The reduced length of a polynomial with complex coefficients

by

A. Schinzel (Warszawa)

Dedicated to Wolfgang M. Schmidt on the occasion of his 75th birthday

For
$$P \in \mathbb{C}[x]$$
, $P(x) = \sum_{i=0}^{d} a_i x^{d-i} = a_0 \prod_{i=1}^{d} (x - \alpha_i)$, let
$$P^*(x) = \sum_{i=0}^{d} a_i x^i, \quad H(P) = \max_{0 \le i \le d} |a_i|,$$

$$L(P) = \sum_{i=0}^{d} |a_i|, \quad M(P) = |a_0| \prod_{i=1}^{d} \max\{1, |\alpha_i|\},$$

$$l(P) = \inf L(PG), \quad \widehat{l}(P) = \min\{l(P), l(P^*)\},$$

where G runs through all monic polynomials in $\mathbb{C}[x]$. This notation is consistent with that of [3] and [4], since if $P \in \mathbb{R}[x]$ the above infimum coincides with inf L(PG), where G runs through all monic polynomials in $\mathbb{R}[x]$. Some of the results about l(P) stated in [1] and [3] for $P \in \mathbb{R}[x]$ carry over with essentially the same proof to $P \in \mathbb{C}[x]$. Thus we have

PROPOSITION 1. Suppose that $\omega, \eta, \psi \in \mathbb{C}$, $|\omega| \geq 1$, $|\eta| < 1$. Then for every $Q \in \mathbb{C}[x]$,

- (i) $l(\psi Q) = |\psi| l(Q)$,
- (ii) $l(x + \omega) = 1 + |\omega|$,
- (iii) if $T(x) = Q(x)(x \eta)$, then l(T) = l(Q),
- (iv) $l(\overline{Q}) = l(Q)$, where \overline{Q} denotes the complex conjugate of Q.

PROPOSITION 2. For all monic polynomials P, Q in $\mathbb{C}[x]$, all $\eta \in \mathbb{C}$ with $|\eta| = 1$ and all positive integers k,

- (i) $\max\{l(P), l(Q)\} \le l(PQ) \le l(P)l(Q),$
- (ii) $M(P) \leq l(P)$,

2000 Mathematics Subject Classification: 12D99, 26C99.

Key words and phrases: reduced length, complex polynomial.

- (iii) $l(P(\eta x)) = l(P(x)),$
- (iv) $l(P(x^k)) = l(P(x))$.

THEOREM 1. Let $P, Q \in \mathbb{C}[x]$, Q be monic and have all zeros on the unit circle. Then for all $m \in \mathbb{N}$,

$$l(PQ^m) = l(PQ).$$

THEOREM 2. If $P \in \mathbb{C}[x] \setminus \mathbb{C}$ is monic and has all zeros on the unit circle, then $\widehat{l}(P) = l(P) = 2$, with l(P) attained if all zeros are roots of unity and simple (l(P) is attained means that l(P) = L(Q), where Q/P is a monic polynomial).

Theorems 1 and 2 correspond to Theorems 3 and 4 of [3], respectively. Also Theorem 6 of [3] extends to polynomials over \mathbb{C} , but the extension requires a different proof. We shall prove the following more general

Theorem 3. Let $P=P_0P_1$, where $P_{\nu}\in\mathbb{C}[x]$ $(\nu=1,2),$ $L(P_0)\leq 2|P_0(0)|$ and P_1 is monic. Then

$$l(P) \ge L(P_0) + (2|P_0(0)| - L(P_0))(l(P_1) - 1).$$

COROLLARY 1. If $P \in \mathbb{C}[x]$ and $L(P) \leq 2|P(0)|$, then

$$l(P) = L(P).$$

Conversely, if l(P) = L(P) and all coefficients of P are real and positive, then $L(P) \leq 2P(0)$.

COROLLARY 2. If $P(x) = (x - \alpha)(x - \beta)$, where $|\alpha| \ge |\beta| \ge 1$, then

(1)
$$l(P) \ge 1 + |\alpha| - |\beta| + |\alpha\beta|,$$

with equality if $\alpha/\beta \in \mathbb{R}$ and either $\alpha/\beta < 0$ or $|\beta| = 1$.

One can prove that if $\alpha/\beta + \beta/\alpha \in \mathbb{R}$, the two cases given in Corollary 2 are the only ones for which there is equality in (1).

COROLLARY 3. If
$$P(x) = (x - \alpha)(x - \beta)$$
, where $|\alpha| \ge |\beta| \ge 1$, then $l(P) \ge 2|\alpha|$,

with equality only possible if $|\beta| = 1$. If moreover $\alpha/\beta \in \mathbb{R}$, then the equality really holds.

COROLLARY 4. Let $P = P_0 P_1$, where $P_{\nu} \in \mathbb{C}[x]$ ($\nu = 0, 1$), $\deg P_1 \ge 1$ and all zeros z of P_{ν} satisfy |z| > 1 for $\nu = 0$, |z| = 1 for $\nu = 1$. If

$$(2) l(P_0) = L(P_0),$$

then

$$(3) l(P) \ge 2M(P).$$

It remains a problem whether (3) holds without the assumption (2). The following results point towards an affirmative answer.

THEOREM 4. If
$$P \in \mathbb{C}[x] \setminus \{0\}$$
 has a zero z with $|z| = 1$, then $L(P) > \sqrt{2} M(P)$, $l(P) \ge \sqrt{2} M(P)$.

THEOREM 5. If $P(x) = (x - \alpha)(x - \beta)(x - 1)$, where α, β are real and at least one of them is positive, then (3) holds.

The validity of (3) for all polynomials P over \mathbb{C} or over \mathbb{R} with a zero on the unit circle is equivalent to the validity of a simpler inequality $L(P) \geq 2M(P)$ for all polynomials P over \mathbb{C} or \mathbb{R} , respectively, with a zero on the unit circle. E. Dobrowolski has verified that the latter inequality is true for all such polynomials $P \in \mathbb{C}[x]$ of degree at most 4.

I thank E. Dobrowolski and A. Dubickas for valuable criticism.

Proof of Theorem 3. Let G be any monic polynomial in $\mathbb{C}[x]$ and let

$$T(x) = P_1(x)G(x) = x^n + \sum_{i=1}^n b_i x^{n-i}, \quad b_0 = 1.$$

We have

(4)
$$\sum_{i=1}^{n} |b_i| = L(T) - 1 \ge l(P_1) - 1.$$

Now, let

$$P_0(x) = \sum_{i=0}^{d} a_i x^{d-i}.$$

We have

$$Q(x) = P(x)G(x) = P_0(x)T(x) = \left(\sum_{i=0}^{d} a_i x^{d-i}\right) \left(\sum_{i=0}^{n} b_i x^{n-i}\right)$$
$$= \sum_{i=0}^{d+n} \left(\sum_{i=0}^{\min\{j,d\}} a_i b_{j-i}\right) x^{d+n-j}.$$

Now

$$\Big|\sum_{i=0}^{\min\{j,d\}} a_i b_{j-i}\Big| \ge \begin{cases} |a_j| - \sum_{i=0}^{j-1} |a_i| \, |b_{j-i}| & \text{for } j \le d, \\ |a_d| \, |b_{j-d}| - \sum_{i=0}^{d-1} |a_i| \, |b_{j-i}| & \text{for } j > d, \end{cases}$$

hence

$$\begin{split} L(Q) &= \sum_{j=0}^{d+n} \Big| \sum_{i=0}^{\min\{j,d\}} a_i b_{j-i} \Big| \\ &\geq \sum_{j=0}^{d} |a_j| - \sum_{j=1}^{d} \sum_{i=0}^{j-1} |a_i| \, |b_{j-i}| + \sum_{j=d+1}^{d+n} |a_d| \, |b_{j-d}| - \sum_{j=d+1}^{d+n} \sum_{i=0}^{d-1} |a_i| \, |b_{j-i}| \\ &= L(P_0) + |a_d| (L(T) - 1) - \sum_{j=1}^{d+n} \sum_{i=0}^{\min\{j-1, d-1\}} |a_i| \, |b_{j-i}| \\ &= L(P_0) + |P_0(0)| (L(T) - 1) - (L(P_0) - |P_0(0)|) (L(T) - 1) \end{split}$$

and since, by the assumption, $|2P_0(0)| - L(P_0) \ge 0$ it follows from (4) that

$$L(Q) \ge L(P_0) + (2|P_0(0)| - L(P_0))(l(P_1) - 1).$$

Proof of Corollary 1. In order to obtain the first statement we take $P_1 = 1$ in Theorem 3. In order to obtain the second statement, let

$$P(x) = \sum_{i=0}^{d} a_i x^{d-i}, \quad \eta = \min_{0 < i \le d} \frac{a_i}{a_{i-1}}$$

and assume that $L(P) > 2a_d$. Then

$$L(P(x)(x-\eta)) = a_0 + \sum_{i=1}^{d} (a_i - a_{i-1}\eta) + a_d\eta = L(P) - (L(P) - 2a_d)\eta < L(P).$$

Proof of Corollary 2. Taking $P_0 = x - \alpha$, $P_1 = x - \beta$ in Theorem 3 and using Corollary 1 to evaluate $l(P_1)$ we obtain (1). If $\alpha/\beta \in \mathbb{R}$ and $\alpha/\beta < 0$ we have $L(P) = 1 + |\alpha + \beta| + |\alpha\beta| = 1 + |\alpha| - |\beta| + |\alpha\beta|$, hence l(P) = L(P). If $\alpha/\beta \in \mathbb{R}$, $\alpha/\beta > 0$ and $|\beta| = 1$, then for $|\alpha| = 1$ we have $l(P) = 2 = 1 + |\alpha| - |\beta| + |\alpha\beta|$ by Theorem 2. For $|\alpha| > 1$ we infer from the divisibility

$$P \left| x^{n+1} - \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha^n - \beta^n} x^n + (\alpha \beta)^n \frac{\alpha - \beta}{\alpha^n - \beta^n} \right|$$

that

$$l(P) \le 1 + \lim_{n \to \infty} \left| \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha^n - \beta^n} \right| + \lim_{n \to \infty} \left| \alpha^n \frac{\alpha - \beta}{\alpha^n - \beta^n} \right| = 1 + |\alpha| + |\alpha - \beta|$$
$$= 1 + |\alpha\beta| + |\alpha| - |\beta|,$$

hence again $l(P) = 1 + |\alpha| - |\beta| + |\alpha\beta|$.

Proof of Corollary 3. The first part of the corollary follows from the first part of Corollary 2 and the identity

$$1 + |\alpha| - |\beta| + |\alpha\beta| - 2|\alpha| = (|\alpha| - 1)(|\beta| - 1).$$

The second part follows from the second part of Corollary 2.

Proof of Corollary 4. Multiplying P_0 by a constant we may assume that P_1 is monic. If $l(P_0) \geq 2M(P_0)$ we have

$$l(P) \ge l(P_0) \ge 2M(P_0) = 2M(P).$$

If $l(P_0) < 2M(P_0) = 2|P_0(0)|$ we have $L(P_0) < 2|P_0(0)|$ by (2), and since, by Theorem 2, $l(P_1) = 2$, Theorem 3 gives

$$l(P) \ge L(P_0) + 2|P_0(0)| - L(P_0) = 2M(P_0) = 2M(P).$$

For the proof of Theorem 4 we need

LEMMA 1. If $P \in \mathbb{C}[x]$ has at least one zero ε with $|\varepsilon| = 1$, then

$$L(P) \ge 2H(P)$$
.

Proof. Let $P(x) = (x - \varepsilon) \sum_{i=0}^{d-1} b_i x^{d-i-1}$, where $|\varepsilon| = 1$. We have

$$P(x) = \sum_{i=0}^{d} (b_i - \varepsilon b_{i-1}) x^{d-i}, \text{ where } b_{-1} = b_d = 0.$$

Assuming that

$$H(P) = |b_i - \varepsilon b_{i-1}|$$

we have

$$L(P) = \sum_{i=0}^{j-1} |b_i - \varepsilon b_{i-1}| + H(P) + \sum_{i=j+1}^{d} |b_i - \varepsilon b_{i-1}|$$

$$\geq \sum_{i=0}^{j-1} (|b_i| - |b_{i-1}|) + H(P) + \sum_{i=j+1}^{d} (|b_{i-1}| - |b_i|)$$

$$\geq |b_{i-1}| + H(P) + |b_i| \geq 2H(P).$$

Proof of Theorem 4. Let $P(x) = \sum_{i=0}^{d} a_i x^{d-i}$. Then

$$||P||^2 := \sum_{i=0}^{d} |a_i|^2 \le H(P)L(P)$$

and, by Lemma 1,

$$(5) L(P)^2 \ge 2||P||^2.$$

However, P has at least two non-zero coefficients, hence by Theorem 40 of [2],

$$(6) ||P|| > M(P).$$

The first inequality of Theorem 4 follows from (5) and (6). Hence for every monic G in $\mathbb{C}[x]$, $L(PG) > \sqrt{2}M(PG) \ge \sqrt{2}M(P)$, which implies $l(P) \ge \sqrt{2}M(P)$.

For the proof of Theorem 5 we need five lemmas.

LEMMA 2. If $k > l \ge 1$, the function

$$g(x) = \frac{x^k - 1}{x^l - 1}$$

is strictly increasing for x > 1.

Proof. We have

$$g'(x) = \frac{x^{l-1}f(x)}{(x^l-1)^2}$$
, where $f(x) = (k-l)x^k - kx^{k-l} + l$.

Now f(1) = 0, $f'(x) = (k - l)k(x^{k-1} - x^{l-1}) > 0$ for x > 1, hence f(x) > 0 and g(x) is strictly increasing.

LEMMA 3. Let $\alpha, \beta \in \mathbb{R}$ and $\alpha \geq \beta > 1$, $k > l \geq 1$,

$$D(k,l;\alpha,\beta) = \begin{cases} (\alpha^k - 1)(\beta^l - 1) - (\alpha^l - 1)(\beta^k - 1) & \text{if } \alpha \neq \beta, \\ k\alpha^{k-1}(\alpha^l - 1) - l\alpha^{l-1}(\alpha^k - 1) & \text{if } \alpha = \beta. \end{cases}$$

Then

(7)
$$D(k, l; \alpha, \beta) > 0.$$

Proof. For $\alpha > \beta$ we have, in the notation of Lemma 2,

$$D(k, l; \alpha, \beta) = (\beta^k - 1)(\beta^l - 1)(g(\alpha) - g(\beta)),$$

and (7) follows from Lemma 2. For $\alpha = \beta$ we have

$$D(k, l; \alpha, \beta) = \alpha^{l-1} f(\alpha),$$

and (7) follows from the inequality f(x) > 0 for x > 1 established in the proof of Lemma 2.

LEMMA 4. If $P(x) = (x - \alpha)(x - \beta)(x - 1)$, $\alpha \ge \beta > 1$, then every monic polynomial divisible by P with at most four non-zero coefficients is of the form

$$x^m + ax^n + bx^p + c,$$

where m > n > p > 0 and

$$a=-\frac{D(m,p;\alpha,\beta)}{D(n,p;\alpha,\beta)},\ b=\frac{D(m,n;\alpha,\beta)}{D(n,p;\alpha,\beta)},\ c=-(\alpha\beta)^p\,\frac{D(m-p,n-p;\alpha,\beta)}{D(n,p;\alpha,\beta)}.$$

Proof. The above values of a, b, c are obtained by solving the systems of linear equations

(8)
$$\alpha^m + a\alpha^n + b\alpha^p + c = 0,$$

(9)
$$\beta^m + a\beta^n + b\beta^p + c = 0,$$
$$1 + a + b + c = 0$$

if $\alpha > \beta$, and

$$m\alpha^{m-1} + na\alpha^{n-1} + pb\alpha^{p-1} = 0,$$

$$\alpha^m + a\alpha^n + b\alpha^p + c = 0,$$

$$1 + a + b + c = 0$$

otherwise, with the determinant $D(n, p; \alpha, \beta)$, which is non-zero by virtue of Lemma 3.

LEMMA 5. If r is a positive integer, and $t, x \ge 1$, then

$$\frac{t^r x^{r+1}}{1 + t + \dots + t^{r-1}} \ge tx^2 - 1.$$

Proof. For r=1 the inequality is clear. For $r\geq 2$ let t_0 be the unique positive root of the equation

$$h(t) = 2 + 2t + \dots + 2t^{r-1} - (r+1)t^{r-1} = 0.$$

We have

$$(10) 1 < t_0 < \frac{r+1}{r-1},$$

since h(1) = r - 1 > 0 and $h(\frac{r+1}{r-1}) = 1 - r < 0$.

Put

$$x_0(t) = \left(\frac{2 + 2t + \dots + 2t^{r-1}}{(r+1)t^{r-1}}\right)^{1/(r-1)}.$$

The function

$$F(t,x) = t^r \frac{x^{r+1}}{1 + \dots + t^{r-1}} - tx^2 + 1$$

is decreasing for $x < x_0(t)$ and increasing for $x > x_0(t)$. If $t < t_0$ we have $x_0(t) > 1$, if $t \ge t_0$ we have $x_0(t) \le 1 \le x$. Therefore, for $t \ge t_0$,

$$F(t,x) \ge F(t,1) = \frac{1}{1 + \dots + t^{r-1}} > 0.$$

For $t < t_0$ we have

$$F(t,x) \ge F(t,x_0(t)) = t^r \frac{x_0(t)^{r+1}}{1+\dots+t^{r-1}} - tx_0(t)^2 + 1$$

$$= tx_0(t)^2 \left(\frac{t^{r-1}}{1+\dots+t^{r-1}} x_0(t)^{r-1} - 1\right) + 1 = tx_0(t)^2 \left(\frac{2}{r+1} - 1\right) + 1$$

$$= 1 - \frac{r-1}{r+1} tx_0(t)^2.$$

Assuming that the right-hand side is negative we obtain

$$tx_0(t)^2 > \frac{r+1}{r-1},$$

thus

$$t^{(r-1)/2} \cdot 2 \cdot \frac{1 + \dots + t^{r-1}}{(r+1)t^{r-1}} > \left(\frac{r+1}{r-1}\right)^{(r-1)/2}$$

and

$$2(t^{-(r-1)/2} + \dots + t^{(r-1)/2}) > \left(\frac{r+1}{r-1}\right)^{(r-1)/2} (r+1).$$

The function $t^{-1} + t$ is increasing for $t \ge 1$ and so is $t^{-(r-1)/2} + \cdots + t^{(r-1)/2}$. Hence $t < t_0$ implies

$$2\frac{t_0^r - 1}{t_0 - 1}t_0^{-(r-1)/2} = 2(t_0^{-(r-1)/2} + \dots + t_0^{(r-1)/2}) > \left(\frac{r+1}{r-1}\right)^{(r-1)/2}(r+1),$$

thus, by the definition of t_0 ,

$$(r+1)t_0^{(r-1)/2} > \left(\frac{r+1}{r-1}\right)^{(r-1)/2} (r+1)$$

and

$$t_0 > \frac{r+1}{r-1}$$

contrary to (10).

LEMMA 6. If $\alpha \geq \beta > 1$, then in the notation of Lemma 4,

$$a < 0, \quad b \ge \alpha \beta - 1, \quad c < 0.$$

Proof. By Lemma 3 we have in this case a < 0, b > 0, c < 0, hence

$$\alpha^m + |b|\alpha^p = |a|\alpha^n + |c| < (|a| + |c|)\alpha^n$$

and

$$b+1 = |a| + |c| > \alpha^{n-m} \ge \alpha\beta,$$

unless m = n + 1.

Consider first the case $\alpha > \beta$. Assuming m = n + 1 we infer from (7) and (8) that

$$\alpha - \beta + b(\alpha^{p-n} - \beta^{p-n}) + c(\alpha^{-n} - \beta^{-n}) = 0,$$

and since $\alpha^{p-n} - \beta^{p-n} < 0$ and $c(\alpha^{-n} - \beta^{-n}) > 0$,

$$b \ge \frac{\alpha - \beta}{\beta^{p-n} - \alpha^{p-n}}.$$

Putting n - p = r, $\alpha = t\beta$ we obtain $t \ge 1$, and by Lemma 5,

$$b \ge \frac{t^r \beta^{r-1}}{1 + \dots + t^{r-1}} \ge t\beta^2 - 1 = \alpha\beta - 1.$$

Consider now the case $\alpha = \beta$. Then by the case already proved,

$$b = \lim_{\beta \to \alpha - 0} \frac{D(m, n; \alpha, \beta)}{D(n, p; \alpha, \beta)} \ge \lim_{\beta \to \alpha - 0} (\alpha \beta - 1) = \alpha^2 - 1.$$

Proof of Theorem 5. Let $|\alpha| \ge |\beta|$. If $|\alpha| < 1$, then by Proposition 1(ii), (iii),

$$l(P) = l(x - 1) = 2 = 2M(P).$$

If $|\beta| < 1 \le |\alpha|$, then by Proposition 1(iii) and by Corollary 3,

$$l(P) = l((x - \alpha)(x - 1)) = 2|\alpha| = 2M(P).$$

If $\beta = 1$ the same is true by Theorem 1 and Corollary 3. If $|\beta| \ge 1$ and $\alpha/\beta < 0$, then by Corollary 2,

$$l(P) = l((x - \alpha)(x - \beta)) = L((x - \alpha)(x - \beta)),$$

hence, by Corollary 4,

$$l(P) \ge 2M(P)$$
.

Finally, if $|\beta| \ge 1$, $\beta \ne 1$ and $\alpha/\beta > 0$, then by the assumption that at least one of α, β is positive we have $\alpha \ge \beta > 1$ and by Theorem 1 of [3],

$$l(P) = \inf_{Q \in S_3(P)} L(Q),$$

while, by Lemma 4, each element Q of $S_3(P)$ is of the form $Q = x^m + ax^n + bx^p + c$, where a, b, c are given by the formulae of Lemma 4. Now, by Lemma 6,

$$a < 0$$
, $b > \alpha \beta - 1$, $c < 0$,

hence
$$L(Q) = L(Q) + Q(1) = 2(1+b) \ge 2\alpha\beta = 2M(P)$$
.

Note added in proof. Concerning Proposition 2(ii) E. Dobrowolski has observed that if $M(P) > |a_0|$, then l(P) > M(P). Indeed, then for every monic Q we have $L(PQ) \ge |a_0| + \sqrt{\|PQ\|^2 - |a_0|^2} > |a_0| + \sqrt{M(PQ)^2 - |a_0|^2} \ge |a_0| + \sqrt{M(P)^2 - |a_0|^2}$, hence $l(P) \ge |a_0| + \sqrt{M(P)^2 - |a_0|^2} > M(P)$.

References

- [1] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70–80.
- [2] A. Schinzel, Polynomials with Special Regard to Reducibility, Cambridge Univ. Press, 2000.
- [3] —, The reduced length of a polynomial with real coefficients, in: Selecta, Vol. 1, Eur. Math. Soc., Zürich, 2007, 658–691.
- [4] —, The reduced length of a polynomial with real coefficients II, Funct. Approx. Comment. Math. 37 (2007), 445–459.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8, P.O. Box 21 00-956 Warszawa, Poland E-mail: schinzel@impan.gov.pl