ≤ k,
where for an integer l we use P (l) for the largest prime factor of l with
the convention that P (0) = P (±1) = 1, as well as the similar Diophantine
equation where (un)n≥0 is replaced by (vn)n≥0. The main result of [7] is
that the above Diophantine equations have only finitely many effectively
computable solutions. When (un)n≥0 is the sequence of Fibonacci numbers,
the above equation has no solutions when b = 1 and n > 0. A similar
equation to (1) where the consecutive indices n+i were replaced by arbitrary
indices ni for i = 1, . . . , k, but with the additional restriction that m is a
prime exceeding k was treated in [3].
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In [2], Bilu, Kulkarni, and Sury investigated the Diophantine equation

(2) x(x+ 1) · · · (x+ (k − 1)) + t = ym

with a fixed rational number t and unknowns (x, k, y,m) with x, k,m ∈ Z,
y ∈ Q, |y| 6= 0, 1 and min{k,m} > 1, and showed that if t is not a per-
fect power of some other rational number, then (2) has only finitely many
solutions, which are moreover effectively computable.

In this paper, we investigate an inhomogeneous analogue of equation
(1), which is nothing else than equation (2) with the product of consecutive
integers replaced by the product of consecutive members of a Lucas sequence
of the first kind.

Theorem 1. Let (un)n≥0 be a Lucas sequence of the first kind , t be a
fixed rational number , and assume that the equation

(3) unun+1 · · ·un+k−1 + t = ym

holds with integers n ≥ 0, k ≥ 1, m ≥ 2 and rational y, |y| 6= 0, 1. Assume
further that t is not a perfect power of some other rational number , that when
t is written in reduced form its numerator is coprime to s, and that ∆ > 0.
Then equation (3) has only finitely many solutions (n, k, y,m). Both param-
eters k and m are effectively computable in terms of the sequence (un)n≥0

and the number t. Moreover , if α and β are multiplicatively dependent , then
n is also effectively computable in terms of (un)n≥0 and t.

We do not know how to prove an analogue of Theorem 1 with (un)n≥0

replaced by (vn)n≥0. However, in order for a result like Theorem 1 to be
valid for (vn)n≥0, one also needs to eliminate the numbers t = ±2, as can
be seen from the example

L2n + 2(−1)n = L2
n,

which holds for n ≥ 0.
In particular, Theorem 1 shows that if t is a rational number which is

not a perfect power of some other rational number, then the equation

FnFn+1 · · ·Fn+k−1 + t = ym

has only finitely many effectively computable integer solutions (n, k, y,m)
with n ≥ 0, k ≥ 1, m ≥ 2 and |y| > 1, and that if t is an odd integer which
is not a perfect power, then the equation

(4) (2n − 1)(2n+1 − 1) · · · (2n+k − 1) + t = ym

has only finitely many effectively computable integer solutions (n, k, y,m)
with n ≥ 0, k ≥ 1, |y| > 1 and m ≥ 2. Indeed, these consequences follow
from the fact that for the Fibonacci sequence one has β = −α−1, while for
un = 2n − 1 for all n ≥ 0 one has α0 = 1 = β1, and therefore in both cases
α and β are multiplicatively dependent; hence, according to Theorem 1,
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all solutions are effectively computable. In (4), the assumption that t is
odd is not required if m exceeds a sufficiently large effectively computable
number depending only on t. This follows from the theory of linear forms in
logarithms.

The above restrictions on t not being a perfect power of some ratio-
nal number are essential in order to guarantee finiteness of the number of
solutions, as can be seen from the examples

(5) F2nF2(n+1) + 1 = F 2
2n+1

and

(6) F2nF2n+1F2n+2F2n+3 +
1
4

=
(

2L4n+3 − 3
10

)2

,

which both hold for all n ≥ 0.
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during a visit of F. L. to the Tata Institute in Mumbai with an Associateship
from the TWAS in the Fall of 2005. This author thanks these institutions
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2. The proof of Theorem 1. The line of attack here is as follows.
We first show that k is bounded in an effective way. We then show that
m is bounded in an effective way as well. Finally, we show that with k
and m fixed, the number n can assume only finitely many values, which
are furthermore effectively computable when α and β are multiplicatively
dependent. We begin by noticing that n > 0 because t is not a perfect power
and there is no loss of generality in assuming that m is a prime, which we
assume from now onwards. Also, we always assume that |α| ≥ |β|.

Step 1. k is bounded.

Assume first that t is an integer. Then so is y. Since t is not a perfect
power, we conclude that |t| > 1 and further either −t is a perfect square, or
the greatest common divisor of all the numbers ordp(t) with p | t is 1. Here,
ordp(t) is the exponent at which p appears in the prime factorization of t.
Assume first that −t is not a perfect square. Then there exists a prime p
dividing t such that

ordp(ym − t) ≤ ordp(t),

and the assertion follows from (3) and the fact that gcd(p, s) = 1. So, it
remains to consider the case when t = −a2 with some positive integer a
which is not a perfect power of odd exponent > 1 of some other positive
integer. Now we argue as above to conclude that m = 2. Therefore, we see
from (3) that all the prime divisors larger than a of unun+1 · · ·un+k−1 are
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congruent to 1 modulo 4, which implies that k is bounded since there are
infinitely many primes congruent to 3 modulo 4.

Assume now that t is not an integer. Then we write t = a/b, where
a, b > 1 are integers and gcd(a, b) = 1. We multiply both sides of equation
(3) by b and we observe that ordp(bym) = 0 for every prime divisor p of b.
Therefore b = bm1 , where b1 > 1 is an integer. Now we argue as above for
the equation

bunun+1 · · ·un+k−1 + a = (b1y)m

to conclude that k is bounded.

Step 2. m is bounded.

Here, we assume that k is fixed. The fact that ∆ > 0 implies that α and
β are both real and so |α| > |β|. Write t = a/b, where a and b are coprime
integers with b positive. Then

(7) wn = bunun+1 · · ·un+k−1 + a for n ≥ 0

is a linearly recurrent sequence of order either k + 1 or k + 2, all of whose
roots are simple and are precisely {αk−iβi : i = 0, 1, . . . , k} ∪ {1}. Clearly,

(8) |α|k > max{1, |α|k−i|β|i : i = 1, . . . , k}.
Furthermore,

wn = γ1(αk)n +
k∑
i=1

γi+1(αk−iβi)n + γk+2

with some coefficients γ1, . . . , γk+2, where

(9) γ1 =
bαk(k−1)/2

(α− β)k
6= 0.

In particular, the linearly recurrent sequence (wn)n≥0 has a dominant root
which is precisely αk. Now the assertion follows from a result of [8] applied
to the equation wn = bym = ym1 , where y1 is an integer.

Step 3. α and β are multiplicatively independent.

We suppose that both k ≥ 1 and m ≥ 2 are fixed. All we want to prove
in this case is that equation (13) below has only finitely many solutions n.
We return to the sequence (wn)n≥0 given by (7) and write it as

wn = b
k−1∏
i=0

(
αiαn − βiβn

α− β

)
+ a,

or, equivalently,

(10) wn = γ1α
n
1 + γ2α

n
2 + · · ·+ γk+2α

n
k+2,
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where γi ∈ K = Q(α), and

(11) αi =
{
αk−(i−1)βi−1 for i ∈ {1, . . . , k + 1},
1 for i = k + 2.

We observe that none of αi with 1 ≤ i ≤ k + 1 is 1 since α and β are
multiplicatively independent and

|α|k > |αi| > |β|k

for all i ∈ {2, . . . , k}. Further,

(12) γ1 =
bαk(k−1)/2

(α− β)k
, γk+1 = (−1)k

bβk(k−1)/2

(α− β)k
and γk+2 = a

are all nonzero. Should equation (3) have infinitely many nonnegative integer
solutions n, it would follow that for infinitely many n there exists an integer
y = y(n) such that

(13) wn = ym.

To see that this is impossible, we use the following extension of Fuchs [6] of
a result of Corvaja and Zannier [4].

Theorem 2. Let (Gn)n≥0 be a linearly recurrent sequence of integers of
the form

(14) Gn = γ1α
n
1 + γ2α

n
2 + · · ·+ γsα

n
s for n ≥ 0,

where the αi are algebraic integers for all i = 1, . . . , s, the ratios αi/αj are
not roots of unity for any i 6= j, and the γi are nonzero algebraic numbers
belonging to the field K = Q(α1, . . . , αs). Assume further that 1 6= |α1| >
max{|αi| : i = 2, . . . , s}. Let q ≥ 2 be any fixed prime number and assume
that for infinitely many n there exists an integer y such that

Gn = yq.

Then there exist an integer t ≥ 1, algebraic numbers β1, . . . , βt in the multi-
plicative subgroup of K generated by {αi : i = 1, . . . , s}, some other algebraic
numbers δ1, . . . , δt (not necessarily in K), and two nonzero integers c and d,
such that

(15) Gc+nd = (δ1βn1 + · · ·+ δtβ
n
t )q

for all nonnegative integers n.

The above theorem is basically Corollary 2 in [6]. In that paper, it is
only stated that β1, . . . , βt are algebraic numbers, but a close inspection
of the proof of the main result in [6] shows that the βj can be chosen to
be of the form α

µ1j

1 · · ·αµsjs , where the exponents µij are rational numbers
of denominators dividing q. Now the assertion of Theorem 2 follows by
considering Gc+n(qd) = Gc+(nq)d for all nonnegative integers n in (15). Here,
we replace βj by βqj , and δj by δjβ

c
j . Hence, the βj can indeed be chosen
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to be in the multiplicative subgroup of K generated by {αi : i = 1, . . . , s}.
Applying Theorem 2 above to the case in which equation (13) has infinitely
many integer solutions (n, y1), we find that there exist positive integers c
and d such that

(16)
k+2∑
i=1

γ′i(α
′
i)
n =

( t∑
j=1

δjβ
n
j

)m
identically for all nonnegative integers n, where γ′i = γiα

c
i and α′i = αdi

for all i = 1, . . . , k + 2, with some integer t ≥ 1, algebraic numbers δj for
j = 1, . . . , t, and algebraic numbers βj in the multiplicative subgroup of K
generated by {α, β} for all j = 1, . . . , t. By replacing n by 2n if needed, it
follows that we may replace α and β by α2 and β2, respectively, and thus we
may assume that α > β > 0, and that βj > 0 for all j = 1, . . . , t. Now the
positive real numbers α > β are multiplicatively independent, and therefore
the functions n 7→ αn and n 7→ βn are algebraically independent over C.
Thus, relation (16) implies that we may formally replace in it αn by X and
βn by Y to obtain an equality of the form

k+1∑
i=1

γ′iX
d(k−(j−1))Y d(j−1) + a = F (X,Y )m

with some F (X,Y ) in Q[X,Y,X−1, Y −1]. Specifically, if

βj = α
l1,j
1 · · ·αlk+2,j

k+2 = α
Pk+1
i=1 li,j(k−(j−1))β

Pk+1
j=1 li,j(j−1) = αmjβnj

with some integers l1,j , . . . , lk+2,j , then

(17) F (X,Y ) =
t∑

j=1

δjX
mjY nj .

Thus, we have arrived at a relation of the form

(18)
k+1∑
i=1

γ′iX
d(k−(j−1))Y d(j−1) + a =

( t∑
j=1

δjX
mjY nj

)m
in Q[X,Y,X−1, Y −1]. Since the left hand side of (18) is a polynomial in X
and Y , it follows that F (X,Y ) is a polynomial in X and Y as well.

To prove that (18) is impossible, we argue as follows. We notice that the
left hand side of (18) is of the form Hdk(X,Y ) + a, where Hdk(X,Y ) is a
homogeneous polynomial in X and Y of degree dk ≥ 1, and a is a nonzero
constant. Evaluating (18) at (X,Y ) = (0, 0), we find that F (0, 0)=δ satisfies
δm = a 6= 0. Thus, δ 6= 0. Let d1 ≥ 1 be the degree of F , and write

(19) F (X,Y ) = Hd1(X,Y ) + · · ·+Hdµ(X,Y ) + δ,
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where µ ≥ 1, 0 < dµ < · · · < d1, and Hdi(X,Y ) is a nonzero homogeneous
polynomial of degree di in X and Y for all i = 1, . . . , µ. Clearly, the repre-
sentation (19) is unique. Comparing the degrees, we get dk = d1m. If µ ≥ 2,
then

Hdk(X,Y ) + a = F (X,Y )m(20)
= Hd1(X,Y )m +mHd1(X,Y )q−1Hd2(X,Y )

+ monomials of degree less than (m− 1)d1 + d2.

This relation is impossible because the nonconstant polynomial Hdk(X,Y )
+ a appearing on the left hand side of (20) does not contain monomials
of positive degree (m − 1)d1 + d2 < d1m = dk. If µ = 1, we derive a
contradiction similarly. Thus, equation (13) has only finitely many solutions
(n, k, y,m) in this instance.

Step 4. α and β are multiplicatively dependent.

Here, we shall distinguish two instances, according to whether α is ra-
tional or not.

Case 1: α ∈ Q. Since α and β are algebraic integers, they are both
integers. Moreover, since they are multiplicatively dependent, there exist an
integer % with |%| > 1 and nonnegative coprime integers e > f such that
α = ε1%

e and β = ε2%
f , where ε1, ε2 ∈ {±1}. As e and f are coprime, one

of them is always odd. Thus, replacing % by −% if necessary, we may assume
that ε1 or ε2 is +1.

We split all the solutions of equation (13) into two classes, with n even
or n odd. We shall show in detail that there are only finitely many solutions
with n even and they are furthermore effectively computable. Up to some
minor differences which we will point out, the arguments for n odd are
entirely similar. For k fixed, consider the polynomial

(21) P (X) =
1

(α− β)k

k−1∏
i=0

(αiXe − βiXf ) + t.

Any solution of (13) will be a solution of the Diophantine equation

(22) bP (%n) = bym = ym1

with an integer y1 such that |y1| > 1, and a bounded prime number m.
Here is a criterion which is useful for us. Let K be an algebraic number

field and OK its ring of integers. Let P (X) ∈ K[X] be nonconstant. Let
δ1, . . . , δµ be all the distinct roots of P of respective multiplicities σ1, . . . , σµ.
Let φ ∈ K be such that the greatest prime factor of NK(φ) is bounded.

Criterion 1. Let % ∈ K be an algebraic number which is not a root of
unity and P (X) ∈ K[X]. Assume that the multiplicities of the nonzero roots
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of P (X) are relatively prime. Then the Diophantine equation

(23) P (%n) = φym

has only finitely many effectively computable solutions (n, y,m) with m ≥ 2,
n > 0 and y ∈ OK.

We shall use the above criterion only when m is bounded.

Proof. Write

P (X) = a0

µ∏
i=1

(X − δi)σi ,

where δ1, . . . , δµ are the distinct roots of P (X). Let L = K(δ1, . . . , δµ) be the
splitting field of P (X). Write d for the degree of P , and D for a positive inte-
ger which is divisible by the denominators of %, of the roots δ1, . . . , δµ and of
the leading term a0 of P (X). We write τ = %D and γi = δiD for i = 1, . . . , µ.

Multiplying now equation (23) across by Dn+d+1, we get an equation
which can be rewritten as

(24) (Da0)
µ∏
i=1

(τn − γiDn)σi = Dn+d+1φym.

Since the left hand side above is an algebraic integer, so is the right hand
side. We may suppose that γ1 6= 0 and that gcd(σ1,m) = 1. Now we argue
as in [1] to conclude that

(25) τn − γ1D
n = η1λ

m
1 ,

where n is a positive integer, λ1 is an algebraic integer in L and η1 is an
algebraic number in L having both bounded denominator and largest prime
factor of NL(η1). Since % = τ/D is not a root of unity and γ1 6= 0, the left
hand side of (25) is a binary recurrent sequence of algebraic integers in L
which is nondegenerate. It follows from known results about perfect powers
in nondegenerate binary recurrent sequences (see, for example, Corollary 9.2
in [8], or the book [9]), that (25) has only finitely many such solutions n
and γ1, which are, moreover, effectively computable. This completes the
proof of the criterion.

Remark. The above proof of Criterion 1 proves more, namely that if
% ∈ K is an algebraic number which is not a root of unity such that the
equation P (%n) = φym has infinitely many solutions (n, y,m) with y ∈ K
and m prime, then for all but finitely many such solutions, m divides all the
multiplicities of all the nonzero roots of P (X). We shall use this formulation
in what follows.

We use Criterion 1 to infer that (22) has only finitely many solutions.
Assume first that 0 is not a root of P . In this case, by the criterion, (22) has
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only finitely many solutions except when m is a prime number dividing the
multiplicities of all the roots of P . Then there must exist a nonzero rational
number c and a monic polynomial F with rational coefficients such that
P (X) = cF (X)m. We now show that c is not an mth power of a rational
number. Indeed, if f > 0, then P (0) = t = cF (0)m, and since t 6= 0 is not
an mth power of a rational number, we infer that F (0) 6= 0, and c is not an
mth power of a rational number either. If f = 0, then e = 1 and we may
assume that α = %. In this case, P (1) = t = cF (1)m. Since t 6= 0 is not an
mth power of a rational number, we find again that neither is c.

We now show that (22) has no solutions when |%|n>max{δi : i= 1, . . . ,
µ}. Indeed, if it had such a solution, we would get an equation of the form

cF (%n)m = ym

with some rational number y. Since the roots of F are the same as the
roots of P , and since n is large, we infer that F (%n) 6= 0. In particular,
c = (y/F (%n))m is an mth power of a rational number, which we have seen
to be impossible.

Thus, we are left with the case where 0 is a root of P . In this case, f = 0,
and therefore e = 1, α = % and β = ±1. Moreover, since P (0) = 0, we get

(26) t = −(−1)kβk(k−1)/2

(α− β)k
.

We now show that 0 is a simple root of P , and that P has no triple roots.
Indeed, the first fact comes from the observation that the coefficient of the
monomial X in P (X) is precisely

(−1)k−1βk(k−1)/2

(α− β)k

k−1∑
i=0

(
α

β

)i
=

(−1)k−1β(k−1)(k−2)/2

(α− β)k+1
(αk − βk),

and this is nonzero because α/β = ±% is not a root of unity. Now observe
that P (X) assumes the value t at the points (β/α)i with i = 0, 1, . . . , k− 1,
which are all real and distinct. We apply Rolle’s theorem at these points to
conclude that the roots of P ′(X) are simple. Thus, P has no triple root. We
shall use this argument several times in this paper.

Since we already know that 0 is a simple root and P (X) has no triple
roots, it follows that all the nonzero roots of P (X) are either simple or
double. If one of them is simple, then we are in the hypothesis of Criterion 1,
so (13) has only finitely many effectively computable solutions (m,n) with
n even. The case of n odd can be handled similarly. Assume now that all
the nonzero roots of P (X) are double. Then k must be odd. But then (26)
yields

t =
(
β(k−1)/2

α− β

)k
.
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Thus, t is a perfect power of a rational number when k > 1. We are therefore
left with the case of k = 1, so t = 1/(α− β), and

(27) un + t =
αn + (1− βn)

α− β
.

If n is even, or n is odd and β = 1, we get

un + t =
αn

α− β
.

Assume now that the equation

(28)
αn

α− β
= ym

admits a solution (n,m, y) with n ≥ 2 and y a rational number. Notice that
|α|n = |%|n > |%| + 1 ≥ |α − β|, because |%| > 1 is an integer. Assume first
that m is odd. Since αn and |α−β| = α±1 are coprime, it follows that α−β
is an mth power of an integer since m is odd. In particular, t is an mth power
of a rational number, which is impossible. Assume next that m = 2. Then
either both αn and α − β or both −αn and −(α − β) are perfect squares.
The first instance implies again that t is the square of a rational number,
which is impossible, while the second implies that n is odd, −α = a2

1 is a
perfect square, and so is a2

1 ± 1 = −α + β = a2
2. However, the only integer

solutions (a1, a2) of the equation a2
1± 1 = a2

2 have |a1| ≤ 1, so |%| = |α| ≤ 1,
which is impossible. This takes care of the case when n is even, or when n is
odd but β = 1. Finally, when n is odd and β = −1, equation (27) becomes

αn + 2
α+ 1

= ym.

Since n is odd, α+ 1 | (αn + 1), and therefore α+ 1 and αn + 2 are coprime.
Since their ratio is an mth power of a rational number, we deduce that α+1
is an mth power of an integer, so, in particular, t is an mth power of a
rational number, which is a contradiction.

The case α ∈ Q is therefore settled.

Case 2: α 6∈ Q. Let K = Q(α). Then [K : Q] = 2. Since α and β are
multiplicatively dependent, there exist integers i>0 and j such that αi=βj .
Conjugating this relation by the only nontrivial Galois automorphism of K,
we also get βi = αj . Thus,

βi
2

= (βi)i = (αj)i = αij = (αi)j = (βj)j = βj
2
,

and therefore
βi

2−j2 = 1.

Since β is not a root of unity (otherwise, so is α, and therefore also α/β,
which is impossible), we must have i2 = j2, so i = j or i = −j. The case
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i = j leads to (α/β)i = 1, which is impossible. The case i = −j gives
(αβ)i = 1, implying β = ζα−1, where ζ ∈ {±1}.

In particular, s = −ζ = ±1. Since ∆ = r2 + 4s = r2 ± 4 and r∆ 6= 0, we
get ∆ > 0, and therefore K is a real quadratic field.

We shall write R(X) for the element of K[X,X−1] given by

(29) R(X) =
1

(α− β)k

k−1∏
i=0

(
αiX − ζnβi

X

)
+ t = c

P1(X)
Xk

,

where

(30) c =
αk(k−1)/2

(α− β)k
,

and P1(X) is the monic polynomial in K[X] given by

(31) P1(X) =
k−1∏
i=0

(X2 − ζn%i) + t1X
k,

with

(32) % =
β

α
=

ζ

α2
and t1 =

t

c
= t

(α− β)k

αk(k−1)/2
.

Any solution (n, y) of equation (13) leads to a solution of the equation

ym = R(x) = c
P1(x)
xk

with x = αn, and therefore of the equation

(33) P1(αn) =
αnk

c
ym

with some rational number y with |y| 6= 0, 1, which has a bounded denom-
inator. Since α is a unit in K (but not a root of unity), it follows that we
may apply Criterion 1 to conclude that equation (33) has only finitely many
effectively computable solutions (n, y), provided that the polynomial P1(X)
satisfies, of course, the conditions from that criterion.

From now on, we focus on proving that P1(X) satisfies the conditions
from Criterion 1. We assume that this is not the case. Clearly, 0 is not a
root of P1(X), because the constant term of P1(X) is (−1)k%k(k−1)/2 6= 0.
By the Remark following the proof of Criterion 1, it follows that we may
assume that (33) has infinitely many solutions (n, y,m), where m is a prime
dividing all the multiplicities of all the nonzero roots of P1(X).

To ensure first that P1(X) has a sufficiently large degree, we shall start
by treating separately the cases in which k ∈ {1, 2}.

Subcase 2.1: k = 1. In this case, we have P1(X) = X2 + t1X − ζn,
whose discriminant is ∆1 = t21 + 4ζn = 0 implying t21 = −4ζn, n is odd,
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ζ = −1, t1 = ±2, and t = ct1 = ±2/(α− β) = ±2/
√
r2 + 4, which is

impossible since t ∈ Q.

Subcase 2.2: k = 2. In this case,

(34) P1(X) = (X2− ζn)(X2− ζn%) + t1X
2 = X4− (ζn + ζn%− t1)X2 + %.

The degree of P1(X) is four and 0 is not a root of P1(X). Since all the roots
of P1(X) are multiple, we get m = 2. Equation (3) now implies that α > 0
since if α < 0, then

unun+1 + t < 0

for all sufficiently large n, so this expression cannot be a perfect square.
Further, P1(X) has a double root if and only if

(ζn + ζn%− t1)2 = 4% = 4ζ/α2,

implying ζ = 1 and t = 1/(r − 2ε), where ε ∈ {±1}.
Returning to our original problem, we get

unun+1 + t =
(αn − 1/αn)(αn+1 − 1/αn+1)

r2 − 4
+

1
r − 2ε

(35)

=
1

r2 − 4

(
α2n+1 +

1
α2n+1

−
(
α+

1
α

)
+ r + 2ε

)
=

1
r2 − 4

(
α2n+1 +

1
α2n+1

+ 2ε
)

=
1

r2 − 4

(
(
√
α)2n+1 +

(
ε√
α

)2n+1)2

.

Let α1 =
√
α. If the equation (13) has at least one solution (n, y) with an

integer n ≥ 0 and a rational number y, then

(36) (
√
α)2n+1 +

(
ε√
α

)2n+1

= ±y
√
r2 − 4 ∈ K,

and since α2
1 = α ∈ K, we deduce that α2n+1

1 ∈ K, so α1 ∈ K. Let β1 be the
conjugate of α1 ∈ K. If β1 = ε/α1, it follows that

(37) (
√
α)2n+1 +

(
ε√
α

)2n+1

= α2n+1
1 + β2n+1

1 ∈ Z,

because this is the (2n+ 1)th member of the Lucas sequence of the second
kind (vm)m≥0 with roots α1 and β1. Now (36) and (37) together imply that√
r2 − 4 ∈ Q, which is impossible. Thus, β1 = −ε/α1, and therefore

unun+1 + t =
1

r2 − 4
(α2n+1

1 − β2n+1
1 )2(38)

=
(α1 − β1)2

r2 − 4

(
α2n+1

1 − β2n+1
1

α1 − β1

)2

.
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We now observe that the number (α2n+1
1 − β2n+1

1 )/(α1 − β1) appearing on
the right hand side of (38) is an integer (it is the (2n + 1)th member of
the Lucas sequence of the first kind with roots α1 and β1), and therefore
(α1 − β1)2/(r2 − 4) must be a square of a rational number. However,

(α1 − β1)2

r2 − 4
=
α+ β − 2α1β1

r2 − 4
=
r + 2ε
r2 − 4

=
1

r − 2ε
= t,

so t is a perfect square of a rational number, which is impossible.

Remark. Incidentally, we have proved a somewhat stronger statement:
if (un)n≥0 is a Lucas sequence of the first kind with s = ±1, then there
exists a rational number t such that the equation unun+1 + t = y2 has
infinitely many solutions (n, y) with a nonnegative integer n ≥ 0 and a
rational number y if and only if α = α2

1 is a perfect square in Q(α1), and in
this case, with −ε = α1β1, the number t must be equal to 1/(r − 2ε) and
must be a perfect square. In particular, t is unique. Such a result also appears
in [5]. As an example of this phenomenon, when (un)n≥0 = (F2n)n≥0 is the
Lucas sequence of the first kind of all even indexed Fibonacci numbers, the
resulting value of t is precisely t = 1, which explains formula (5).

From now on, we assume that k ≥ 3. To understand the multiplicities of
the roots of P1(X), we use the obvious fact that δ is a root of multiplicity
σ of P1(X) if and only if δ is a root of multiplicity σ of

(39) R1(X) =
P1(X)
Xk

.

Also notice that the functions R1(X) and

R2(X) =
k−1∏
i=0

(
X − ζn%i

X

)
= R1(X)− t1

differ by the additive constant t1. In particular, R′1(X) and R′2(X) are equal,
so they have the same roots with the same multiplicities. Based on these
observations, we shall show that we may apply Criterion 1 when m ≥ 3.

When ζ = 1, R1(X) assumes the value t1 at exactly 2k distinct real
points {±α−i : i = 0, . . . , k − 1}. By Rolle’s theorem, R′1(X) has 2k − 1
roots in the interval [−1, 1] and they are all distinct. In particular, P1(X)
cannot have a triple root, because R′1(X) would then have a double root,
and this is impossible. Thus, we may apply Criterion 1 when m ≥ 3.

When ζ = −1, the situation is more complicated because R2(X) has
complex nonreal roots, so we cannot apply Rolle’s theorem right away. Let
us consider just the case where n is even because the case of n odd is entirely
similar. For n even,
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(40) R2(X) =
k−1∏
j=0

(
X − (−1)j

α2jX

)
.

By an argument as before, R1(X) assumes the value t1 at 2b(k − 1)/2c+ 2
real points, namely {±α−j : 0 ≤ j ≤ k − 1 and j ≡ 0 (mod 2)}; therefore,
by Rolle’s theorem, R′1(X) has at least 2b(k−1)/2c+ 1 real roots which are
all distinct. Let i =

√
−1 and

(41) R3(X) = i−kR2(iX) =
k−1∏
j=0

(
X − (−1)j+1

α2jX

)
.

It is clear that iδ is a root of R2(X) if and only if δ is a root of R3(X).
Further, we see from Rolle’s theorem again thatR′3(X) has at least 2bk/2c−1
distinct real roots; thus, R′2(X) = R′1(X) also has at least 2bk/2c−1 distinct
complex roots, all of them on the imaginary axis. Thus, we have identified
2bk/2c+ 2b(k− 1)/2c = 2k− 2 roots of R′1(X) which are all distinct (notice
that the intersection of the real axis with the imaginary axis is the origin,
which is not one of these roots), and so we conclude that either all the roots
of P1(X) are of multiplicity at most two, or there exists only one root of
multiplicity three, and all the others have multiplicities at most 2. But the
degree of P1(X) is 2k > 4 and even, so if there exists a triple root, there
must exist another root of P1(X) which is simple, and therefore we can
apply Criterion 1 for all m > 2.

Thus, it remains to investigate the case where m = 2 and all the roots
of P1(X) are double. In this case, there exists a monic polynomial P2(X) ∈
K[X] such that

(42) P1(X) = P2(X)2.

We now show that k is even. Indeed, suppose that k is odd. Notice that
all the monomials appearing in P1(X), except Xk, are of even degrees. Let
j be the smallest possible odd degree of a monomial that appears in P2(X).
Thus,

(43) P2(X) = Xj+1P3(X) + ajX
j +

∑
0≤i<j/2

aiX
2i.

Such a j exists, for if not, then P1(X) = P2(X)2 will not contain any mono-
mial of odd degree. One proves immediately that j = k, and since the degree
of P2(X) is precisely k and P2(X) is monic, we get P2(X) = Xk + P4(X2)
with some P4(X) ∈ K[X] of degree < k/2. Thus,

(44) P1(X) = (Xk + P4(X2))2 = X2k + P4(X2)2 + 2XkP4(X2).

Equating the monomials of odd degrees on both sides of (44), we get t1 =
2P4(X2), and so P4(X2) = d is constant. In particular, P1(X) = (Xk+d)2 =
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X2k + 2dXk + d2 does not contain the monomial X2k−2, because k > 2.
However, the coefficient of X2k−2 in P1(X) is obviously

−ζn
k−1∑
i=0

%i = −ζn 1− %k

1− %
6= 0,

because % is not a root of unity. This contradiction shows that k must be
even. Thus, k ≥ 4.

Subcase 2.3: k = 4. In this case,

(45) P1(X) = (X2 − ζn)(X2 − ζn%)(X2 − ζn%2)(X2 − ζn%3) + t1X
4.

Since P1(X) = P2(X)2 and P1(−X) = P1(X), and 0 is not a root of P1(X),
it follows easily that P2(X) contains only monomials of even degrees. Thus,
there exist a and b in K such that P2(X) = X4 + aX2 + b, and substituting
X2 by Z in (42), we get

(46) (Z − ζn)(Z − ζn%)(Z − ζn%2)(Z − ζn%3) + t1Z
2 = (Z2 + aZ + b)2.

Equating the coefficients in (46), we get

(47) 2a = −ζn(1 + %+ %2 + %3), a2 + 2b = %+ %2 + 2%3 + %4 + %5 + t1,

(48) 2ab = −ζn%3(1 + %+ %2 + %3), b2 = %6.

From the first equations in (47) and in (48), we get b = %3, and inserting
this into the second equation of (47) we find

t1 = a2 + 2b− (%+ %2 + 2%3 + %4 + %5)

=
1
4

(1 + %+ %2 + %3)2 + 2%3 − (%+ %2 + 2%3 + %4 + %5)

=
1− 2%− %2 + 4%3 − %4 − 2%5 + %6

4
.

Thus, with formulas (32), we get

(49) t =
α6 − 2α5β − α4β2 + 4α3β3 − α2β4 − 2αβ5 + β6

4(α− β)4
.

If we write αβ = −s = ±1, and use (vn)n≥0 for the Lucas sequence of the
second kind with roots α and β, the above formula (49) can be rewritten as

(50) t =
v6 + 2sv4 − v2 − 4s

4(r2 + 4s)2
.

Since v0 = 2 and v1 = r, one can use the recurrence relation vn+2 = rvn+1 +
svn, which holds for all n ≥ 0, to check that v2 = r2 +2s, v4 = r4 +4r2s+2,
v6 = r6 +6r4s+9r2 +2s, and plugging all these into (50), we get, after some
simplifications,

t =
r6 + 8r4s+ 16r2

4(r2 + 4s)2
=
r2(r4 + 8r2s+ 16s2)

4(r2 + 4s)2
=
r2

4
=
(
r

2

)2

.(51)
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Of course, (51) is impossible, because t is not allowed to be a perfect power
of some other rational number.

Remark. Incidentally, we proved that if (un)n≥0 is a Lucas sequence
of the first kind with s = ±1 such that there exists a rational number t
with unun+1un+2un+3 + t being a perfect square for infinitely many n ≥ 0,
then t = (r/2)2. In particular, t is uniquely determined, and is a perfect
square. When (un)n≥0 = (Fn)n≥0 is the Fibonacci sequence, we have r = 1,
so t = 1/4, which explains the example in (6).

From now on, we assume that k ≥ 6. We notice that either 4 | k, or ζ = 1.
Indeed, the fact that ζ = 1 when k ≡ 2 (mod 4) follows by identifying the
constant term of P1(X) from (42), which on the one hand must be a perfect
square (the perfect square of the constant term of P2(X)), while on the other
hand it must be, by (31) and (32),

(−ζn)k %k(k−1)/2 = ζk(k−1)/2 1
αk(k−1)

,

and αk(k−1) is already a perfect square in K, while when ζ = −1, we have
ζk(k−1)/2 = −1, because k ≡ 2 (mod 4), and −1 cannot be a square in K,
because the quadratic field K is real. Hence, 4 | k when ζ = −1. We also
write t1 = t22 for some algebraic number t2. Note that t2 ∈ K when ζ = 1
(or when ζ = −1 and n is even) because in this case by evaluating (42) at
X = 1 we find that t1 = P1(1) = P2(1)2 is a square of an element of K.

We shall first treat the case where 4 | k. In particular, k ≥ 8. As pointed
out before, P1(X) has only monomials of even degrees, hence so does P2(X).
In particular, if we write P5(X) for the polynomial in K[X] such that
P2(X) = P5(X2) and Z = X2, formula (42) becomes

k−1∏
i=0

(Z − ε%i) + t22Z
k/2 = P5(Z)2,

where ε = ζn ∈ {±1}, which can be rewritten as

(52)
k−1∏
i=0

(Z − ε%i) = (P5(Z)− t2Zk/4)(P5(Z) + t2Z
k/4).

From (52), together with the fact that P5(Z) is monic of degree k/2, it
follows that there exists a partition of {0, . . . , k− 1} into two subsets I and
J of the same cardinality k/2 such that

(53) P5(Z)− t2Zk/4 =
∏
i∈I

(Z − ε%i), P5(Z) + t2Z
k/4 =

∏
j∈J

(Z − ε%j).
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Thus,

(54) 2t2Zk/4 =
∏
j∈J

(Z − ε%j)−
∏
i∈I

(Z − ε%i).

By equating the coefficients of Zk/2−1 on both sides of (54), we get

(55)
∑
i∈I

%i =
∑
j∈J

%j

since k > 5. If we write α2 = α2, equations (32) and (55) lead to a relation

(56) αk−1
2 =

k−2∑
i=0

εiα
i
2 with some εi ∈ {±1} for i = 0, . . . , k − 2.

This implies that α2 < 2. However, α2 = α2, and α is a quadratic unit, so
|α| ≥ (1 +

√
5)/2, which is a contradiction.

Finally, the case of k ≡ 2 (mod 4) can be dealt with in a similar way.
Namely, in this case we have ζ = 1. Further, α > 0 by (3). Indeed, if
α < 0, then unun+1 < 0 for all large n. In particular, for k ≡ 2 (mod 4),
the inequality

k−1∏
i=0

un+i + t = t+
k/2−1∏
i=0

un+2iun+2i+1 < 0

holds for all large values of n, so (3) cannot hold with some rational number
y and m = 2. Thus, α > 0 and we may write

k−1∏
i=0

(X2 − %i) + t22X
k = P2(X)2,

and therefore

(57)
k−1∏
i=0

(X − %i)(X + %i) = (P2(X)− t2Xk/2)(P2(X) + t2X
k/2).

Hence, again we may partition the set {±%i : i = 0, . . . , k − 1} into two
subsets, say A and B, each of cardinality k, such that

(58)

P2(X)− t2Xk/2 =
∏
%∈A

(X − %),

P2(X) + t2X
k/2 =

∏
%′∈B

(X − %′).

Thus, we get the relation

(59) 2t2Xk/2 =
∏
%′∈B

(X − %′)−
∏
%∈A

(X − %).



70 F. Luca and T. N. Shorey

Since k > 3 in this case, we may equate the coefficients of Xk−1 to get

(60)
∑
%′∈B

%′ =
∑
%∈A

%.

The above relation (60) may be trivial or not. That is, if there exists % ∈ A
such that −% 6∈ A, then, as in the previous case, equation (60) leads to the
conclusion that there exist µ ≥ 1, indices 0 ≤ i1 < · · · < iµ in {0, . . . , k−1},
and signs εν ∈ {±1} for ν = 0, . . . , µ such that

(61)
µ∑
ν=0

ενα
ν = 0.

The conclusion is again that α < 2. However, since ζ = 1, it follows that
α is a quadratic unit of norm 1, and the smallest such is again at least
2 +
√

3 > 2, which is a contradiction.
Assume that (60) is trivial. In this case, whenever % ∈ A then also

−% ∈ A. But if this is so, since k/2 ≥ 3, we may equate the coefficients of
X2 on both sides of (59), and since both A and B have the property that
once they contain an element they also contain its negative, we get

(62)
∑
%′∈B

1
%′2

=
∑
%∈A

1
%2
.

With α2 = α2, equation (62) yields

αk−1
2 =

k−2∑
i=0

εiα
i
2 with some εi ∈ {±1} for i = 0, . . . , k − 2,

which again leads to the conclusion that α2 < 2, which is impossible.
This completes the analysis of the case α 6∈ Q, and Theorem 1 is proved.
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Universidad Nacional Autónoma de México
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