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For P ∈ C[x], P (x) =
∑d

i=0 aix
d−i = a0

∏d
i=1(x− αi), let

P ∗(x) =
d∑
i=0

aix
i, H(P ) = max

0≤i≤d
|ai|,

L(P ) =
d∑
i=0

|ai|, M(P ) = |a0|
d∏
i=1

max{1, |αi|},

l(P ) = inf L(PG), l̂(P ) = min{l(P ), l(P ∗)},
where G runs through all monic polynomials in C[x]. This notation is con-
sistent with that of [3] and [4], since if P ∈ R[x] the above infimum coincides
with inf L(PG), where G runs through all monic polynomials in R[x]. Some
of the results about l(P ) stated in [1] and [3] for P ∈ R[x] carry over with
essentially the same proof to P ∈ C[x]. Thus we have

Proposition 1. Suppose that ω, η, ψ ∈ C, |ω| ≥ 1, |η| < 1. Then for
every Q ∈ C[x],

(i) l(ψQ) = |ψ|l(Q),
(ii) l(x+ ω) = 1 + |ω|,

(iii) if T (x) = Q(x)(x− η), then l(T ) = l(Q),
(iv) l(Q) = l(Q), where Q denotes the complex conjugate of Q.

Proposition 2. For all monic polynomials P,Q in C[x], all η ∈ C with
|η| = 1 and all positive integers k,

(i) max{l(P ), l(Q)} ≤ l(PQ) ≤ l(P )l(Q),
(ii) M(P ) ≤ l(P ),
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(iii) l(P (ηx)) = l(P (x)),
(iv) l(P (xk)) = l(P (x)).

Theorem 1. Let P,Q ∈ C[x], Q be monic and have all zeros on the unit
circle. Then for all m ∈ N,

l(PQm) = l(PQ).

Theorem 2. If P ∈ C[x] \ C is monic and has all zeros on the unit
circle, then l̂(P ) = l(P ) = 2, with l(P ) attained if all zeros are roots of
unity and simple (l(P ) is attained means that l(P ) = L(Q), where Q/P is
a monic polynomial).

Theorems 1 and 2 correspond to Theorems 3 and 4 of [3], respectively.
Also Theorem 6 of [3] extends to polynomials over C, but the extension
requires a different proof. We shall prove the following more general

Theorem 3. Let P = P0P1, where Pν ∈ C[x] (ν = 1, 2), L(P0) ≤
2|P0(0)| and P1 is monic. Then

l(P ) ≥ L(P0) + (2|P0(0)| − L(P0))(l(P1)− 1).

Corollary 1. If P ∈ C[x] and L(P ) ≤ 2|P (0)|, then

l(P ) = L(P ).

Conversely , if l(P ) = L(P ) and all coefficients of P are real and positive,
then L(P ) ≤ 2P (0).

Corollary 2. If P (x) = (x− α)(x− β), where |α| ≥ |β| ≥ 1, then

(1) l(P ) ≥ 1 + |α| − |β|+ |αβ|,

with equality if α/β ∈ R and either α/β < 0 or |β| = 1.

One can prove that if α/β+β/α ∈ R, the two cases given in Corollary 2
are the only ones for which there is equality in (1).

Corollary 3. If P (x) = (x− α)(x− β), where |α| ≥ |β| ≥ 1, then

l(P ) ≥ 2|α|,

with equality only possible if |β| = 1. If moreover α/β ∈ R, then the equality
really holds.

Corollary 4. Let P = P0P1, where Pν ∈ C[x] (ν = 0, 1), degP1 ≥ 1
and all zeros z of Pν satisfy |z| > 1 for ν = 0, |z| = 1 for ν = 1. If

(2) l(P0) = L(P0),

then

(3) l(P ) ≥ 2M(P ).
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It remains a problem whether (3) holds without the assumption (2). The
following results point towards an affirmative answer.

Theorem 4. If P ∈ C[x] \ {0} has a zero z with |z| = 1, then

L(P ) >
√

2M(P ), l(P ) ≥
√

2M(P ).

Theorem 5. If P (x) = (x − α)(x − β)(x − 1), where α, β are real and
at least one of them is positive, then (3) holds.

The validity of (3) for all polynomials P over C or over R with a zero on
the unit circle is equivalent to the validity of a simpler inequality L(P ) ≥
2M(P ) for all polynomials P over C or R, respectively, with a zero on the
unit circle. E. Dobrowolski has verified that the latter inequality is true for
all such polynomials P ∈ C[x] of degree at most 4.

I thank E. Dobrowolski and A. Dubickas for valuable criticism.

Proof of Theorem 3. Let G be any monic polynomial in C[x] and let

T (x) = P1(x)G(x) = xn +
n∑
i=1

bix
n−i, b0 = 1.

We have

(4)
n∑
i=1

|bi| = L(T )− 1 ≥ l(P1)− 1.

Now, let

P0(x) =
d∑
i=0

aix
d−i.

We have

Q(x) = P (x)G(x) = P0(x)T (x) =
( d∑
i=0

aix
d−i
)( n∑

i=0

bix
n−i
)

=
d+n∑
j=0

(min{j,d}∑
i=0

aibj−i

)
xd+n−j .

Now

∣∣∣min{j,d}∑
i=0

aibj−i

∣∣∣ ≥

|aj | −

j−1∑
i=0

|ai| |bj−i| for j ≤ d,

|ad| |bj−d| −
d−1∑
i=0

|ai| |bj−i| for j > d,
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hence

L(Q) =
d+n∑
j=0

∣∣∣min{j,d}∑
i=0

aibj−i

∣∣∣
≥

d∑
j=0

|aj | −
d∑
j=1

j−1∑
i=0

|ai| |bj−i|+
d+n∑
j=d+1

|ad| |bj−d| −
d+n∑
j=d+1

d−1∑
i=0

|ai| |bj−i|

= L(P0) + |ad|(L(T )− 1)−
d+n∑
j=1

min{j−1, d−1}∑
i=0

|ai| |bj−i|

= L(P0) + |P0(0)|(L(T )− 1)− (L(P0)− |P0(0)|)(L(T )− 1)

and since, by the assumption, |2P0(0)| − L(P0) ≥ 0 it follows from (4) that

L(Q) ≥ L(P0) + (2|P0(0)| − L(P0))(l(P1)− 1).

Proof of Corollary 1. In order to obtain the first statement we take
P1 = 1 in Theorem 3. In order to obtain the second statement, let

P (x) =
d∑
i=0

aix
d−i, η = min

0<i≤d

ai
ai−1

and assume that L(P ) > 2ad. Then

L(P (x)(x−η)) = a0+
d∑
i=1

(ai−ai−1η)+adη = L(P )−(L(P )−2ad)η < L(P ).

Proof of Corollary 2. Taking P0 = x − α, P1 = x − β in Theorem 3
and using Corollary 1 to evaluate l(P1) we obtain (1). If α/β ∈ R and
α/β < 0 we have L(P ) = 1 + |α + β| + |αβ| = 1 + |α| − |β| + |αβ|, hence
l(P ) = L(P ). If α/β ∈ R, α/β > 0 and |β| = 1, then for |α| = 1 we have
l(P ) = 2 = 1 + |α| − |β|+ |αβ| by Theorem 2. For |α| > 1 we infer from the
divisibility

P

∣∣∣∣xn+1 − αn+1 − βn+1

αn − βn
xn + (αβ)n

α− β
αn − βn

that

l(P ) ≤ 1 + lim
n→∞

∣∣∣∣αn+1 − βn+1

αn − βn

∣∣∣∣+ lim
n→∞

∣∣∣∣αn α− β
αn − βn

∣∣∣∣ = 1 + |α|+ |α− β|

= 1 + |αβ|+ |α| − |β|,
hence again l(P ) = 1 + |α| − |β|+ |αβ|.

Proof of Corollary 3. The first part of the corollary follows from the first
part of Corollary 2 and the identity

1 + |α| − |β|+ |αβ| − 2|α| = (|α| − 1)(|β| − 1).

The second part follows from the second part of Corollary 2.
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Proof of Corollary 4. Multiplying P0 by a constant we may assume that
P1 is monic. If l(P0) ≥ 2M(P0) we have

l(P ) ≥ l(P0) ≥ 2M(P0) = 2M(P ).

If l(P0) < 2M(P0) = 2|P0(0)| we have L(P0) < 2|P0(0)| by (2), and since,
by Theorem 2, l(P1) = 2, Theorem 3 gives

l(P ) ≥ L(P0) + 2|P0(0)| − L(P0) = 2M(P0) = 2M(P ).

For the proof of Theorem 4 we need

Lemma 1. If P ∈ C[x] has at least one zero ε with |ε| = 1, then

L(P ) ≥ 2H(P ).

Proof. Let P (x) = (x− ε)
∑d−1

i=0 bix
d−i−1, where |ε| = 1. We have

P (x) =
d∑
i=0

(bi − εbi−1)xd−i, where b−1 = bd = 0.

Assuming that
H(P ) = |bj − εbj−1|

we have

L(P ) =
j−1∑
i=0

|bi − εbi−1|+H(P ) +
d∑

i=j+1

|bi − εbi−1|

≥
j−1∑
i=0

(|bi| − |bi−1|) +H(P ) +
d∑

i=j+1

(|bi−1| − |bi|)

≥ |bj−1|+H(P ) + |bj | ≥ 2H(P ).

Proof of Theorem 4. Let P (x) =
∑d

i=0 aix
d−i. Then

‖P‖2 :=
d∑
i=0

|ai|2 ≤ H(P )L(P )

and, by Lemma 1,

(5) L(P )2 ≥ 2‖P‖2.
However, P has at least two non-zero coefficients, hence by Theorem 40
of [2],

(6) ‖P‖ > M(P ).

The first inequality of Theorem 4 follows from (5) and (6). Hence for every
monic G in C[x], L(PG) >

√
2M(PG) ≥

√
2M(P ), which implies l(P ) ≥√

2M(P ).

For the proof of Theorem 5 we need five lemmas.
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Lemma 2. If k > l ≥ 1, the function

g(x) =
xk − 1
xl − 1

is strictly increasing for x > 1.

Proof. We have

g′(x) =
xl−1f(x)
(xl − 1)2

, where f(x) = (k − l)xk − kxk−l + l.

Now f(1) = 0, f ′(x) = (k − l)k(xk−1 − xl−1) > 0 for x > 1, hence f(x) > 0
and g(x) is strictly increasing.

Lemma 3. Let α, β ∈ R and α ≥ β > 1, k > l ≥ 1,

D(k, l;α, β) =

{
(αk − 1)(βl − 1)− (αl − 1)(βk − 1) if α 6= β,

kαk−1(αl − 1)− lαl−1(αk − 1) if α = β.

Then

(7) D(k, l;α, β) > 0.

Proof. For α > β we have, in the notation of Lemma 2,

D(k, l;α, β) = (βk − 1)(βl − 1)(g(α)− g(β)),

and (7) follows from Lemma 2. For α = β we have

D(k, l;α, β) = αl−1f(α),

and (7) follows from the inequality f(x) > 0 for x > 1 established in the
proof of Lemma 2.

Lemma 4. If P (x) = (x−α)(x−β)(x−1), α ≥ β > 1, then every monic
polynomial divisible by P with at most four non-zero coefficients is of the
form

xm + axn + bxp + c,

where m > n > p > 0 and

a = −D(m, p;α, β)
D(n, p;α, β)

, b =
D(m,n;α, β)
D(n, p;α, β)

, c = −(αβ)p
D(m− p, n− p;α, β)

D(n, p;α, β)
.

Proof. The above values of a, b, c are obtained by solving the systems of
linear equations

αm + aαn + bαp + c = 0,(8)
βm + aβn + bβp + c = 0,(9)
1 + a+ b+ c = 0
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if α > β, and

mαm−1 + naαn−1 + pbαp−1 = 0,
αm + aαn + bαp + c = 0,
1 + a+ b+ c = 0

otherwise, with the determinant D(n, p;α, β), which is non-zero by virtue
of Lemma 3.

Lemma 5. If r is a positive integer , and t, x ≥ 1, then

trxr+1

1 + t+ · · ·+ tr−1
≥ tx2 − 1.

Proof. For r = 1 the inequality is clear. For r ≥ 2 let t0 be the unique
positive root of the equation

h(t) = 2 + 2t+ · · ·+ 2tr−1 − (r + 1)tr−1 = 0.

We have

(10) 1 < t0 <
r + 1
r − 1

,

since h(1) = r − 1 > 0 and h
(
r+1
r−1

)
= 1− r < 0.

Put

x0(t) =
(

2 + 2t+ · · ·+ 2tr−1

(r + 1)tr−1

)1/(r−1)

.

The function

F (t, x) = tr
xr+1

1 + · · ·+ tr−1
− tx2 + 1

is decreasing for x < x0(t) and increasing for x > x0(t). If t < t0 we have
x0(t) > 1, if t ≥ t0 we have x0(t) ≤ 1 ≤ x. Therefore, for t ≥ t0,

F (t, x) ≥ F (t, 1) =
1

1 + · · ·+ tr−1
> 0.

For t < t0 we have

F (t, x) ≥ F (t, x0(t)) = tr
x0(t)r+1

1 + · · ·+ tr−1
− tx0(t)2 + 1

= tx0(t)2
(

tr−1

1 + · · ·+ tr−1
x0(t)r−1 − 1

)
+ 1 = tx0(t)2

(
2

r + 1
− 1
)

+ 1

= 1− r − 1
r + 1

tx0(t)2.

Assuming that the right-hand side is negative we obtain

tx0(t)2 >
r + 1
r − 1

,
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thus

t(r−1)/2 · 2 · 1 + · · ·+ tr−1

(r + 1)tr−1
>

(
r + 1
r − 1

)(r−1)/2

and

2(t−(r−1)/2 + · · ·+ t(r−1)/2) >
(
r + 1
r − 1

)(r−1)/2

(r + 1).

The function t−1 + t is increasing for t ≥ 1 and so is t−(r−1)/2 + · · ·+ t(r−1)/2.
Hence t < t0 implies

2
tr0 − 1
t0 − 1

t
−(r−1)/2
0 = 2(t−(r−1)/2

0 + · · ·+ t
(r−1)/2
0 ) >

(
r + 1
r − 1

)(r−1)/2

(r + 1),

thus, by the definition of t0,

(r + 1)t(r−1)/2
0 >

(
r + 1
r − 1

)(r−1)/2

(r + 1)

and
t0 >

r + 1
r − 1

contrary to (10).

Lemma 6. If α ≥ β > 1, then in the notation of Lemma 4,

a < 0, b ≥ αβ − 1, c < 0.

Proof. By Lemma 3 we have in this case a < 0, b > 0, c < 0, hence

αm + |b|αp = |a|αn + |c| < (|a|+ |c|)αn

and
b+ 1 = |a|+ |c| > αn−m ≥ αβ,

unless m = n+ 1.
Consider first the case α > β. Assuming m = n + 1 we infer from (7)

and (8) that

α− β + b(αp−n − βp−n) + c(α−n − β−n) = 0,

and since αp−n − βp−n < 0 and c(α−n − β−n) > 0,

b ≥ α− β
βp−n − αp−n

.

Putting n− p = r, α = tβ we obtain t ≥ 1, and by Lemma 5,

b ≥ trβr−1

1 + · · ·+ tr−1
≥ tβ2 − 1 = αβ − 1.

Consider now the case α = β. Then by the case already proved,

b = lim
β→α−0

D(m,n;α, β)
D(n, p;α, β)

≥ lim
β→α−0

(αβ − 1) = α2 − 1.
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Proof of Theorem 5. Let |α|≥|β|. If |α|<1, then by Proposition 1(ii), (iii),

l(P ) = l(x− 1) = 2 = 2M(P ).

If |β| < 1 ≤ |α|, then by Proposition 1(iii) and by Corollary 3,

l(P ) = l((x− α)(x− 1)) = 2|α| = 2M(P ).

If β = 1 the same is true by Theorem 1 and Corollary 3. If |β| ≥ 1 and
α/β < 0, then by Corollary 2,

l(P ) = l((x− α)(x− β)) = L((x− α)(x− β)),

hence, by Corollary 4,
l(P ) ≥ 2M(P ).

Finally, if |β| ≥ 1, β 6= 1 and α/β > 0, then by the assumption that at least
one of α, β is positive we have α ≥ β > 1 and by Theorem 1 of [3],

l(P ) = inf
Q∈S3(P )

L(Q),

while, by Lemma 4, each element Q of S3(P ) is of the form Q = xm +
axn + bxp + c, where a, b, c are given by the formulae of Lemma 4. Now, by
Lemma 6,

a < 0, b ≥ αβ − 1, c < 0,

hence L(Q) = L(Q) +Q(1) = 2(1 + b) ≥ 2αβ = 2M(P ).

Note added in proof. Concerning Proposition 2(ii) E. Dobrowolski has observed
that if M(P ) > |a0|, then l(P ) > M(P ). Indeed, then for every monic Q we have L(PQ) ≥
|a0|+

p
‖PQ‖2 − |a0|2 > |a0|+

p
M(PQ)2 − |a0|2 ≥ |a0|+

p
M(P )2 − |a0|2, hence l(P ) ≥

|a0|+
p

M(P )2 − |a0|2 > M(P ).
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