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Introduction. Let C be a smooth irreducible projective curve defined
over a finite field I, of ¢ elements of characteristic p > 3 and K = F,(C) its
function field. Let E/K be a non-constant elliptic curve and ¢¢ : &€ — C'its
minimal regular model. For each P € C define £p = gogl(P). The elliptic
curve E/K has good reduction at P € C' if and only if Ep is an elliptic curve
defined over the residue field xkp of P. This field is a finite extension of [F, of
degree deg(P). Let t(Ep) = q%8(P) 41 — #Ep(kp) be the trace of Frobenius
at P. By Hasse—Weil’s theorem (cf. [10, Chapter V, Theorem 2.4)), t(Ep) is
the sum of the inverses of the zeros of the zeta function of £p. In particular,
1t(Ep)| < 2¢e(P). Let Cy C C be the set of points of C' at which E/K has
good reduction and Cy(F,x) the subset of F r-rational points of Co.

QUESTION 1. Let B > 1 and t be integers and suppose |t| < 2¢®/2. How
large is w(B,t) = #{P € Cy | deg(P) < B and t(Ep) =1t}?

A similar question was originally posed by Lang and Trotter [5] for ellip-
tic curves over Q and later extended to elliptic curves over number fields [6].

For each k < B such that |t| < 2¢"/? we start by estimating 7 (k,t)’ =
#{P € Cy | deg(P) = k and t(Ep) = t}. Let Ep = Ep X p Fyr and w(k, t)" =
#{P € Co(Fu) | t(€p) = t}. The former set is contained in the latter
so w(k,t) < mw(k,t)"” and throughout all this paper we actually estimate
m(k,t)".

1. Preliminaries. Observe first that £/K has to be an ordinary elliptic
curve, otherwise j(FE) € F,2 (cf. [10, Chapter V, Theorem 3.1]), but this
contradicts the fact that E'/K is non-constant.

Let je : C — P! be the j-map induced from pg. We say that P €
Cy is good ordinary, respectively good supersingular, if £p is an ordinary,
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respectively supersingular, elliptic curve. Since the number of supersingular
j-invariants in F, is finite (cf. [10, Chapter V, Theorem 4.1]), the number of
good supersingular points P € Cj is also finite and bounded by an absolute
constant. This does not hold for elliptic curves over Q (cf. [2]).

So, we will only concentrate on good ordinary P € Cy. Let C} =
{P € Cy | Pisordinary}. Let E/F; be an elliptic curve and t(E) =
g+ 1— #E(F,). Then E is supersingular if and only if p{t(E) (cf. [10,
Ex. 5.10]). Till the end of this note we assume pft.

2. Estimate of 7w (k,t)”

NOTATION 2.1. Let I(t) be the set of the isogeny classes of elliptic curves
E/F v defined over F « such that #FE(F ) = q* +1—t. Let 2y, be the set
of IF x-isomorphism classes [E] of E' € I(t) and N(t) = #% .

DEFINITION 2.2. Let A < 0 be an integer such that A =0 or 1 (mod4),
B(A) = {ax? + Bry +vy* | o, 3,7 € Z, a > 0 and %2 — 4ay = A} and
b(A) = {ax®+Bry+vyy? € B(A) | ged(a, B,7) = 1}. The group SLy(Z) acts
on B(A) via (: g)f(ac, y) = f(ax + By, yx + dy) preserving b(A). The sets
b(A)/SLy(Z) and B(A)/SLy(Z) are finite with cardinality h(A) and H(A),
respectively. The numbers h(A) and H(A) are called the class number and
the Kronecker class number of A, respectively.

PROPOSITION 2.3 [8, Proposition 2.2]. Let A < 0 be an integer such
that A=0 or 1 (mod4). Then

(2.1) H(A) =Y hA/f?),
f

where f runs through all positive divisors of A such that A/f* € Z and
A/f?=0 or1 (mod4).

REMARK 2.4. Let O be an imaginary quadratic order with discriminant
A(O) and ho its class number. It follows from the correspondence between
binary quadratic forms and complex quadratic orders that hp = h(A(O)),
where A(O) denotes the discriminant of O [1, Chap. 2, Section 7, Theo-
rem 4].

PROPOSITION 2.5 [8, Theorem 4.5]. Let E € I(t) and O = Endqu(E).
Then #{[E') € Ay, | © = Endg, (E')} = ho.

NOTATION 2.6. Denote by O(t? —4¢*) the imaginary quadratic order of
discriminant 2 — 4¢*.

COROLLARY 2.7 [8, Theorem 4.6]. N(t) = H(t*> — 4q%).
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Proof. By [8, Theorem 4.3], since p{t, all imaginary quadratic orders
O D O(t? — 4¢¥) occur as FFx-endomorphism rings of elliptic curves in I(t).
Hence, the result follows from Propositions 2.3 and 2.5 and Remark 2.4. =

THEOREM 2.8. 7(k,t)” < deg(je)H (t? — 4q").

Proof. Let Cj(F ) be the set of F i-rational points of Cjy and Cp; =
{P € Cy(Fyr) | t(Ep) = t}, where Ep = Ep Xyp Fyi. Define 4 : Cpp — Ay
by 1(P) = [€p] and let j(Ep) be the j-invariant of Ep.

We claim that ¥~ 1([E5]) C 42" (5(Ep)). In fact, if Q € Y([p]), then
there exists an F s-isomorphism between & and £p, in particular j(€q) =

j4(Ep). Hence, #¢ 7 ([€p]) < #4z ' (7(Ep)) < deg(je) and
(2:2) n(k,t)" = Y #T(E)) < deg(je)#¢(Ch)

[E1e(Ch,e)
< deg(je)H (t* — 4¢"). w
COROLLARY 2.9.

n(B,t) < (D H( —44")) deg(je).
k<B
[t|<2¢*

REMARK 2.10. We would like to compute examples in which we could
test whether the bound of Theorem 2.8 is achieved. One good sort of ex-
ample comes from modular curves. However, in this case there is almost no
control on j¢ in contrast to the j-map J naturally associated to the modu-
lar problems. Moreover, if we observe the proof of Theorem 2.8 closely, we
notice that we can replace the regular minimal model by any elliptic surface
¢g : & — C having E/K as the generic fiber, defining the notions of good

ordinary (good supersingular) points in terms of the fibers of E — C be
ing smooth ordinary (supersingular) elliptic curves. In this set-up it makes
sense to consider the trace of Frobenius of the fibers of good ordinary points.
We can also consider elliptic curves E — C; in the sense of [4, Chapter 2]
defined over an affine subcurve C; C C with generic fiber E/K and com-
pute the number (still denoted by 7(k,t)”) of F s-rational points P € C}
corresponding to good ordinary fibers Ep such that ¢(E») = t. The elliptic
curve comes equipped with a j-map J : C — P! and we look for conditions
for 7(k,t)" to be equal to deg(J)H (1> — 4¢*), where deg,(.J) denotes the
separable degree of J.

3. Affine models. Let X be a smooth irreducible projective curve over
F, and Y C X an affine subcurve. Suppose there exists an elliptic curve
E — Y with generic fiber F/K and a map J : X — P! whose restriction
to Y is given by y — j(E,), where E, denotes the fiber of E — Y at y. Let
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Y'={y € Y | E, is ordinary}. Denote by Y'(IF ) the subset of I x-rational
points. Given y € Y'(IF ), let sy be its residue field and B}, = £, x,;, F k. Let
Ver = {y € Y'(Fu) | £(E}) = t} and m(k,t)" = #Vg,. Let 0 : Yoy — i,y
be the map defined by y +— [E]].

PROPOSITION 3.1. Suppose the following three conditions are satisfied:

(1) 0Y(EL) = TG (E,)).

(2) ¥ is surjective.

(3) For every y € Y, the inertia degree f(y|j(Ey)) equals 1. The set
R CY of possible ramification points of J is contained in J~1({0,1728}).
For each y € R the ramification index e(y|0) (respectively e(y|1728)) of
P over 0, respectively 1728, equals 3, respectively 2.

Then (k,t)" = deg,(J)H (t> —4¢*), where deg(J) denotes the separable
degree of J.

Proof. In the definition of H(A), we count the forms az? + ay?, re-
spectively ax? 4+ axy + ay?, in B(A), if they occur, with multiplicity 1/2,
respectively 1/3. Then we need to replace h(A) in Proposition 2.3 by h,(A),
where hy,(—3) = 1/3, hy(—4) = 1/2, and hy(A) = h(A) for A < —4. The
equality (2.1) does not change when reinterpreted with these multiplicities
[9, Proposition 2.1]. Hence, by Propositions 2.3 and 2.5 and Remark 2.4 (cf.

(2.2)),
n(k, )" = Y #ITGE) =deg(J) Y hu(A0)

[E]eUy,., O(t2—4q*)cO
= deg (J)H(t* — 4¢"). =

4. Universal elliptic curves

4.1. Igusa curves. Let E be an elliptic curve defined over a field L of
characteristic p. The absolute Frobenius F,;, induces an isogeny Fy,s : £ —
E®) where E® denotes the elliptic curve obtained by raising the coefficients
of a Weierstrass equation of E to the pth power. For each n > 1, let F}_ :
E — E®") be the nth iterate of Fi.. Let V™ be the dual isogeny of the
nth iterate F} . of Fus. An Igusa structure of level p" in E is a generator
of ker(V™).

There exists a smooth affine curve Y;, over IF,, parametrizing isomorphism
classes of pairs (E,P), where E is an elliptic curve defined over an F,-
scheme S and P € E®")(S) is an Igusa structure of level p”. In fact, Y, is a
coarse moduli scheme for the moduli problem [Ig(p™)] : E/S/F, — P. The
compactification X,, of Y,, obtained by adding ¢(p™)/2 points at infinity
(called the cusps) is a smooth projective irreducible curve over [, called the
Igusa curve of level p™ [4, Chapter 12], where ¢ denotes the Euler function.



Distribution of the traces of Frobenius 259

An elliptic curve E/S/F, is ordinary if each of its geometric fibers is
ordinary. An Iqusa ordinary (respectively Igusa supersingular) point y € Y,
is a point representing the isomorphism of a pair (E, P), where E/S/F, is an
ordinary elliptic curve, S an Fj,-scheme (respectively E/L is a supersingular
elliptic curve, L a field of characteristic p) and P € E®")(S) (respectively
P e E®")(L)) is an Igusa structure of level p” in E.

The group (Z/p"Z)* acts on Y, by a — (E, aP) and the group {£1} acts
trivially. These actions are extended to X,, by permuting the cusps simply
transitively. Let y € Y,, represent the isomorphism class of a pair (E, P). If
y is Igusa supersingular, then y is fixed by (Z/p"Z)*. If y is Igusa ordinary
and j(E) = 1728, respectively j(E) = 0, then y has a stabilizer of order 2,
respectively 3, in (Z/p"Z)*/{£1}. On all other points of Y,,, (Z/p"Z)* /{£1}
acts freely. We identify the quotient of X,, by (Z/p"Z)*/{£1} to the projec-
tive line P! and the quotient map .J,, : X,, — P! is Galois of degree ¢(p")/2.
Its restriction to Y, is given by (E, P) — j(E).

The curve Y4 obtained from Y,, by removing the Igusa supersingular
points is a fine moduli space for the restriction of [Ig(p™)] to ordinary elliptic
curves. This means that there exists a universal elliptic curve E, — Yo
such that every ordinary elliptic curve E/S/F, with an Igusa structure
P € EP")(S) of level p™ is obtained from E,, — Y, by a unique base exten-
sion. In particular, if K, is the function field of X,, over F,, and E,,/K,, is the
generic fiber of E,, — Y4, then F,, /K, is the unique elliptic curve defined
over K,, with j-invariant j(E,) and a K,-rational Igusa structure of level p™.

If E € I(t) and P € E(pn)(]Fpk) is an Igusa structure of level p™, then

since £ and E®") are isogenous, we have t = p* + 1 (modp™). So for the
rest of this subsection, we assume ¢t = p¥ + 1 (mod p™).

PROPOSITION 4.1. Conditions (1)—(3) of Proposition 3.1 are satisfied, a
fortiori w(k,t)" = (¢p(p™)/2)H (t* — 4p*).
Proof. In the notation of Section 3, Y = Y,*4. Let y € Yk, denote by

Eny/ky the fiber of E, — Y4 at y and Ej, | = Ep, Xy, Fp.

(1) Let € 9~ 1([E7, ,]); then E], , is Fx-isomorphic to [, ,, in particular

n,y?

J(Enz) = §(Eny), ie., z € J1(j(Eny)). Let z € J,1(§(Ey,y)), then x
represents the isomorphism class of the pair (E,, ,, P,), where P, € Eﬁ{’ Z) (Ky)
is an Igusa structure of level p™. By the geometric description of J,, there is
no inertia at Y,?™4, hence r, = k,. Furthermore, E, , is an elliptic curve over
Ky = Ky with j-invariant equal to j(E,,) = j(E,.) having a s,-rational
Igusa structure. It follows from the universal property of E,, — Y4 that
Eny = En ., a fortiori [E;, ,] = [E;, ] and = € 97([E;, ,]).

(2) For every [E] € Uy, #E(F,r) = #E(pn)(]Fpk) = 0 (modp"). Thus,
there exists an Igusa P € E(pn)(Fpk) structure of level p™. Let y € Y,2*(F )
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represent the isomorphism class of the pair (E, P). But E, , is the unique
elliptic curve over k, with j-invariant j(E, ,) = j(F) having a x,-rational
Igusa structure of level p". Thus, E;, , = E. In particular, [E], | = [E] and
9 is surjective.

Condition (3) follows from the geometric description of .J,,. Consequently,

(k) = W;n) S ha(A(0) = ¢(129”) H(E2 — 4pb). u
O(t2—4pk)Cc O

REMARK 4.2. Proposition 4.1 was implicitly used in [7, Corollary 2.13]
to obtain an explicit expression for # X, (IF ).

4.2. The modular curve X(N). Let N > 2 be an integer not divisible
by p. Let ¢ € F, be a primitive Nth root of unity and F, = F,({). Let
Y (N) be the affine smooth curve defined over F, parametrizing isomor-
phism classes of triples (E, P,Q), where E is an elliptic curve defined over
an Fg-scheme S and P,Q € E[N](S) is a Drinfeld basis for E[N](S) and
en(P,Q) = ¢ [4, 3.1], where ey denotes the Nth Weil pairing (cf. [4, 2.8] and
[10, III, §8]). In fact, it is a fine moduli space for the modular problem
[['(N)] : E/S/Fq — (P,Q) such that ex(P,Q) = ¢. The compactification
X(N) of Y(N) obtained by adding the cusps is a smooth projective irre-
ducible curve defined over F, [4, Theorem 3.7.1].

The group SLy(Z/NZ) acts on Y(N) by (¢ Z)(E, P.Q) — (E,aP +
bQ, cP + dQ) and the group {£1} acts trivially. If y € Y () represents the
isomorphism class of a triple (F, P, @), then y has a stabilizer of order 3,
respectively 2, if j(F) = 0, respectively j(E) = 1728. On all other points of
Y (N), SLo(Z/NZ)/{£1} acts freely. The stabilizer at every cusp has order
N [3, Theorem 6]. So we identify the quotient of X (N) by SLo(Z/NZ)/{£1}
to the projective line P1. Let E(N) — Y (V) be the universal elliptic curve of
Y(N) and E(N)/K(N) its generic fiber. The quotient map J(N) : X(N) —
P! is Galois of degree (1/2)N¢(N)w(N) and its restriction to Y (V) is given
by (E,P,Q) — j(E), where ¢(N) = N][;5(1+1/l) and I runs over the
divisors of N.

Denote by O((t? — 4¢*)/N?) the imaginary quadratic order of discrim-
inant (2 — 4¢*)/N?. Let E € I(t); we have E[N] C E(F,) if and only if
t=¢"+1 (modN?), ¢* =1 (modN) and O((t* — 4¢")/N?) C Endy ,(E)
8, Proposition 3.7]. Assume till the end of this subsection that ¢ = ¢¥ 4 1
(mod N?) and ¢* =1 (mod N). Let A = {[E] € gy | O((t? —4¢")/N?) c
Ends , (E)}. By (8, Theorem 4.9], #%} , = H((t* — 4¢%)/N?). Note that
H((t? — 4¢%)/N?) < H(t* — 4¢").

PROPOSITION 4.3. Conditions (1) and (3) of Proposition 3.1 are satis-
fied. However, m(k,t)" = (1/2)N¢(N)(N)H((t? — 4¢*)/N?).
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Proof. In the notation of Section 3, Y = Y (N). Let y € Vi, denote by
E(N)y/ky the fiber of E(N) — Y(N) at y and E(N);, = E(N)y X, Fy.

(1) Let = € 91 ([E(N),]); then E(N), is Fr-isomorphic to E(N)), in
particular j(E(N);) = F(E(N)y), ie, z € J(N)"LG(E(N),)). Let = €
J(N)7L(j(E(N),)); then x represents the isomorphism class of the triple
(E(N)y, Py, Qy), where Py, Q, is a basis for E(N)y(k,) with ex(P,Q) = C.
By the geometric description of J(IN), there is no inertia, hence k; = ky.
Furthermore, E(NN), is an elliptic curve over s, = k, with j-invariant
J(E(N)y) = F(E(N),) and a ky-rational basis Py, Q, of E(N),[N] such that
en (P, Q) = ¢. By the universal property of E(N) — Y(N), E(N), = E(N),,
a fortiori [E(N)}] = [E(N),] and x € 971 ([E(N),]).

(2) For every E € 2} ;, by hypothesis O((t? — 4¢%)/N?) C Endg , (E),
hence E[N] C E(F ), in particular there exists a basis P,Q for E[N](F )
such that en (P, Q) = (. Let y € Y (IV)(FF,x) represent the isomorphism class
of the triple (E, P, Q) satisfying enx(P, Q) = (. But E(V), is the unique
elliptic curve defined over k, with r,-rational basis (P, Q) of E(N),[N]
satisfying en (P, Qy) = ¢. Thus E(N); = E. In particular, [E(N);] = [E]
and 9 is onto %A ;.

Condition (3) follows from the geometric description of J(N). Therefore,

) = SNS(NE(N) 3 hu(A(0))

2 O((t*—4¢*)/N?)cO

1 t2 — Aq
_ §N¢(N)¢(N)H( qu > .

4.3. The modular curve X1(N). Let N > 4 be an integer not divisi-
ble by 2, 3 and p. Let Y1(/V) be the smooth affine curve defined over F,
parametrizing isomorphism classes of pairs (E, P), where E is an elliptic
curve defined over an F)-scheme S and P € E(S) is a point of exact order
N [4, Chapter 3]. In fact, it is a fine moduli space for the moduli problem
[I'1(N)] defined by (E/S/F,, P) — P. The compactification X1 (N) of Y1 (V)
is a smooth irreducible projective curve defined over F), [4, Theorem 3.7.1].

Let E;(N) — Yi(IN) be the universal elliptic curve of Yi(N) and
E1(N)/K1(N) its generic fiber. The j-map J(N) : X(N) — P! factors
through the Galois cover X(N) — X;(N) of degree N, whose restriction
to Y(N) maps to Y1(N) by (E,P,Q) — (E,P). It induces the j-map
J1(N) : X1(N) — P! whose restriction to Y1(N) is given by (E, P) — j(E).
Since 2,31 N, if y € Y(N) and y; € Y1(N) such that J(N)(y) = Ji(N)(y1)
equals 0, respectively 1728, then the ramification index e(y|y1) equals 1.
A fortiori, e(y;1 |0) = 3, respectively e(y; | 1728) = 2. Note also that since
there exists no inertia in Y/ (V) — A!, the same holds for Y7 (N) — Al thus
condition (3) of Proposition 3.1 is satisfied.
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Observe that if E € I(t) has a point P € E(IF;) of exact order N, then
N | #E(F,). The converse holds if IV is a prime number. We assume till
the end of this subsection that N = £ is a prime number different from 2, 3
and p, and ¢ = p* + 1 (mod¥).

PROPOSITION 4.4. Conditions (1)—(3) of Proposition 3.1 are satisfied, a
fortiori w(k,t)" = (1/2)(£? — 1)H (t> — 4p*).

Proof. In the notation of Section 3, Y = Y1(¢). Let y € Vi1, E1(£)y /Ky

the fiber of E1(¢) — Y1(¢) at y and Eq(£);, = E1(£)y x4, F,

(1) Let = € 9~ H([E1(£),)), then Ei(¢), is Fr-isomorphic to E;(£),, in

k.

particular j(E1(€);) = j(E1(£)y), ie, z € J1(€)" (G (E1(£)y)). Let = €
J1(€)"L(§(E1(£)y)); then x represents the isomorphism class of the pair
(E1(£)y, Py), where P, € Ei(f),(ky) is a point of exact order ¢. By the
geometric description of Ji(¢), there is no inertia, so xk, = k,. Further-
more, Eq (), is an elliptic curve over k, = K, with j-invariant j(E(¢),) =
J(E1(£);) and a ry-rational point P, of exact order £. By the universal prop-
erty of E1(€) — Yi(£), E1(£), = E1(£)y, a fortiori [Eq1(¢),] = [E1(£),] and
x eI ([E1(0))).

(2) For every E € Ry, by hypothesis, £ | #E(F,), thus there exists
P € E(F,) of exact order £. Let y € Y1(£)(F,x) represent the isomorphism
class of the pair (E, P). But E;(¢), is the unique elliptic curve defined over &,
with a #,-rational point P, of exact order £. Thus Eq(£); = E. In particular,
[E1(€)] = [E] and ¥ is surjective.

Condition (3) follows from the geometric description of J; (¢). Therefore,

Rkt = 6000 Y hu(A©) = L~ DH(E — 4p").
O(t2—4pk)C ©
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