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1. Introduction. At the 1991 Czechoslovak number theory conference,
Professor A. Schinzel asked the following question: For a positive integer n,
let as usual r(n) denote the number of ways n can be written as a sum of two
squares. What is the sharpest state-of-the-art error bound in the asymptotics
for the quadratic moment∑

n≤x
r2(n) = 4x log x+ Cx+O(???) ?

In [4], M. Z. Garaev, M. Kühleitner, F. Luca and W. G. Nowak gave an
interesting and fairly general theorem which includes applications to sums
like ∑

n

r2(n),
∑
n

d2(n),
∑
n

r(n3),
∑
n

d(n3),
∑
n

r(n)d(n),

where d(n) is the Dirichlet divisor function. For papers in this direction, see
also [14, 5, 6, 21, 28, 32, 34].

The main theorem of [4] can be stated as follows.

Theorem GKLN. Let 0 ≤ f(n)� nε for every ε > 0, with a Dirichlet
series

F (s) =
∑
n≥1

f(n)

ns
=

∏M
m=1 ζK∗m(s)∏J

j=1(ζKj (2s))
τj
G(s) (<s > 1).

Assume that:

• ζK∗m are Dedekind zeta-functions of number fields K∗m of degrees dm =
[K∗m : Q] equal to 1 or 2, with

d1 + d2 + d3 + d4 = 4.

• K1, . . . ,KJ are arbitrary algebraic number fields, J ≥ 0.
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• τ1, . . . , τJ are fixed real numbers.
• The “harmless” factor G(s) is holomorphic, bounded from above and

away from 0 uniformly in a half-plane <s > σ0, where σ0 < 1/2.

Under the above assumptions,

(1.1)
∑
n≤x

f(n) = K(x) +O(x1/2(log x)M+1(log log x)|τ1|+···+|τJ |)

with

K(x) = Ress=1

(
F (s)

xs

s

)
= xPM−1(log x),

where PM−1(·) is a polynomial of degree M − 1.
Furthermore, we have the short interval result

(1.2)
∑

x<n≤x+y
f(n) ∼ B0y(log x)M−1,

where B0 is the leading coefficient of PM−1(·), as long as y = y(x) satisfies

(1.3) y = o(x),
y

x1/2 log x(log log x)|τ1|+···+|τJ |
→∞ (x→∞).

For Schinzel’s question, Theorem GKLN implies that

(1.4)
∑
n≤x

r2(n) = 4x log x+ Cx+O(x1/2(log x)3 log log x).

When f(n) = d2(n), the error term in the formula (1.1) has the estimate
O(x1/2(log x)5 log log x), which was proved independently by Ramachandra
and Sankaranarayanan [28]. Recently, Jia and Sankaranarayanan [14] proved
that the log log x factor in this case can be removed. This is the best result
one can obtain by the present methods of analytic number theory.

In this paper we shall show that under the assumptions of Theorem
GKLN, the (log log x)|τ1|+···+|τJ | in both (1.1) and (1.3) can be removed.
Hence we get the best result one can obtain by the present approaches of
analytic number theory. Furthermore, our result holds for a more general
class of arithmetic functions.

Remark 1.1. The most important ingredient of this paper is the appli-
cation of the twisted mean square of the Dedekind zeta-function (see [9])
over the critical line. Another important point is that we do not use the
large and small values of ζ(1 + it) (or other similar functions) as previous
papers did; instead, we use the zero-free region result and the mean value
of Dirichlet polynomials. The main tools used in this paper are (for ζ(s) or
other relevant functions):

• the zero-free region,
• the mean value of Dirichlet polynomials,
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• higher power moments over the critical line,
• the twisted mean square of the Dedekind zeta-function over the critical

line.

Notation. Throughout this paper, r(n) denotes the number of ways
n can be written as a sum of two squares; d(n) is the Dirichlet divisor
function, i.e., the number of ways n can be written as a product of two
natural numbers; dl(n) denotes the number of ways n can be written as a
product of l natural numbers; ω(n) is the number of distinct prime divisors
of n. Q denotes the rational number field, and K an algebraic number field.
ζ(s) denotes the Riemann zeta-function, L(s;χ, q) (or L(s;χ)) the Dirichlet
L-function for a Dirichlet character χ modulo some q ≥ 1, and ζK(s) the
Dedekind zeta-function for an algebraic number field K.

2. Statement of the main result. Before stating our result, we in-
troduce a convenient class of functions. For any fixed β ≥ 0, let Dβ denote
the set of functions H(s) defined by the Dirichlet series

H(s) :=
∑
n≥1

h(n)

ns
(<s > 1)

for some arithmetic function h(n), and satisfying the following conditions:

• H(s) can be analytically continued to the region

(2.1) σ ≥ 1− cH
(log(|t|+ 2))β

for some constant cH > 0, and has a possible pole at s = 1 of order
δH ≥ 0,
• H(s) satisfies the estimate

(2.2) H(σ + it)� (log(|t|+ 2))θH (|t| ≥ 1)

for some constant θH > 0 in the region (2.1),
• the arithmetic function h(n) satisfies

(2.3) h(n)� dl(n)

for some positive integer l = l(H) ≥ 1.

Remark 2.1. The assumptions for Dβ are natural, being closely related
to the zero-free regions of important functions in analytic number theory,
such as the Riemann zeta-function ζ(s), etc.

Let L(s) be the Riemann zeta-function ζ(s), or the Dirichlet L-function
L(s;χ, q) with respect to the Dirichlet character χ modulo a fixed q ≥ 1, or
the Dedekind zeta-function ζK(s) for an algebraic number field K. According
to Lemma 3.1, we have L(·) ∈ Dβ and 1/L(·) ∈ Dβ for any β > 2/3.
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Suppose f : N → C is an arithmetic function such that the Dirichlet
series

F (s) :=

∞∑
n=1

f(n)

ns

is absolutely convergent for σ > 1 and

(2.4) F (s) = ζ(s)L(s;χ, q)M(s)H(2s)G(s) (σ > 1),

where

• L(s;χ, q) is a Dirichlet L-function with respect to a Dirichlet character
χ modulo some fixed q ≥ 1,
• M(s) is a meromorphic function in the extended Selberg class (see

Section 7, or [16, 30, 31]) such that s = 1 is a possible pole of order
δM ≥ 0 and

(2.5)

T�

1

|M(1/2 + it)|2 dt� T (log T )θM for some θM ≥ 0,

• H(·) ∈ Dβ for some β > 0,
• The “harmless” factor G(s) is holomorphic, bounded from above and

away from 0 uniformly in a half-plane <s > σ0, where σ0 < 1/2.

The expected form of the asymptotic formula for the summatory function
of f(n) is

(2.6)
∑
n≤x

f(n) = xP1(log x) + x1/2P2(log x) + Ef (x),

where P1(u) is a polynomial in u of degree δχ+δM with δχ = 1 when χ is the
principal character modulo q, and δχ = 0 otherwise; P2(u) is a polynomial
in u of degree δH − 1 when δH ≥ 1, and P2(u) = 0 when δH = 0; and Ef (x)
is the error term. Actually, we have

(2.7) xP1(log x) = Ress=1 F (s)
xs

s
, x1/2P2(log x) = Ress=1/2 F (s)

xs

s
.

Our main result is the following

Main Theorem. Suppose the above conditions hold.

(1) We have the estimate

(2.8) Ef (x) = O(x1/2(log x)2+δχ+θM/2).

(2) If f(n) ≥ 0 for all n, then

(2.9)
∑

x<n≤x+y
f(n) ∼ C0y(log x)δχ+δM
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for y = y(x) with

y = o(x),
y

x1/2(log x)1+θM/2−δM
→∞ (x→∞),

where C0 is the leading coefficient of P1(·).

Remark 2.2. When 1 ≤ δH ≤ 3 + δχ + θM/2, the term x1/2P2(log x)
does not appear since it is absorbed into O(x1/2(log x)2+δχ+θM/2). However,
if δH > 3 + δχ + θM/2, then x1/2P2(log x) is a true main term.

Remark 2.3. The condition (2.3) on Dβ is important but not essential,
and it can be relaxed in some sense. For example, it is easy to see that the
function H1(s) = 1/ζ(2s − 1) is not in Dβ for any β > 0 since (2.3) is not
true. However, our theorem still holds if we replace H(2s) by H1(2s).

Now we define an extension of Dβ, denoted by D�β, to be the set of
functions H�(s) defined by the Dirichlet series

H�(s) :=
∑
n≥1

h�(n)

ns
(<s > 1)

for some arithmetic function h�(n), and satisfying the following conditions:

• H�(s) can be analytically continued to the region

(2.10) σ ≥ 1− cH�

(log(|t|+ 2))β

for some constant cH� > 0, and has a possible pole at s = 1 of order
δH� ≥ 0,
• H�(s) satisfies the estimate

(2.11) H�(σ + it)� (log(|t|+ 2))θH� (|t| ≥ 1)

for some constant θH� > 0 in the region (2.10),
• There exists H(·) ∈ Dβ such that

H�(1 + it)� |H(1 + ait)| (|t| ≥ 1)

for some positive integer a.

Obviously Dβ ⊂ D�β, and our Main Theorem still holds if H(s) is replaced
by some H�(s) ∈ D�β.

3. Preliminary lemmas

Lemma 3.1. Let L(s) be the Riemann zeta-function ζ(s), or the Dirichlet
L-function L(s;χ, q) with respect to the Dirichlet character χ modulo a fixed
q ≥ 1, or the Dedekind zeta-function ζK(s) for an algebraic number field K.
Then:
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(1) There exists a positive constant cL such that L(s) 6= 0 in the region

σ ≥ 1− cL
(log(|t|+ 2))2/3(log log(|t|+ 2))1/3

.

(2) There exists a positive constant CL such that in the above region

L(s)� (log(|t|+ 2))CL , 1/L(s)� (log(|t|+ 2))CL .

Proof. For ζ(s) and L(s;χ, q), see Ivić [11, Chapter 6] and C. D. Pan
and C. B. Pan [27, Chapters 10 and 17], respectively. Note that we do
not consider the effects of the possible Siegel zero of L(s;χ, q) when χ is a
real character, since we always suppose that q is fixed. For the case of the
Dedekind zeta-function, see Mitsui [23].

Lemma 3.2 (Ivić [11, Theorem 5.2]). Suppose a(1), . . . , a(N) are arbi-
trary complex numbers. Then

T�

1

∣∣∣∑
n≤N

a(n)nit
∣∣∣2 dt = T

∑
n≤N
|a(n)|2 +O

(∑
n≤N

n|a(n)|2
)
.

Lemma 3.3. Let L(s) be ζ(s) or the Dirichlet L-function L(s;χ, q) with
respect to a Dirichlet character χ modulo a fixed q ≥ 1. Then for any 4 <
A < 12,

T�

1

|L(1/2 + it)|A dt� T 1+(A−4)/8+ε.

Proof. When L(s) = ζ(s), the lemma follows from the fourth moment
estimate (see Ivić [11])

T�

1

|ζ(1/2 + it)|4 dt� T (log T )4,

the twelfth moment estimate (see Heath-Brown [8])

T�

1

|ζ(1/2 + it)|12 dt� T 2(log T )17

and Hölder’s inequality.
When L(s) = L(s;χ, q) the proof is the same, using the fourth moment

of L(s;χ, q), the twelfth moment of L(s;χ, q) over the critical line (see [22])
and Hölder’s inequality.

Lemma 3.4. Let L(s) = L(s;χ, q) be the Dirichlet L-function with re-
spect to a Dirichlet character χ modulo a fixed q ≥ 1. Then

(3.1)

T�

1

|ζ(1/2 + it)L(1/2 + it;χ, q)|2 dt� T (log T )2+2δχ .
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Proof. When χ = χ0 is the principal character, Lemma 3.4 follows from
the fourth moment estimate for ζ(s) over the critical line. When χ 6= χ0, it
is a consequence of Müller’s result [25].

Lemma 3.5. Let l ≥ 1 be a fixed integer. Then∑
n≤x

dl(n)� x(log x)l−1,
∑
n≤x

d2l (n)� x(log x)l
2−1.

Proof. Well-known.

4. A mean value estimate. In this section we shall prove the following
mean value estimate, which plays the most important role in the proof of
our Main Theorem.

Proposition. Let L(s;χ, q), M(s) and H(s) satisfy the conditions of
the Main Theorem. Then

(4.1)

T�

1

|ζ(1/2 + it)L(1/2 + it;χ, q)M(1/2 + it)H(1 + 2it)| dt

� T (log T )1+δχ+θM/2.

Remark 4.1. The Proposition is still true if we replace H(1 + 2it) by
H(1 + ait) for any positive integer a ≥ 1.

It suffices to prove that

(4.2)

T�

1

|ζ2(1/2 + it)L2(1/2 + it;χ, q)H2(1 + 2it)| dt� T (log T )2+2δχ ,

or equivalently

(4.3)

2T�

T

|ζ2(1/2 + it)L2(1/2 + it;χ, q)H2(1 + 2it)| dt� T (log T )2+2δχ .

Actually, (4.1) follows immediatly from (4.2), (2.5) and Cauchy’s inequality.
We shall prove the estimate (4.3).

4.1. An approximation of H(1 + 2it). Define H(x) :=
∑

n≤x h(n).
Recall that H(·) ∈ Dβ for some fixed β > 0. By the contour integration
method and the conditions on Dβ, we can prove that

(4.4) H(x) = ηxP ∗(log x) +O(xe−c(log x)
1/(1+β)

),

where c > 0 is a positive constant, η = 1 if s = 1 is a pole of H(s) of order
δH ≥ 1 and P ∗(u) is a polynomial in u of degree δH − 1, and η = 0 if H(s)
is analytic at s = 1. We omit the proof of (4.4), since it is routine and the
same as the proof of the prime number theorem. Let

EH(x) := H(x)− ηxP ∗(log x).
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Then

(4.5) EH(x)� xe−c(log x)
1/(1+β)

.

Suppose ξ = u + iv with 1 < u < 2 and v � T. Let B > 1 be a large
parameter to be determined later. Then

(4.6) H(ξ) =
∞∑
n=1

h(n)

nξ
=
∑
n≤B

h(n)

nξ
+
∑
n>B

h(n)

nξ
.

By partial summation,∑
n>B

h(n)

nξ
=

∞�

B

1

xξ
dH(x)(4.7)

=

∞�

B

1

xξ
dη xP ∗(log x) +

∞�

B

1

xξ
dEH(x) =:

�
1

+
�
2
.

If δH = 0 then
	
1 = 0, and if δH ≥ 1 then it is easy to see that

(4.8)
�
1

=

∞�

B

P ∗(log x) + (P ∗(log x))′

xξ
dx� (logB)δH−1

|ξ − 1|
.

By partial integration we get

(4.9)
�
2

= −EH(B)

Bξ
+ ξ

∞�

B

EH(x)

x1+ξ
dx.

From (4.5) we see that the integral on the right-hand side of (4.9) is abso-
lutely convergent on the line ξ = 1. So by taking ξ = 1 + 2it with t � T we
deduce from (4.6)–(4.9) that

H(1 + 2it) =
∑
n≤B

h(n)

n1+2it
+O(η(logB)δH−1/T + |EH(B)|/B)

+O

(
T

∞�

B

|EH(x)|
x2

dx

)
=
∑
n≤B

h(n)

n1+2it
+O(η(logB)δH−1/T + |EH(B)|/B|)

+O(Te−c1(logB)1/(1+β))

for some 0 < c1 < c. Now taking

(4.10) B := e(2c
−1
1 log T )1+β , y := T 1/24,
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we get

H(1 + 2it) =
∑
n≤B

h(n)

n1+2it
+O((logB)δH−1/T )(4.11)

= H1(t) +H2(t) +O((logB)δH−1/T ),

where

H1(t) :=
∑
n≤y

h(n)

n1+2it
, H2(t) :=

∑
y<n≤B

h(n)

n1+2it
.

Inserting (4.11) into the integral on the left-hand side of (4.3) and then using
Lemma 3.4 we get

(4.12)

2T�

T

|ζ2(1/2 + it)L2(1/2 + it;χ, q)H2(1 + 2it)| dt

� S1 + S2 + T−1(log T )2δH+2δχ ,

where

S1 :=

2T�

T

|ζ2(1/2 + it)L2(1/2 + it;χ, q)H2
1 (t)| dt,

S2 :=

2T�

T

|ζ2(1/2 + it)L2(1/2 + it;χ, q)H2
2 (t)| dt.

4.2. Estimation of S2. By Cauchy’s inequality we get

(4.13) S2 � (S21S22)
1/2,

where

S21 :=

2T�

T

|ζ4(1/2 + it)H2
2 (t)| dt, S22 :=

2T�

T

|L4(1/2 + it;χ, q)H2
2 (t)| dt.

Suppose 1 < p < 5/4 is a real number, and q > 1 is a natural number such
that 1/p + 1/q = 1. By Hölder’s inequality and Lemma 3.3,

S21 �
(2T�
T

|ζ(1/2 + it)|4p dt
)1/p(2T�

T

|H2(t)|2q dt
)1/q

(4.14)

� T
4p+4
8p

+ε
(2T�
T

|Hq
2 (t)|2 dt

)1/q
.

We write

Hq
2 (t) =

∑
yq<n≤Bq

h∗(n)

n1+2it
,(4.15)
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where (recalling (2.3))

h∗(n) =
∑

n=n1···nq

y<n1,...,nq≤B

h(n1) · · ·h(nq)(4.16)

�
∑

n=n1···nq

dl(n1) · · · dl(nq) = dlq(n).

So by Lemma 3.5 we get

(4.17)
∑
n≤x

h∗2(n)�
∑
n≤x

d2lq(n)� x(log x)l
2q2−1.

By Lemma 3.2 and (4.17), partial summation yields

2T�

T

|Hq
2 (t)|2 dt� T

∑
yq<n≤Bq

h∗2(n)

n2
+

∑
yq<n≤Bq

h∗2(n)

n
(4.18)

� T

yq
(log y)l

2q2−1 + (logB)l
2q2

� T

yq
(log T )l

2q2−1 + (log T )l
2q2(1+β).

From (4.14) and (4.18) we get

S21 � T
1+ 4p−4

8p
+ε
y−1(log T )

l2q2−1
q + T

4p+4
8p

+ε
(log T )l

2q(1+β)(4.19)

� T
1+ 4p−4

8p
− 1

24
+ε

(log T )
l2q2−1

q + T
4p+4
8p

+ε
(log T )l

2q(1+β)

� T 47/48+ε,

where in the last step we took q = 24, p = 24/23. Similarly we have

(4.20) S22 � T 47/48+ε.

Thus from (4.13), (4.19) and (4.20) we get

(4.21) S2 � T 47/48+ε.

4.3. Estimation of S1. The estimate of S1 is closely related to the
integral

(4.22)

2T�

T

|ζ(1/2 + it)|4|M(1/2 + it)|2 dt,

where

M(s) :=
∑
h≤T θ

a(h)h−s

is a Dirichlet polynomial of length T θ (0 < θ < 1) with complex coeffi-
cients a(h). The evaluation of the integral in (4.22) is an important prob-
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lem in analytic number theory. It was studied by J.-M. Deshouillers and
H. Iwaniec [3], N. Watt [33] and most recently by Y. Motohashi [24], all of
whom used powerful methods from the spectral theory of the non-Euclidean
Laplacian. Hughes and Young [10] obtained an asymptotic formula for (4.22)
when θ = 1/11− ε. With the help of that result Ivić and the present author

[12, 13] studied the integral
	T
1 |ζ(1/2 + it)|4|ζ(σ + it)|2j dt for σ ≤ 1.

Let q ≥ 1 be a fixed integer, and χ be an arbitrary Dirichlet character
modulo q. Heap [9] generalized the result of Hughes and Young [10] to the
integral

(4.23)

2T�

T

|ζ(1/2 + it)|2|L(1/2 + it;χ, q)|2|M(1/2 + it)|2 dt.

Expanding |M(·)|2, we can write the integral (4.23) as

(4.24)
∑

h,k≤T θ

a(h)a(k)

(hk)1/2
I∗(h, k),

where

I∗(h, k) :=

2T�

T

|ζ(1/2 + it)|2|L(1/2 + it;χ, q)|2(h/k)−it dt.

Instead of evaluating I∗(h, k) directly, Heap evaluated the integral

(4.25) I(h, k) :=

∞�

−∞
w(t)ζ(1/2 + α+ it)L(1/2 + β + it;χ, q)

× ζ(1/2 + γ − it)L(1/2 + δ − it;χ, q)(h/k)−it dt,

where α, β, γ, δ � (log T )−1 are small complex numbers and w(t) is a
smooth, non-negative function with support contained in [T/2, 4T ]. When
(h, k) = 1 and h, k ≤ T 1/11−ε, Heap obtained an asymptotic formula for
I(h, k), which is of size ≈ 1√

hk
T (log T )2+2δχ . Correspondingly, if (h, k) = 1

and h, k ≤ T 1/11−ε, one has

(4.26) I∗(h, k) ≈ 1√
hk
T (log T )2+2δχ .

Now we estimate S1. Opening the square |H1(t)|2 we get

|H1(t)|2 =
∑
n1≤y

∑
n2≤y

h(n1)h(n2)

n1n2

(
n22
n21

)it
(4.27)

=
∑
r≤y

1

r2

∑
m1,m2≤y/r
(m1,m2)=1

h(rm1)h(rm2)

m1m2

(
m2

2

m2
1

)it
.
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Thus

(4.28) S1 =
∑
r≤y

1

r2

∑
m1,m2≤y/r
(m1,m2)=1

h(rm1)h(rm2)

m1m2
I∗(m2

1,m
2
2).

By our choice of y, we have m2
1,m

2
2 ≤ y2 = T 1/12 < T 1/11−ε. So from (4.26)

and (4.28) we get

S1 �
∑
r≤y

1

r2

∑
m1,m2≤y/r
(m1,m2)=1

h(rm1)h(rm2)

m1m2

1

m1m2
T (log T )2+2δχ(4.29)

�
∑
r≤y

1

r2

∑
m1,m2≤y/r
(m1,m2)=1

dk(rm1)dk(rm2)

m2
1m

2
2

T (log T )2+2δχ

� T (log T )2+2δχ .

Finally, (4.3) immediately follows from (4.12), (4.21) and (4.29).

5. Proof of Main Theorem

5.1. Proof of (2.8). By Perron’s formula (see for example [11, (A10)])
we have

(5.1)
∑
n≤x

f(n) =
1

2πi

1+ε+ix�

1+ε−ix
F (s)

xs

s
ds+O(xε),

where ε > 0 is fixed. Consider the contour C consisting of I0, I1, I2, I3, I4
and Ic, where

I0 := {s = 1 + ε+ it : −x ≤ t ≤ x},
I1 := {s = σ + ix : σ is from 1 + ε to 1/2},
I2 := {s = 1/2 + it : t is from x to ε},
Ic := {s = 1/2 + εeiθ : π/2 ≤ θ ≤ 3π/2},
I3 := {s = 1/2 + it : t is from −ε to −x},
I4 := {s = σ − ix : 1/2 ≤ σ ≤ 1 + ε}.

Inside the contour C the integrand F (s)xs/s has two poles, s = 1 of order
1 + δχ + δM and s = 1/2 of order δH . So by the residue theorem,

1

2πi

�

C

F (s)
xs

s
ds = Ress=1 F (s)

xs

s
+ Ress=1/2 F (s)

xs

s
(5.2)

= xP1(log x) + x1/2P2(log x).
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From (5.1) and (5.2) we get

(5.3) Ef (x) = −
4∑
j=1

1

2πi

�

Ij

F (s)
xs

s
ds− 1

2πi

�

Ic

F (s)
xs

s
ds+O(xε).

It is easy to see that

(5.4)
1

2πi

�

Ic

F (s)
xs

s
ds� x1/2.

By the Proposition and partial integration,

(5.5)
�

I2

F (s)
xs

s
ds+

�

I3

F (s)
xs

s
ds

� x1/2 + x1/2
T�

1

|F (1/2 + it)|t−1 dt

� x1/2 + x1/2
T�

1

|ζ(1/2 + it)L(1/2 + it;χ, q)M(1/2 + it)H(1 + 2it)|t−1 dt

� x1/2(log x)2+δχ+θM/2.

The estimate (2.5) implies that

M(1/2 + it)� |t|1/2+ε, |t| ≥ 1,

which combined with the well-known bounds

ζ(1/2 + it)� |t|1/6, L(1/2 + it;χ, q)� |t|1/6

gives
F (s)� |t|5|1−σ|/3+ε (1/2 ≤ σ ≤ 1 + ε)

via the Phragmén–Lindelöf principle. With the help of this estimate we
immediately get

(5.6)
�

I1

F (s)
xs

s
ds+

�

I4

F (s)
xs

s
ds� x−1

1+ε�

1/2

|F (σ + ix)|xσ dσ � x1/3+ε.

Now (2.8) follows from (5.3)–(5.6).

5.2. Proof of (2.9). Suppose that y � x1/2+ε, otherwise (2.9) follows
from (2.8) directly.

We follow the approach of [6], which is based on a device due to Kara-
tsuba [19]. Suppose x is a large parameter. For any x/2 < u < 2x, by the
argument in Section 5.1 we have

(5.7) A(u) :=
∑
n≤x

f(n) = L(u)−
∑
j=2,3

1

2πi

�

Ij

F (s)
us

s
ds+O(x1/2),



148 W. G. Zhai

where

L(u) := Ress=1 F (s)
us

s
+ Ress=1/2 F (s)

us

s
.

Since A(u) is increasing, we can use a formula of [6],

(5.8) A(x+ y)−A(x) ≤ 1

h

x+y+h�

x+y

A(u) du− 1

h

x�

x−h
A(u) du,

where x1/2 � h < y is a parameter to be determined later. From (5.7) we
have

(5.9)

x+y+h�

x+y

A(u) du−
x�

x−h
A(u) du

=

x+y+h�

x+y

L(u) du−
x�

x−h
L(u) du+O(hx1/2)

−
∑
j=2,3

1

2πi

�

Ij

F (s)
(x+ y + h)s+1 − (x+ y)s+1 − xs+1 + (x− h)s+1

s(s+ 1)
ds.

By the same argument as in [6],

(5.10)

x+y+h�

x+y

L(u) du−
x�

x−h
L(u) du

= C0hy(log x)δχ+δM +O(h2(log x)δχ+δM + hy(log x)δχ+δM−1).

We have

(5.11)
∑
j=2,3

1

2πi

�

Ij

F (s)
(x+y+h)s+1 − (x+y)s+1 − xs+1 + (x−h)s+1

s(s+1)
ds

�
x�

ε

∣∣∣∣F (1/2 + it)
Hx,y,h(t)

t2 + 1/4

∣∣∣∣ dt,
where

Hx,y,h(t) := (x+ y + h)3/2+it − (x+ y)3/2+it − x3/2+it + (x− h)3/2+it.

Let z := x/
√
hy. When ε ≤ t ≤ z, by using the bound (see [6])

Hx,y,h(t)� (1 + t2)hyx−1/2
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and our Proposition we get

z�

ε

∣∣∣∣F (1/2 + it)
Hx,y,h(t)

t2 + 1/4

∣∣∣∣ dt� hyx−1/2
z�

ε

|F (1/2 + it)| dt

� hyx−1/2z(log x)1+δχ+θM/2 � (hxy)1/2(log x)1+δχ+θM/2.

When t > z, by using the trivial bound Hx,y,h(t) � x3/2, the Proposition
and partial integration we get

x�

z

∣∣∣∣F (1/2 + it)
Hx,y,h(t)

t2 + 1/4

∣∣∣∣ dt� x3/2
x�

ε

|F (1/2 + it)|t−2 dt

� x3/2z−1(log x)1+δχ+θM/2 � (hxy)1/2(log x)1+δχ+θM/2.

Inserting the above two estimates into (5.11) we get

(5.12)
∑
j=2,3

1

2πi

�

Ij

F (s)
(x+y+h)s+1 − (x+y)s+1 − xs+1 + (x−h)s+1

s(s+ 1)
ds

� (hxy)1/2(log x)1+δχ+θM/2.

Combining (5.8)–(5.10) and (5.12) we obtain

(5.13) A(x+ y)−A(x)

≤ C0y(log x)δχ+δM +O(h(log x)δχ+δM + y(log x)δχ+δM−1)

+O(x1/2) +O(h−1/2(xy)1/2(log x)1+δχ+θM/2)

= C0y(log x)δχ+δM +O(y(log x)δχ+δM−1)

+O(x1/2 + (xy)1/3(log x)2/3+δχ+(θM+δM )/3)

by taking

h := (xy)1/3(log x)2/3+θM/3−2δM/3.

By a similar approach we get

A(x+ y)−A(x) ≥ C0y(log x)δχ+δM +O(y(log x)δχ+δM−1)(5.14)

+O(x1/2 + (xy)1/3(log x)2/3+δχ+(θM+δM )/3).

From (5.13) and (5.14) we have

A(x+ y)−A(x) = C0y(log x)δχ+δM +O(y(log x)δχ+δM−1)

+O(x1/2 + (xy)1/3(log x)2/3+δχ+(θM+δM )/3)

∼ C0y(log x)δχ+δM

if
y

x1/2(log x)1+θM/2−δM
→∞ (x→∞).
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6. Applications

6.1. A special divisor problem. Let 1 ≤ a1 ≤ · · · ≤ ak be fixed
integers. The general divisor function is defined by

d(n; a1, . . . , ak) =
∑

n=n
a1
1 ···n

ak
k

1.

Suppose J ≥ 0 is a fixed integer, k = J + 4, aj = 1 (1 ≤ j ≤ 4) and aj = 2
(4 < j ≤ J + 4). Then

d(n; 1, 1, 1, 1, 2, 2, . . . , 2) =
∑

n=n1n2
2

d4(n1)dJ(n2).

When J = 0, this function is just d4(n). So later we suppose J ≥ 1. It
is easy to see that the corresponding Dirichlet series is ζ4(s)ζJ(2s). Hence
our Main Theorem has the following corollary by taking L(s;χ, q) = ζ(s),
M(s) = ζ2(s) and h(s) = ζJ(s).

Corollary 1. We have the asymptotic formula

(6.1)
∑
n≤x

d(n; 1, 1, 1, 1, 2, 2, . . . , 2)

= xQ1(log x) + x1/2Q2(log x) +O(x1/2(log x)5),

where Q1(u) is a polynomial in u of degree 3, and Q2(u) is a polynomial
in u of degree J − 1.

The short interval estimate

(6.2)
∑

x<n≤x+y
d(n; 1, 1, 1, 1, 2, 2, . . . , 2) ∼ C1y(log x)3

holds for y = y(x) with

y = o(x),
y

x1/2 log x
→∞ (x→∞),

where C1 is the leading coefficient of Q1(u).

Remark 6.1. Obviously the term x1/2Q2(log x) in Corollary 1 is a true
main term for J ≥ 7, but it is absorbed in the error term when 1 ≤ J ≤ 6.
However, the expected upper bound for the error term in (6.1) is O(x3/8+ε).
So we believe that x1/2Q2(log x) should be the true main term also for any
1 ≤ J ≤ 6.

6.2. On direct and unitary factors of finite abelian groups. Let
τ1(n) denote the number of direct factors of finite abelian groups of order n,
and t1(n) the number of unitary factors of finite abelian groups of order n.
Both these functions are multiplicative since (see [1])
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n≥1

τ1(n)n−s =
∏
k≥1

ζ2(ks) (<s > 1),

∑
n≥1

t1(n)n−s =
∏
k≥1

ζ2((2k − 1)s)ζ(2ks) (<s > 1).

It is a classical problem to study the asymptotic behaviour of the summatory
functions of τ1(n) and t1(n). For details, see [1].

In [1], Calderón proved that

(6.3)
∑
n≤x

t21(n) = xR1(log x) +O(x1/2(log x)9),

where R1(u) is a polynomial in u of degree 3. Calderón used Perron’s formula
and the expression

(6.4)
∑
n≥1

t21(n)

ns
= ζ4(s)ζ6(2s)ζ20(3s)H2(s),

where H2(s) is a Dirichlet series absolutely convergent for <s > 1/4. From
(6.4) and our Main Theorem we immediately get

Corollary 2. We have the asymptotic formula

(6.5)
∑
n≤x

t21(n) = xR1(log x) +O(x1/2(log x)5).

Now we study
∑

n≤x τ
2
1 (n). For any prime p, the values of τ1(p

α) (1 ≤
α ≤ 3) are (see [1, (3.1)])

(6.6) τ1(1) = 1, τ1(p) = 2, τ1(p
2) = 5, τ1(p

3) = 10.

From (6.6) it is easy to see that when <s > 1, we have

(6.7)
∑
n≥1

τ21 (n)

ns
=
∏
p

(
1 +

∞∑
α=1

τ21 (pα)

pαs

)

=
∏
p

(
1 +

4

ps
+

25

p2s
+
∞∑
α=3

τ21 (pα)

pαs

)

=
∏
p

(1− p−s)−4
∏
p

(1− p−s)4
(

1 +
4

ps
+

25

p2s
+

∞∑
α=3

τ21 (pα)

pαs

)

= ζ4(s)
∏
p

(
1− 4

ps
+

6

p2s
+

4

p3s
+

1

p4s

)(
1 +

4

ps
+

25

p2s
+

∞∑
α=3

τ21 (pα)

pαs

)
= ζ4(s)

∏
p

(
1 +

15

p2s
+

20

p3s
+ · · ·

)
= ζ4(s)ζ15(2s)

∏
p

(
1 +

20

p3s
+ · · ·

)
= ζ4(s)ζ15(2s)H3(s),

where H3(s) is a Dirichlet series absolutely convergent for <s > 1/3.
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From (6.7) and our Main Theorem we immediately get

Corollary 3. We have the asymptotic formula

(6.8)
∑
n≤x

τ21 (n) = xR2(log x) + x1/2R3(log x) +O(x1/2(log x)5),

where R2(u), R3(u) are polynomials in u of degrees 3 and 14, respectively.

6.3. The average order of d2(n) and d(n3). It was Ramanujan [29]
who first studied the mean value of d2(n). He stated (without proof) the
asymptotic formula

(6.9)
∑
n≤x

d2(n) = xQ3(log x) +O(x3/5+ε),

where Q3(u) is a polynomial in u of degree 3. The estimate O(x3/5+ε) was
improved to O(x1/2+ε) by Wilson [34], and to O(x1/2(log x)5 log log x) by
K. Ramachandra and A. Sankaranarayanan [28], and by M. Z. Garaev,
M. Kühleitner, F. Luca and W. G. Nowak [4]. Recently, Jia and Sankara-
narayanan [14] showed that the error term in (6.3) can be improved to
O(x1/2(log x)5). For d(n3), they obtained a similar result.

For <s > 1 we have (see for example [6])∑
n≥1

d2(n)

ns
=
ζ4(s)

ζ(2s)
,

∑
n≥1

d(n3)

ns
=

ζ4(s)

ζ3(2s)
G1(s),

where G1(s) has an absolutely convergent Euler product in the half-plane
<s > 1/3. So our Main Theorem implies

Corollary 4. We have the asymptotic formulas∑
n≤x

d2(n) = xQ3(log x) +O(x1/2(log x)5),(6.10)

∑
n≤x

d(n3) = xQ4(log x) +O(x1/2(log x)5),(6.11)

where both Q3(u) and Q4(u) are polynomials in u of degree 3.

Moreover, the short interval estimates∑
x<n≤x+y

d2(n) ∼ C2y(log x)3,(6.12)

∑
x<n≤x+y

d(n3) ∼ C3y(log x)3(6.13)

hold for y = y(x) with

y = o(x),
y

x1/2 log x
→∞ (x→∞),
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where C2 is the leading coefficient of Q3(u), and C3 is the leading coefficient
of Q4(u).

Remark 6.2. Certainly, our Corollary 4 is not new compared to the re-
sults of Jia and Sankaranarayanan [14]. However, we give a slightly different
and simpler proof.

6.4. The second moment of quadratic Dedekind-zeta coeffi-
cients. For an arbitrary quadratic number field K with discriminant D,
let OK denote the ring of algebraic integers in K, and rK(n) the number of
integral ideals I in OK of norm N(I) = n. We have (see [26])∑

n≥1

r2K(n)

ns
=
ζ2K(s)

ζ(2s)

∏
p|D

(1 + p−s)−1 (<s > 1).

It is well-known that ζK(s) = ζ(s)L(s, χD), where L(s, χD) is a Dirichlet
L-function with respect to a certain non-principal real character modulo |D|
(cf. Zagier [17, p. 100]). So from our Main Theorem by taking L(s;χ, q) =
L(s, χD), M(s) = ζK(s), H(s) = 1/ζ(s) and G(s) =

∏
p|D(1 +p−s)−1 we get

Corollary 5. We have the asymptotic formula

(6.14)
∑
n≤x

r2K(n) = B0x log x+B1x+O(x1/2(log x)3),

where

B0 =
6

π2
L2(1, χD)

∏
p|D

p

p+ 1
.

Moreover, the short interval estimate

(6.15)
∑

x<n≤x+y
r2K(n) ∼ B0y log x

holds if y = o(x) and y/(x1/2 log x)→∞ as x→∞.
In particular, when K = Q(i), Corollary 5 implies that

(6.16)
∑
n≤x

r2(n) = 4x log x+ Cx+O(x1/2(log x)3),

which is an improvement of (1.4).

Remark 6.3. Corollary 5 improves Corollary 2 of [6].

6.5. Some Diophantine equations. Let K denote a quadratic num-
ber field with discriminant D. The generating series of rK(n3) is (see for
example [6]) ∑

n≥1

rK(n3)

ns
=

ζ2K(s)

ζ(2s)ζK(2s)
G2(s),
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where G2(s) can be written as a Dirichlet series absolutely convergent in the
half-plane <(s) > 1/3. So our Main Theorem implies the following improve-
ment of the corresponding result in Theorem GKLN and of [6, Corollary 4].

Corollary 6. We have the asymptotic formula

(6.17)
∑
n≤x

rK(n3) = B2x log x+B3x+O(x1/2(log x)3),

where

B2 =
36L2(1, χD)

π4L(2, χD)
G2(1).

Moreover, the short interval estimate

(6.18)
∑

x<n≤x+y
rK(n3) ∼ B2y log x

holds if y = o(x) and y/(x1/2 log x)→∞ as x→∞.

Let Q = Q(u; v) = au2+buv+cv2 be an integral, primitive, positive def-
inite binary quadratic form of class number 1 and discriminant D = b2−4ac.
It is well-known that

rQ(n) := #{(u, v) ∈ Z2 : Q(u, v) = n} = ωDrK(n),

where K = Q(
√
D) and ωD is the number of units in QQ(

√
D). We can now

apply Corollary 6 to the Diophantine equation

(6.19) Q(u, v) = w3

and get the following improvement of Corollary 5 of [6].

Corollary 7. For every integral, primitive, positive definite binary
quadratic form Q of class number 1 and with discriminant D, we have the
asymptotic formula

#{(u, v, w) ∈ Z3 : Q(u, v) = w3, 1 ≤ w ≤ x}
= ωDB2x log x+ ωDB3x+O(x1/2(log x)3).

Moreover, the short interval estimate

#{(u, v, w) ∈ Z3 : Q(u, v) = w3, x < w ≤ x+ y} ∼ ωDB2y log x

holds if y = o(x) and y/(x1/2 log x)→∞ as x→∞.

6.6. The average order of d(n)r(n). When <s > 1, we have (see for
example [6, (4.2)])

(6.20)
∑
n≥1

d(n)r(n)

ns
=

4ζ2Q(i)(s)ζ(2s)

ζQ(i)(2s)
.
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From our Main Theorem we get the following improvement of Corollary 7
in [6].

Corollary 8. We have the asymptotic formula

(6.21)
∑
n≤x

d(n)r(n) = B4x log x+B5x+O(x1/2(log x)3),

where B4 = π2/(4L(2;χ, 4)) and χ is the non-principal character modulo 4.
Moreover, the short interval estimate

(6.22)
∑

x<n≤x+y
d(n)r(n) ∼ B4y log x

holds if y = o(x) and y/(x1/2 log x)→∞ as x→∞.
Remark 6.4. Corollary 8 also holds for sums like

∑
d(n)rK(n) for any

quadratic number field K.

6.7. The average order of 4ω(n). The additive function ω(n) is the
number of distinct prime divisors of n. For each complex z 6= 0, the function
zω(n) is multiplicative and it is an interesting problem to study the asymp-
totic behaviour of the summatory function of zω(n). In [11, Chapter 14], Ivić
proved the following theorem: for every fixed R > 0 and every fixed integer
N ≥ 0, there exist functions A0(z), A1(z), . . . , AN (z) regular in |z| ≤ R such
that A0(0) = A1(0) = · · · = AN (0) = 0 and

(6.23)
∑
n≤x

zω(n) = x(log x)z−1
( N∑
j=0

Aj(z)(log x)−j +O((log x)−N−1)
)
,

where the O-constant is uniform in |z| ≤ R.
When z = k ≥ 2 is an integer, the estimate (6.23) is very weak and can

be improved substantially. Actually, the Dirichlet series of kω(n) is

(6.24)
∑
n≥1

kω(n)

ns
=

ζk(s)

ζk
2−k−(k2)(2s)

Gk(s) (σ > 1),

where Gk(s) is regular in the range σ ≥ 1/3+ε. From (6.24), by the contour
integration method we immediately get

(6.25)
∑
n≤x

kω(n) = xPk(log x) +O(xηk),

where Pk(u) is a polynomial in u of degree k − 1, and 1/2 ≤ ηk < 1 is a
constant.

When k = 4, our Main Theorem implies

Corollary 9. We have the asymptotic formula

(6.26)
∑
n≤x

4ω(n) = xP4(log x) +O(x1/2(log x)5),

where P4(u) is a polynomial in u of degree 3.
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Moreover, the short interval estimate

(6.27)
∑

x<n≤x+y
4ω(n) ∼ B6y(log x)3

holds if y = o(x) and y/(x1/2 log x)→∞ as x→∞, where B6 is the leading
coefficient of P4(u).

6.8. An example connected with cusp forms. Let g be a primitive
holomorphic cusp form of weight k ≥ 1 for the full modular group SL2(Z).
Let

(6.28) g(z) =
∞∑
n=1

λg(n)n(k−1)/2e(nz),

with e(z) = e2πiz, be its normalized Fourier expansion at the cusp ∞. Then
the automorphic L-function

Lg(s) =

∞∑
n=1

λg(n)n−s

is an L-function of degree 2 satisfying the functional equation

(2π)−s∆(s)Lg(s) = (−1)k/2(2π)−(1−s)∆(1− s)Lg(1− s)

with the gamma factor ∆(s) = Γ (s + (k − 1)/2). Deligne [2] proved that
|λg(n)| ≤ d(n). So Lg(s) is a function in the Selberg class. It is well-known
(see for example [15] and [7]) that

(6.29) Lg(1/2 + it)� |t|1/3+ε (|t| ≥ 1)

and

(6.30)

T�

1

|Lg(1/2 + it)|2 dt = Ag,0T log T +Ag,1T +O(T 2/3(log T )C),

where Ag,0 and Ag,1 are constants.

Suppose H(·) ∈ Dβ for some β > 0, corresponding to an arithmetic
function h(n). Define the arithmetic function

f(n) =
∑

n=n1n2n2
3

d(n1)λg(n2)h(n3).

When <s > 1, the Dirichlet series of f is∑
n≥1

f(n)

ns
= ζ2(s)Lg(s)H(2s).
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So from our Main Theorem we get

Corollary 10. We have the asymptotic formula

(6.31)
∑
n≤x

f(n) = B7x log x+B8x+ x1/2Q5(log x) +O(x1/2(log x)7/2),

where B7 and B8 are constants, Q5(u) is a polynomial in u of degree δH − 1
when δH ≥ 1, and Q5(u) = 0 if δH = 0.

Similarly, define

f1(n) =
∑

n=n1n2n2
3

r(n1)λg(n2)h(n3).

When <s > 1, the Dirichlet series of f1 is∑
n≥1

f1(n)

ns
= 4ζ(s)L(s;χ4)Lg(s)H(2s),

where χ4 is the non-principal character modulo 4.
So from our Main Theorem we get

Corollary 11. We have the asymptotic formula

(6.32)
∑
n≤x

f1(n) = B9x+ x1/2Q6(log x) +O(x1/2(log x)5/2),

where B9 is a constant, Q6(u) is a polynomial in u of degree δH − 1 when
δH ≥ 1, and Q6(u) = 0 if δH = 0.

7. Appendix: the Selberg class. The well-known Selberg class S (see
for example [16, 30, 31]) consists of all non-vanishing Dirichlet series

L(s) :=
∞∑
n=1

a(n)

ns

which satisfy the following hypotheses:

I. Ramanujan’s conjecture: a(n)� nε for any ε > 0.
II. Analytic continuation: There exists a non-negative integer mL such

that (s− 1)mLL(s) is an entire function of finite order.
III. Functional equation: L(s) satisfies a functional equation of the type

(7.1) ΛL(s) = ω ΛL(1− s̄),
where

(7.2) ΛL(s) := L(s)Qs
L∏
j=1

Γ (αjs+ βj),

and Q > 0, |ω| = 1 and αj > 0, βj ∈ C with <βj ≥ 0 for all
1 ≤ j ≤ L. The number d = 2

∑
j αj is called the degree of L(s).
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IV. Euler product : L(s) satisfies

L(s) =
∏
p

exp

(∑
n≥1

b(pn)

pns

)
with suitable coefficients b(pn) satisfying b(pn) � pnc for some
c < 1/2.

Many well-known functions are contained in the Selberg class S. We re-
call some examples. The well-known Riemann zeta-function ζ(s) and Dirich-
let L-functions are functions in S of degree 1. The Dedekind zeta-function
over an algebraic number field of degree κ ≥ 2 is a function in S of degree κ.
The automorphic L-function Lg(s) defined in the last section is a function
in S of degree 2.

The extended Selberg class S# (see [16, 17, 18] for an introduction)
consists of all Dirichlet series

∑
n≥1 a(n)n−s which satisfy conditions I∗, II

and III, where

I∗.
∑

n≥1 a(n)n−s is absolutely convergent for σ > 1.

Finally, consider one example. Let ϕ be a primitive Maass form for
SL2(Z), which is an eigenfunction of the Laplace operator with eigenvalue
λ = 1/4 + r2, where r ∈ R. Write its Fourier expansion at infinity in the
form

ϕ(z) =
√
v
∑

n∈Z\{0}

ρ(n)Kir(2π|n|v)e(nu) (z = u+ iv, u ∈ R, v > 0),

where Kir is the modified Bessel function of the third kind. The correspond-
ing automorphic L-function is defined by

L(ϕ, s) =
∞∑
n=1

ρ(n)n−s (σ > 1),

which is a function of degree 2, entire on C, with the functional equation

π−s∆(s)L(ϕ, s) = (−1)δπ−(1−s)∆(1− s)L(ϕ, 1− s),

where ∆(s) = Γ ((s + δ + ir)/2)Γ ((s + δ − ir)/2), and δ is the parity of ϕ
defined by δ = 0 if ϕ is even and δ = 1 if ϕ is odd.

We do not know if L(ϕ, ·) ∈ S since the best-known upper bound of ρ(n)
is

(7.3) |ρ(n)| ≤ d(n)n7/64,

due to Kim and Sarnak [20]. However, we have L(ϕ, ·) ∈ S#.
The conclusions of Corollaries 10 and 11 still hold if we replace Lg(s) by

L(ϕ, s).
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