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For P € C[z|, P(x) = Z?:o a;z?" = ay H;lzl(a: — ), let

d
P(x) =) aw’,  H(P) = max |ai,
i=0 - =

d d
L(P) = lail, M(P)= |ao| ] ] max{1, |as[},
i=0 i=1

I(P) = inf L(PG), 1(P)=min{l(P), [(P*)},

where G runs through all monic polynomials in C[z]. This notation is con-
sistent with that of [3] and [4], since if P € R[z] the above infimum coincides
with inf L(PG), where G runs through all monic polynomials in R[z]. Some
of the results about [(P) stated in [1] and [3] for P € R[z| carry over with
essentially the same proof to P € Clz]. Thus we have

PROPOSITION 1. Suppose that w,n,v € C, |w| > 1, |n| < 1. Then for
every @ € Clz],

() 16Q) = [B1I(Q),

(i) l(z+w) =1+ |w|,

(i) i T(x) = Q(r)(x ). then I(T) = (Q),

(iv) Q) =1(Q), where Q denotes the complex conjugate of Q.

PROPOSITION 2. For all monic polynomials P,Q in C[z], all n € C with
Inl =1 and all positive integers k,

(i) max{l(P),(Q)} <I(PQ) < I(P)I(Q),
(if) M(P) <I(P),
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74 A. Schinzel
(ili) I(P(nz)) = I(P(x)),
(iv) UP(z*)) = U(P(x)).

THEOREM 1. Let P,Q € C[z], Q be monic and have all zeros on the unit
circle. Then for all m € N,

=1
=1

W(PQ™) = I(PQ).
THEOREM 2. If P € Clz] \ C is monic and has all zeros on the unit

circle, then I(P) = I(P) = 2, with I[(P) attained if all zeros are roots of
unity and simple (I(P) is attained means that l(P) = L(Q), where Q/P is
a monic polynomial).

Theorems 1 and 2 correspond to Theorems 3 and 4 of [3], respectively.
Also Theorem 6 of [3] extends to polynomials over C, but the extension
requires a different proof. We shall prove the following more general

THEOREM 3. Let P = PyPy, where P, € Clz] (v = 1,2), L(Py) <
2|Py(0)| and Py is monic. Then

[(P) = L(Fy) + (2| Po(0)] — L(Fo))(L(P1) = 1).
COROLLARY 1. If P € Clz] and L(P) < 2|P(0)|, then
[(P) = L(P).

Conversely, if l(P) = L(P) and all coefficients of P are real and positive,
then L(P) < 2P(0).

COROLLARY 2. If P(z) = (z — a)(x — (3), where |a| > |B| > 1, then
(1) I(P) =1+ [a| =8+ |aB],
with equality if /3 € R and either a/3 <0 or |f] = 1.

One can prove that if a/F+ 3/« € R, the two cases given in Corollary 2
are the only ones for which there is equality in (1).

COROLLARY 3. If P(z) = (z — a)(x — (), where |a| > || > 1, then
[(P) = 2|a],

with equality only possible if | 3| = 1. If moreover a/3 € R, then the equality
really holds.

COROLLARY 4. Let P = PyPy, where P, € Clz] (v = 0,1), deg P, > 1
and all zeros z of P, satisfy |z| > 1 forv =0, |z| =1 forv=1. If

(2) I(Po) = L(P),
then
3) (P) > 2M(P).
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It remains a problem whether (3) holds without the assumption (2). The
following results point towards an affirmative answer.
THEOREM 4. If P € C[z]\ {0} has a zero z with |z| = 1, then
L(P) > V2M(P), I(P)>V2M(P).

THEOREM 5. If P(x) = (z — a)(z — B)(x — 1), where o, 3 are real and
at least one of them is positive, then (3) holds.

The validity of (3) for all polynomials P over C or over R with a zero on
the unit circle is equivalent to the validity of a simpler inequality L(P) >
2M (P) for all polynomials P over C or R, respectively, with a zero on the
unit circle. E. Dobrowolski has verified that the latter inequality is true for
all such polynomials P € C|x] of degree at most 4.

I thank E. Dobrowolski and A. Dubickas for valuable criticism.

Proof of Theorem 3. Let G be any monic polynomial in C[x]| and let

T(z) = P(2)G(x) =a" + Y _bia"™",  by=1.
=1

We have
() S Jbil = L(T) ~ 1> U(Py) — 1.
i=1
Now, let
d
P()(.Z') = Z aixd_’
i=0
We have
d ‘ n ‘
gt = i) =gt~ (- et ) ()
=0 i=0
d+n min{j,d} A
- Z ( Z aibj—i).l'd+n_].
j=0 i=0
Now
7—1
min;j.d} jajl = > lai| 1bj-il for j < d,
’ Z a;bj_i| > =0
d—1
i=0

laal [bj—al = las| |bj—i| for j > d,
1=0
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hence
d+n min{j,d}
SIS e
Jj=0 =0
d j d+n d+n d—1
ZZIaJI—ZZIaZIIbJ i+ D laallbj—al = Y > lail bl
7=0 j=11=0 j=d+1 j=d+1 1=0

d+n min{j—1,d—1}

= L(Py) + |aa|(L Z Z |ai |bj—i

= L(Ry) + [Ro(0)|(L(T) — 1) — (L(R ) — B O)D(L(T) — 1)
and since, by the assumption, [2P(0)| — L(Fy) > 0 it follows from (4) that
L(Q) = L(Po) + (2[Po(0) — L(Fo))(I(P1) — 1).

Proof of Corollary 1. In order to obtain the first statement we take
P, =1 in Theorem 3. In order to obtain the second statement, let

= g aixd_i, 7 = min &
: 0<i<d Gj—1
and assume that L(P) > 2a4. Then

L(P(z)(z—n)) —ao—i-z —a;_11)+aqn = L(P)—(L(P)—2a4)n < L(P).

Proof of Corollm’y 2. Taking Py = x — a, P = x — 8 in Theorem 3
and using Corollary 1 to evaluate [(P;) we obtain (1). If /3 € R and
a/f <0 we have L(P) = 1+ |a+ §| + |af| = 1 + |a| — |B| + |af], hence
I(P)=L(P). If a/B € R, a/F > 0 and |3| = 1, then for |a] = 1 we have
I(P)=2=1+|a|—|8] 4+ |af| by Theorem 2. For |a| > 1 we infer from the
divisibility

n+1 _ gn+1l _
P
that
+1 /6”+1 o — ﬁ
< . R : n — _
UP) <1+ lim |———r— |+ lim |a" -5—2| = 1+ o] +[a — 6]

=1+ |af]+ |af = 18],
hence again [(P) = 1+ |a| — |8] + |af|.

Proof of Corollary 3. The first part of the corollary follows from the first
part of Corollary 2 and the identity

L+ laf =Bl + |af] = 2|af = (laf = 1)(|6] = 1).

The second part follows from the second part of Corollary 2.
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Proof of Corollary 4. Multiplying Py by a constant we may assume that
Py is monic. If [(Py) > 2M (Py) we have

I(P) > I(Py) > 2M(Py) = 2M(P).

If I(Py) < 2M (Py) = 2|Py(0)| we have L(Fy) < 2|Py(0)| by (2), and since,
by Theorem 2, I(P;) = 2, Theorem 3 gives

I(P) = L(Py) + 2/ o(0)] — L(Py) = 2M(Fy) = 2M (P).
For the proof of Theorem 4 we need
LEMMA 1. If P € C[z] has at least one zero € with |e| = 1, then
L(P) > 2H(P).
Proof. Let P(z) = (z —¢) Zf:_ol biz?=1 where |¢| = 1. We have

d
P(z) = Z(b —ebi_1)z%"",  where b_; =bg=0.
i=0
Assuming that
H(P) = [bj — ebj1]
we have
Jj—1 d
L(P): ’bz_gbz 1‘+H )+ Z ’bz‘—Ebi_l‘
=0 i=j+1
j—l d
(16i] — |bi—1]) + H(P) + Z (Ibi1| — |bi))

=0 i=j+1
> [bj—1| + H(P) + |bj| > 2H(P).

Proof of Theorem 4. Let P(x) = Zg:o a;z%~". Then

d
1P = faif® < H(P)L(P)
=0

and, by Lemma 1,
(5) L(P)* > 2| P|.

However, P has at least two non-zero coefficients, hence by Theorem 40
of [2],

(6) 1P} > M(P).

The first inequality of Theorem 4 follows from (5) and (6). Hence for every
monic G in C[z], L(PG) > v/2 M(PG) > /2 M(P), which implies [(P) >
V2 M(P).

For the proof of Theorem 5 we need five lemmas.
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LEMMA 2. Ifk > 1> 1, the function

k-1
b —1

g(x) =
1s strictly increasing for x > 1.
Proof. We have

g (x) = m, where f(x) = (k — l)xk )

Now f(1) =0, f'(z) = (k — Dk(z** — 2/=1) > 0 for > 1, hence f(x) >0
and g(x) is strictly increasing.

LEMMA 3. Leta,feERanda>06>1, k>1>1,

' _ )@ =DE -1 = (@ =1 1) ifa#p,
Dik, b5, ) = { ka1 (ol — 1) — 1o/~ ok — 1) if a = .
Then
(7) D(k,l;a,3) > 0.

Proof. For a > 3 we have, in the notation of Lemma 2,

D(k, e, B) = (6" = 1)(8' = 1)(g() — 9(8)),
and (7) follows from Lemma 2. For o = 3 we have
D(k,l;a, B) = o' f(a),
and (7) follows from the inequality f(x) > 0 for x > 1 established in the

proof of Lemma, 2.

LEMMA 4. IfP(x) = (z—a)(x—0)(x—1), a« > B > 1, then every monic
polynomial divisible by P with at most four non-zero coefficients is of the
form

™ 4 ax™ + baf + c,
where m >mn >p >0 and
D(map;a’ﬁ) — D(m’n;a7ﬁ) c= —(Oéﬁ)p D(m—p,n—p,a,ﬂ)
D(n,p; e, )’ D(n,p; e, B)’ D(n,p;a, 3)

Proof. The above values of a, b, ¢ are obtained by solving the systems of
linear equations

a=—

(8) a™ 4+ aa” +ba? 4+ ¢ =0,
(9) A" +ap" + b8 +c=0,
l1+a+b+c=0
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if > 3, and
ma™ ! + naa™ ! 4 pbaP ! =0,
o™+ aa” +baf + ¢ =0,
1+a+b+c=0

otherwise, with the determinant D(n, p; «, 3), which is non-zero by virtue
of Lemma 3.

LEMMA 5. Ifr is a positive integer, and t,x > 1, then
tT:IET+1
> ta? — 1.
R
Proof. For r = 1 the inequality is clear. For » > 2 let ¢y be the unique
positive root of the equation

ht)=2+2t+-+2" = (r+ 1)t" !t =0.

We have
r+1
10 1<t —_—
(10) <to< 7
sinceh(l):r—1>0andh(%):1—r<0.
Put

zo(t) = (r + 1)tr—1 ‘
The function

xr+1

1 + .4 tr—l
is decreasing for z < z¢(f) and increasing for x > z(t). If t < to we have
zo(t) > 1, if t > to we have xo(t) <1 < z. Therefore, for ¢t > ¢,

1

F(t,z) =1t" —tx? +1

For t < ty we have

Assuming that the right-hand side is negative we obtain

r—+1

tl’o(t)Q > 71_71,
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thus

UV RPN ST A 8 S
(r+1)¢r—1 r—1

and

r—1

The function ¢t ! ++ is increasing for ¢ > 1 and so is t=r=1/2 4y (r=1)/2,
Hence t < tg implies

g1 . ~ N
22— to( R :2(750( 1)/2+"'+té 72y > <T+ > (r+1),
to— 1 r—1

thus, by the definition of ¢y,

. 1 (=12
(r+ 1)t 1)/2><7”r > (r+1)

(r—1)/2
DD/ 4y gr-D/2) (TH) (r+1).

r—1
d
an r+1
to >
r—1

contrary to (10).
LEMMA 6. If « > 3 > 1, then in the notation of Lemma 4,
a<0, b>af-1, c<O.
Proof. By Lemma 3 we have in this case a < 0, b > 0, ¢ < 0, hence
a™ + |bla® = |ala” + |c| < (|a| + |c])a™

and
b+1=lal+|c| >a" ™ > ap,

unless m = n + 1.

Consider first the case a > . Assuming m = n + 1 we infer from (7)
and (8) that

a—FB4+b =) d (e =p47") =0,
and since o 7" — BP7" < 0 and c¢(a”" — 7") > 0,

b > ai_ﬁ
— ﬁpfn _ apfn'

Putting n — p = r, @ =t we obtain ¢ > 1, and by Lemma 5,

trﬁrfl 5
> > —-1= -1
b*1+...+tr—1*tﬂ a
Consider now the case o = 3. Then by the case already proved,
D .
b= lim w> lim (af —1) =a? - 1.

B—a—0 D(n,p; a, ﬂ) ~ B—a—0
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Proof of Theorem 5. Let |a| >|3]. If || < 1, then by Proposition 1(ii), (iii),
I(P)=1l(zr—1)=2=2M(P).
If |5] < 1 < |al, then by Proposition 1(iii) and by Corollary 3,
I(P)=I((x — a)(z—1)) =2|a] = 2M(P).

If 3 = 1 the same is true by Theorem 1 and Corollary 3. If |3] > 1 and
a/B < 0, then by Corollary 2,

I(P) =l((z — a)(z = B)) = L((z — a)(z — B)),
hence, by Corollary 4,
I(P) > 2M(P).

Finally, if || > 1, 8 # 1 and /3 > 0, then by the assumption that at least
one of «, (3 is positive we have o > 3 > 1 and by Theorem 1 of [3],

I(P)= inf L(Q),

(P) oot b (@)
while, by Lemma 4, each element @ of S3(P) is of the form @ = z™ +
ax™ + bxP + ¢, where a, b, ¢ are given by the formulae of Lemma 4. Now, by

Lemma 6,
a<0, b>af—-1, ¢<0,

hence L(Q) = L(Q) + Q(1) = 2(1 + b) > 2a8 = 2M (P).

Note added in proof. Concerning Proposition 2(ii) E. Dobrowolski has observed
that if M (P) > |ao|, then {(P) > M (P). Indeed, then for every monic @ we have L(PQ) >

a0l +V/[[PQII? — |aol? > |ao|+ v/ M(PQ)? — |ao|? = |ao|++/M(P)? — |ao|?, hence I(P) >
|ao| + /M (P)? — |ao|* > M(P).
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