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Distribution of the traces of Frobenius on
elliptic curves over function fields
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Aḿılcar Pacheco (Rio de Janeiro)

Introduction. Let C be a smooth irreducible projective curve defined
over a finite field Fq of q elements of characteristic p > 3 and K = Fq(C) its
function field. Let E/K be a non-constant elliptic curve and ϕE : E → C its
minimal regular model. For each P ∈ C define EP = ϕ−1

E (P ). The elliptic
curve E/K has good reduction at P ∈ C if and only if EP is an elliptic curve
defined over the residue field κP of P . This field is a finite extension of Fq of
degree deg(P ). Let t(EP ) = qdeg(P ) + 1−#EP (κP ) be the trace of Frobenius
at P . By Hasse–Weil’s theorem (cf. [10, Chapter V, Theorem 2.4]), t(EP ) is
the sum of the inverses of the zeros of the zeta function of EP . In particular,
|t(EP )| ≤ 2qdeg(P ). Let C0 ⊂ C be the set of points of C at which E/K has
good reduction and C0(Fqk) the subset of Fqk-rational points of C0.

Question 1. Let B ≥ 1 and t be integers and suppose |t| ≤ 2qB/2. How
large is π(B, t) = #{P ∈ C0 | deg(P ) ≤ B and t(EP ) = t}?

A similar question was originally posed by Lang and Trotter [5] for ellip-
tic curves over Q and later extended to elliptic curves over number fields [6].

For each k ≤ B such that |t| ≤ 2qk/2 we start by estimating π(k, t)′ =
#{P ∈ C0 | deg(P ) = k and t(EP ) = t}. Let E ′P = EP ×κP Fqk and π(k, t)′′ =
#{P ∈ C0(Fqk) | t(E ′P ) = t}. The former set is contained in the latter
so π(k, t)′ ≤ π(k, t)′′ and throughout all this paper we actually estimate
π(k, t)′′.

1. Preliminaries. Observe first that E/K has to be an ordinary elliptic
curve, otherwise j(E) ∈ Fp2 (cf. [10, Chapter V, Theorem 3.1]), but this
contradicts the fact that E/K is non-constant.

Let jE : C → P1 be the j-map induced from ϕE . We say that P ∈
C0 is good ordinary , respectively good supersingular , if EP is an ordinary,
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respectively supersingular, elliptic curve. Since the number of supersingular
j-invariants in Fq is finite (cf. [10, Chapter V, Theorem 4.1]), the number of
good supersingular points P ∈ C0 is also finite and bounded by an absolute
constant. This does not hold for elliptic curves over Q (cf. [2]).

So, we will only concentrate on good ordinary P ∈ C0. Let C ′0 =
{P ∈ C0 | P is ordinary}. Let E/Fq be an elliptic curve and t(E) =
q + 1 − #E(Fq). Then E is supersingular if and only if p - t(E) (cf. [10,
Ex. 5.10]). Till the end of this note we assume p - t.

2. Estimate of π(k, t)′′

Notation 2.1. Let I(t) be the set of the isogeny classes of elliptic curves
E/Fqk defined over Fqk such that #E(Fqk) = qk + 1− t. Let Ak,t be the set
of Fqk -isomorphism classes [E] of E ∈ I(t) and N(t) = #Ak,t.

Definition 2.2. Let ∆ < 0 be an integer such that ∆ ≡ 0 or 1 (mod 4),
B(∆) = {αx2 + βxy + γy2 | α, β, γ ∈ Z, α > 0 and β2 − 4αγ = ∆} and
b(∆) = {αx2 +βxy+γy2 ∈ B(∆) | gcd(α, β, γ) = 1}. The group SL2(Z) acts
on B(∆) via

(
α
γ
β
δ

)
f(x, y) = f(αx+ βy, γx+ δy) preserving b(∆). The sets

b(∆)/SL2(Z) and B(∆)/SL2(Z) are finite with cardinality h(∆) and H(∆),
respectively. The numbers h(∆) and H(∆) are called the class number and
the Kronecker class number of ∆, respectively.

Proposition 2.3 [8, Proposition 2.2]. Let ∆ < 0 be an integer such
that ∆ ≡ 0 or 1 (mod 4). Then

H(∆) =
∑

f

h(∆/f2),(2.1)

where f runs through all positive divisors of ∆ such that ∆/f 2 ∈ Z and
∆/f2 ≡ 0 or 1 (mod 4).

Remark 2.4. Let O be an imaginary quadratic order with discriminant
∆(O) and hO its class number. It follows from the correspondence between
binary quadratic forms and complex quadratic orders that hO = h(∆(O)),
where ∆(O) denotes the discriminant of O [1, Chap. 2, Section 7, Theo-
rem 4].

Proposition 2.5 [8, Theorem 4.5]. Let E ∈ I(t) and O = EndF
qk

(E).
Then #{[E′] ∈ Ak,t | O = EndFq(E

′)} = hO.

Notation 2.6. Denote by O(t2− 4qk) the imaginary quadratic order of
discriminant t2 − 4qk.

Corollary 2.7 [8, Theorem 4.6]. N(t) = H(t2 − 4qk).



Distribution of the traces of Frobenius 257

Proof. By [8, Theorem 4.3], since p - t, all imaginary quadratic orders
O ⊃ O(t2− 4qk) occur as Fqk-endomorphism rings of elliptic curves in I(t).
Hence, the result follows from Propositions 2.3 and 2.5 and Remark 2.4.

Theorem 2.8. π(k, t)′′ ≤ deg(jE)H(t2 − 4qk).

Proof. Let C ′0(Fqk) be the set of Fqk-rational points of C ′0 and Ck,t =
{P ∈ C ′0(Fqk) | t(E ′P ) = t}, where E ′P = EP ×κP Fqk . Define ψ : Ck,t → Ak,t
by ψ(P ) = [E ′P ] and let j(EP ) be the j-invariant of EP .

We claim that ψ−1([E ′P ]) ⊂ j−1
E (j(EP )). In fact, if Q ∈ ψ−1([E ′P ]), then

there exists an Fqk -isomorphism between E ′Q and E ′P , in particular j(EQ) =
j(EP ). Hence, #ψ−1([E ′P ]) ≤ #j−1

E (j(EP )) ≤ deg(jE) and

π(k, t)′′ =
∑

[E]∈ψ(Ck,t)
#ψ−1([E]) ≤ deg(jE)#ψ(Ck,t)(2.2)

≤ deg(jE)H(t2 − 4qk).

Corollary 2.9.

π(B, t) ≤
( ∑

k≤B
|t|≤2qk

H(t2 − 4qk)
)

deg(jE).

Remark 2.10. We would like to compute examples in which we could
test whether the bound of Theorem 2.8 is achieved. One good sort of ex-
ample comes from modular curves. However, in this case there is almost no
control on jE in contrast to the j-map J naturally associated to the modu-
lar problems. Moreover, if we observe the proof of Theorem 2.8 closely, we
notice that we can replace the regular minimal model by any elliptic surface
ϕẼ : Ẽ → C having E/K as the generic fiber, defining the notions of good
ordinary (good supersingular) points in terms of the fibers of Ẽ → C be-
ing smooth ordinary (supersingular) elliptic curves. In this set-up it makes
sense to consider the trace of Frobenius of the fibers of good ordinary points.
We can also consider elliptic curves E → C1 in the sense of [4, Chapter 2]
defined over an affine subcurve C1 ⊂ C with generic fiber E/K and com-
pute the number (still denoted by π(k, t)′′) of Fqk-rational points P ∈ C1

corresponding to good ordinary fibers EP such that t(E′P ) = t. The elliptic
curve comes equipped with a j-map J : C → P1 and we look for conditions
for π(k, t)′′ to be equal to degs(J)H(t2 − 4qk), where degs(J) denotes the
separable degree of J .

3. Affine models. Let X be a smooth irreducible projective curve over
Fq and Y ⊂ X an affine subcurve. Suppose there exists an elliptic curve
E → Y with generic fiber E/K and a map J : X → P1 whose restriction
to Y is given by y 7→ j(Ey), where Ey denotes the fiber of E→ Y at y. Let
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Y ′ = {y ∈ Y | Ey is ordinary}. Denote by Y ′(Fqk) the subset of Fqk-rational
points. Given y ∈ Y ′(Fqk), let κy be its residue field and E′y = Ey×κyFqk . Let
Yk,t = {y ∈ Y ′(Fqk) | t(E′y) = t} and π(k, t)′′ = #Yk,t. Let ϑ : Yk,t → Ak,t
be the map defined by y 7→ [E′y].

Proposition 3.1. Suppose the following three conditions are satisfied :

(1) ϑ−1([E′y]) = J−1(j(Ey)).
(2) ϑ is surjective.
(3) For every y ∈ Y , the inertia degree f(y | j(Ey)) equals 1. The set

R ⊂ Y of possible ramification points of J is contained in J−1({0, 1728}).
For each y ∈ R the ramification index e(y | 0) (respectively e(y | 1728)) of
P over 0, respectively 1728, equals 3, respectively 2.

Then π(k, t)′′ = degs(J)H(t2−4qk), where degs(J) denotes the separable
degree of J .

Proof. In the definition of H(∆), we count the forms αx2 + αy2, re-
spectively αx2 + αxy + αy2, in B(∆), if they occur, with multiplicity 1/2,
respectively 1/3. Then we need to replace h(∆) in Proposition 2.3 by hw(∆),
where hw(−3) = 1/3, hw(−4) = 1/2, and hw(∆) = h(∆) for ∆ < −4. The
equality (2.1) does not change when reinterpreted with these multiplicities
[9, Proposition 2.1]. Hence, by Propositions 2.3 and 2.5 and Remark 2.4 (cf.
(2.2)),

π(k, t)′′ =
∑

[E]∈Ak,t

#J−1(j(E)) = degs(J)
∑

O(t2−4qk)⊂O
hw(∆(O))

= degs(J)H(t2 − 4qk).

4. Universal elliptic curves

4.1. Igusa curves. Let E be an elliptic curve defined over a field L of
characteristic p. The absolute Frobenius Fabs induces an isogeny Fabs : E →
E(p), where E(p) denotes the elliptic curve obtained by raising the coefficients
of a Weierstrass equation of E to the pth power. For each n ≥ 1, let F n

abs :
E → E(pn) be the nth iterate of Fabs. Let V n be the dual isogeny of the
nth iterate F nabs of Fabs. An Igusa structure of level pn in E is a generator
of ker(V n).

There exists a smooth affine curve Yn over Fp parametrizing isomorphism
classes of pairs (E,P ), where E is an elliptic curve defined over an Fp-
scheme S and P ∈ E(pn)(S) is an Igusa structure of level pn. In fact, Yn is a
coarse moduli scheme for the moduli problem [Ig(pn)] : E/S/Fp 7→ P . The
compactification Xn of Yn obtained by adding φ(pn)/2 points at infinity
(called the cusps) is a smooth projective irreducible curve over Fp called the
Igusa curve of level pn [4, Chapter 12], where φ denotes the Euler function.
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An elliptic curve E/S/Fp is ordinary if each of its geometric fibers is
ordinary. An Igusa ordinary (respectively Igusa supersingular) point y ∈ Yn
is a point representing the isomorphism of a pair (E,P ), where E/S/Fp is an
ordinary elliptic curve, S an Fp-scheme (respectively E/L is a supersingular
elliptic curve, L a field of characteristic p) and P ∈ E(pn)(S) (respectively
P ∈ E(pn)(L)) is an Igusa structure of level pn in E.

The group (Z/pnZ)∗ acts on Yn by a 7→ (E, aP ) and the group {±1} acts
trivially. These actions are extended to Xn by permuting the cusps simply
transitively. Let y ∈ Yn represent the isomorphism class of a pair (E,P ). If
y is Igusa supersingular, then y is fixed by (Z/pnZ)∗. If y is Igusa ordinary
and j(E) = 1728, respectively j(E) = 0, then y has a stabilizer of order 2,
respectively 3, in (Z/pnZ)∗/{±1}. On all other points of Yn, (Z/pnZ)∗/{±1}
acts freely. We identify the quotient of Xn by (Z/pnZ)∗/{±1} to the projec-
tive line P1 and the quotient map Jn : Xn → P1 is Galois of degree φ(pn)/2.
Its restriction to Yn is given by (E,P ) 7→ j(E).

The curve Y ord
n obtained from Yn by removing the Igusa supersingular

points is a fine moduli space for the restriction of [Ig(pn)] to ordinary elliptic
curves. This means that there exists a universal elliptic curve En → Y ord

n

such that every ordinary elliptic curve E/S/Fp with an Igusa structure
P ∈ E(pn)(S) of level pn is obtained from En → Y ord

n by a unique base exten-
sion. In particular, if Kn is the function field of Xn over Fp and En/Kn is the
generic fiber of En → Y ord

n , then En/Kn is the unique elliptic curve defined
over Kn with j-invariant j(En) and a Kn-rational Igusa structure of level pn.

If E ∈ I(t) and P ∈ E(pn)(Fpk) is an Igusa structure of level pn, then
since E and E(pn) are isogenous, we have t ≡ pk + 1 (modpn). So for the
rest of this subsection, we assume t ≡ pk + 1 (modpn).

Proposition 4.1. Conditions (1)–(3) of Proposition 3.1 are satisfied , a
fortiori π(k, t)′′ = (φ(pn)/2)H(t2 − 4pk).

Proof. In the notation of Section 3, Y = Y ord
n . Let y ∈ Yk,t, denote by

En,y/κy the fiber of En → Y ord
n at y and E′n,y = En,y ×κy Fpk .

(1) Let x ∈ ϑ−1([E′n,y]); then E′n,x is Fpk-isomorphic to E′n,y, in particular
j(En,x) = j(En,y), i.e., x ∈ J−1

n (j(En,y)). Let x ∈ J−1
n (j(En,y)), then x

represents the isomorphism class of the pair (En,y, Py), where Py ∈ E(pn)
n,y (κy)

is an Igusa structure of level pn. By the geometric description of Jn, there is
no inertia at Y ord

n , hence κx = κy. Furthermore, En,y is an elliptic curve over
κy = κx with j-invariant equal to j(En,y) = j(En,x) having a κy-rational
Igusa structure. It follows from the universal property of En → Y ord

n that
En,y = En,x, a fortiori [E′n,x] = [E′n,y] and x ∈ ϑ−1([E′n,y]).

(2) For every [E] ∈ Ak,t, #E(Fpk) = #E(pn)(Fpk) ≡ 0 (modpn). Thus,
there exists an Igusa P ∈ E(pn)(Fpk) structure of level pn. Let y ∈ Y ord

n (Fpk)
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represent the isomorphism class of the pair (E,P ). But En,y is the unique
elliptic curve over κy with j-invariant j(En,y) = j(E) having a κy-rational
Igusa structure of level pn. Thus, E′n,y = E. In particular, [E′n,y] = [E] and
ϑ is surjective.

Condition (3) follows from the geometric description of Jn. Consequently,

π(k, t)′′ =
φ(pn)

2

∑

O(t2−4pk)⊂O
hw(∆(O)) =

φ(pn)
2

H(t2 − 4pk).

Remark 4.2. Proposition 4.1 was implicitly used in [7, Corollary 2.13]
to obtain an explicit expression for #Xn(Fpk).

4.2. The modular curve X(N). Let N > 2 be an integer not divisible
by p. Let ζ ∈ Fp be a primitive Nth root of unity and Fq = Fp(ζ). Let
Y (N) be the affine smooth curve defined over Fq parametrizing isomor-
phism classes of triples (E,P,Q), where E is an elliptic curve defined over
an Fq-scheme S and P,Q ∈ E[N ](S) is a Drinfeld basis for E[N ](S) and
eN (P,Q) = ζ [4, 3.1], where eN denotes the Nth Weil pairing (cf. [4, 2.8] and
[10, III, §8]). In fact, it is a fine moduli space for the modular problem
[Γ (N)] : E/S/Fq 7→ (P,Q) such that eN (P,Q) = ζ. The compactification
X(N) of Y (N) obtained by adding the cusps is a smooth projective irre-
ducible curve defined over Fq [4, Theorem 3.7.1].

The group SL2(Z/NZ) acts on Y (N) by
(
a
c
b
d

)
(E,P,Q) 7→ (E, aP +

bQ, cP + dQ) and the group {±1} acts trivially. If y ∈ Y (N) represents the
isomorphism class of a triple (E,P,Q), then y has a stabilizer of order 3,
respectively 2, if j(E) = 0, respectively j(E) = 1728. On all other points of
Y (N), SL2(Z/NZ)/{±1} acts freely. The stabilizer at every cusp has order
N [3, Theorem 6]. So we identify the quotient of X(N) by SL2(Z/NZ)/{±1}
to the projective line P1. Let E(N)→ Y (N) be the universal elliptic curve of
Y (N) and E(N)/K(N) its generic fiber. The quotient map J(N) : X(N)→
P1 is Galois of degree (1/2)Nφ(N)ψ(N) and its restriction to Y (N) is given
by (E,P,Q) 7→ j(E), where ψ(N) = N

∏
l|N (1 + 1/l) and l runs over the

divisors of N .
Denote by O((t2 − 4qk)/N2) the imaginary quadratic order of discrim-

inant (t2 − 4qk)/N2. Let E ∈ I(t); we have E[N ] ⊂ E(Fqk) if and only if
t ≡ qk + 1 (modN2), qk ≡ 1 (modN) and O((t2 − 4qk)/N2) ⊂ EndF

qk
(E)

[8, Proposition 3.7]. Assume till the end of this subsection that t ≡ qk + 1
(modN2) and qk ≡ 1 (modN). Let A′k,t = {[E] ∈ Ak,t | O((t2− 4qk)/N2) ⊂
EndF

pk
(E)}. By [8, Theorem 4.9], #A′k,t = H((t2 − 4qk)/N2). Note that

H((t2 − 4qk)/N2) < H(t2 − 4qk).

Proposition 4.3. Conditions (1) and (3) of Proposition 3.1 are satis-
fied. However , π(k, t)′′ = (1/2)Nφ(N)ψ(N)H((t2 − 4qk)/N2).
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Proof. In the notation of Section 3, Y = Y (N). Let y ∈ Yk,t, denote by
E(N)y/κy the fiber of E(N)→ Y (N) at y and E(N)′y = E(N)y ×κy Fqk .

(1) Let x ∈ ϑ−1([E(N)′y]); then E(N)′x is Fqk -isomorphic to E(N)′y, in
particular j(E(N)x) = j(E(N)y), i.e., x ∈ J(N)−1(j(E(N)y)). Let x ∈
J(N)−1(j(E(N)y)); then x represents the isomorphism class of the triple
(E(N)y, Py, Qy), where Py, Qy is a basis for E(N)y(κy) with eN (P,Q) = ζ.
By the geometric description of J(N), there is no inertia, hence κx = κy.
Furthermore, E(N)y is an elliptic curve over κy = κx with j-invariant
j(E(N)y) = j(E(N)x) and a κy-rational basis Py, Qy of E(N)y[N ] such that
eN (P,Q) = ζ. By the universal property of E(N)→ Y (N), E(N)x = E(N)y,
a fortiori [E(N)′x] = [E(N)′y] and x ∈ ϑ−1([E(N)′y]).

(2) For every E ∈ A′k,t, by hypothesis O((t2 − 4qk)/N2) ⊂ EndF
qk

(E),
hence E[N ] ⊂ E(Fqk), in particular there exists a basis P,Q for E[N ](Fqk)
such that eN (P,Q) = ζ. Let y ∈ Y (N)(Fqk) represent the isomorphism class
of the triple (E,P,Q) satisfying eN (P,Q) = ζ. But E(N)y is the unique
elliptic curve defined over κy with κy-rational basis (Py, Qy) of E(N)y[N ]
satisfying eN (Py, Qy) = ζ. Thus E(N)′y = E. In particular, [E(N)′y] = [E]
and ϑ is onto A′k,t.

Condition (3) follows from the geometric description of J(N). Therefore,

π(k, t)′′ =
1
2
Nφ(N)ψ(N)

∑

O((t2−4qk)/N2)⊂O
hw(∆(O))

=
1
2
Nφ(N)ψ(N)H

(
t2 − 4qk

N2

)
.

4.3. The modular curve X1(N). Let N > 4 be an integer not divisi-
ble by 2, 3 and p. Let Y1(N) be the smooth affine curve defined over Fp
parametrizing isomorphism classes of pairs (E,P ), where E is an elliptic
curve defined over an Fp-scheme S and P ∈ E(S) is a point of exact order
N [4, Chapter 3]. In fact, it is a fine moduli space for the moduli problem
[Γ1(N)] defined by (E/S/Fp, P ) 7→ P . The compactificationX1(N) of Y1(N)
is a smooth irreducible projective curve defined over Fp [4, Theorem 3.7.1].

Let E1(N) → Y1(N) be the universal elliptic curve of Y1(N) and
E1(N)/K1(N) its generic fiber. The j-map J(N) : X(N) → P1 factors
through the Galois cover X(N) → X1(N) of degree N , whose restriction
to Y (N) maps to Y1(N) by (E,P,Q) 7→ (E,P ). It induces the j-map
J1(N) : X1(N)→ P1 whose restriction to Y1(N) is given by (E,P ) 7→ j(E).
Since 2, 3 -N , if y ∈ Y (N) and y1 ∈ Y1(N) such that J(N)(y) = J1(N)(y1)
equals 0, respectively 1728, then the ramification index e(y | y1) equals 1.
A fortiori, e(y1 | 0) = 3, respectively e(y1 | 1728) = 2. Note also that since
there exists no inertia in Y (N)→ A1, the same holds for Y1(N)→ A1, thus
condition (3) of Proposition 3.1 is satisfied.
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Observe that if E ∈ I(t) has a point P ∈ E(Fq) of exact order N , then
N | #E(Fpk). The converse holds if N is a prime number. We assume till
the end of this subsection that N = ` is a prime number different from 2, 3
and p, and t ≡ pk + 1 (mod `).

Proposition 4.4. Conditions (1)–(3) of Proposition 3.1 are satisfied , a
fortiori π(k, t)′′ = (1/2)(`2 − 1)H(t2 − 4pk).

Proof. In the notation of Section 3, Y = Y1(`). Let y ∈ Yk,t, E1(`)y/κy
the fiber of E1(`)→ Y1(`) at y and E1(`)′y = E1(`)y ×κy Fpk .

(1) Let x ∈ ϑ−1([E1(`)′y]), then E1(`)′x is Fpk-isomorphic to E1(`)′y, in
particular j(E1(`)x) = j(E1(`)y), i.e., x ∈ J1(`)−1(j(E1(`)y)). Let x ∈
J1(`)−1(j(E1(`)y)); then x represents the isomorphism class of the pair
(E1(`)y, Py), where Py ∈ E1(`)y(κy) is a point of exact order `. By the
geometric description of J1(`), there is no inertia, so κx = κy. Further-
more, E1(`)y is an elliptic curve over κy = κx with j-invariant j(E1(`)y) =
j(E1(`)x) and a κy-rational point Py of exact order `. By the universal prop-
erty of E1(`) → Y1(`), E1(`)x = E1(`)y, a fortiori [E1(`)′x] = [E1(`)′y] and
x ∈ ϑ−1([E1(`)′y]).

(2) For every E ∈ Ak,t, by hypothesis, ` | #E(Fpk), thus there exists
P ∈ E(Fpk) of exact order `. Let y ∈ Y1(`)(Fpk) represent the isomorphism
class of the pair (E,P ). But E1(`)y is the unique elliptic curve defined over κy
with a κy-rational point Py of exact order `. Thus E1(`)′y = E. In particular,
[E1(`)′y] = [E] and ϑ is surjective.

Condition (3) follows from the geometric description of J1(`). Therefore,

π(k, t)′′ =
1
2
φ(`)ψ(`)

∑

O(t2−4pk)⊂O
hw(∆(O)) =

1
2

(`2 − 1)H(t2 − 4pk).
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