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1. Introduction. Let {x} (resp. [x], ‖x‖) denote the fractional part
(resp. the integer part, the distance to the nearest integer) of a real number x.
It has been proved that the function g(k) occurring in Waring’s problem is
given by the formula

g(k) = 2k + [(3/2)k]− 2

if the following inequality holds:

(1.1) {(3/2)k} ≤ 1− (3/4)k.

Moreover Mahler [7] showed that (1.1) is valid for k large enough. However
his proof is ineffective and does not provide a bound from which (1.1) is sat-
isfied. In 1990, Kubina and Wunderlich [6] checked (1.1) for k ≤ 471600000.

In 1981, Beukers [2] proved that, for k ≥ 5000,

(1.2) ‖(3/2)k‖ > 2−0.9k = (0.53588 . . .)k.

This result was asymptotically improved by Dubickas [4] who showed that

(1.3) ‖(3/2)k‖ > (0.5769)k

for k large enough. However he did not compute the range of validity of (1.3).
We refine Dubickas’s computations to prove the following theorem.

Theorem 1. For k large enough, we have

(1.4) ‖(3/2)k‖ > (0.5770173776 . . .)k.

We also improve on Beukers’s result (1.2) by showing the following in-
equality.
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Theorem 2. For k ≥ 5, we have

(1.5) ‖(3/2)k‖ > 2−0.8k = (0.57434 . . .)k.

Our proof proceeds as those of Beukers and Dubickas. We describe di-
agonal Padé approximants of the function H(a, b; t), the polynomial part of
(1− t)a+bt−b. A precise study of the asymptotic and arithmetic behavior of
these approximants leads to (1.4) and to (1.5) for k ≥ 64440000. The range
[5, 64440000] is checked by using Delmer and Deshouillers’s technique [3].

All the computations were performed using the system PARI.

2. Padé approximations. Let a, b be fixed nonnegative integers. Beuk-
ers [2] introduced the function

H(a, b; t) = t−b
(

(1− t)a+b −
b−1∑

r=0

(
a+ b

r

)
(−t)r

)

and determined diagonal Padé approximants for this function. More pre-
cisely, he showed that, for any nonnegative integer n,

(2.1) Pn(t)−Qn(t)H(a, b; t) = (−1)n+bt2n+1En(t),

where Pn is a polynomial of degree at most n with integer coefficients, and
where

Qn(t) =
n∑

r=0

(
2n+ b− r
n+ b

)(
a− n+ r − 1

r

)
tr(2.2)

=
(a+ b+ n)!

(a− n− 1)!(b+ n)!n!

1�

0

xa−n−1(1− x)n+b(1− x+ tx)n dx,(2.3)

En(t) =
(a+ b+ n)!

(a− n− 1)!(b+ n)!n!

1�

0

xn(1− x)n+b(1− tx)a−n−1 dx.(2.4)

Moreover he proved that these approximants are distinct by establishing the
following relation:

(2.5) Pn(t)Qn+1(t)− Pn+1(t)Qn(t)

= (−1)n+b
(
a+ b+ n

2n+ b+ 1

)(
2n+ b+ 2
n+ b+ 1

)
t2n+1.

We now restrict our attention to the case (a, b) = (2m,m), where m
is a fixed positive integer. The key point of Beukers’s proof was to exhibit
nontrivial divisors of the content of the polynomials Pn andQn. Dubickas got
his improvement by refining this part of the proof. Let us show an equivalent
form of Dubickas’s lemma. Let P denote the set of all prime numbers.
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Lemma 1. Define

En(m) =
{
l ∈ P, l2 > max(n+m, 2m− n− 1) :

{
n+m

l

}
+
{

2m− n− 1
l

}
+
{
n

l

}
≥ 2
}
.

Then, for any element l from En(m), we have {Pn(t), Qn(t)} ⊂ lZ[t].

Proof. Let l be in P, with l2 > max(n+m, 2m−n−1). We first consider
the content of Qn(t). Let r be an integer from {0, . . . , n}. By (2.2), we want
to show that l divides

(2n+m−r
n+m

)(2m−n+r−1
r

)
. Put

η1 =
{
n+m

l

}
, η2 =

{
2m− n− 1

l

}
, η3 =

{
n

l

}
, θ =

{
j

l

}
,

and let ωl denote the l-adic valuation of
(2n+m−r

n+m

)(2m−n+r−1
r

)
. The size of

l gives the following expressions for ωl:

ωl =
[

2n+m− r
l

]
−
[
n+m

l

]
−
[
n− r
l

]

+
[

2m− n+ r − 1
l

]
−
[

2m− n− 1
l

]
−
[
r

l

]

= [η1 + η3 − θ]− [η1]− [η3 − θ] + [η2 + θ]− [η2]− [θ]

= [η1 + η3 − θ]− [η3 − θ] + [η2 + θ],

which lead to the estimate

ωl ≥ [η1 + η3 − θ] + [η2 + θ] ≥ [η1 + η2 + η3]− 1.

When l belongs to En(m), we know that η1 +η2 +η3 is greater than or equal
to 2, which implies that ωl is positive. Therefore l divides the content of Qn.
Since the supports of Pn(t) and t2n+1En(t) are disjoint, this also shows that
l divides the content of Pn, by (2.1).

The form given to this lemma was inspired by Hata’s work on irrational-
ity measures [5]. It makes it easier to compute the asymptotic behavior of
the product of the elements of En(m), as shown in the next section.

3. Asymptotic behavior. Consider n = [α(m − 3/2)] + 1 + η with
(m,α, η) belonging to the set (N \ {0, 1}) × ] 0, 2[ × {0, 1}. Put Πm(α) =∏
l∈En(m) l.

Let δ ∈ {0, 1, 2, 3, 4, 5} and M be an integer. By (2.5), we may choose η
such that

(3.1) Pn

(
−1

8

)
− M

2δ
Qn

(
−1

8

)
6= 0.
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Indeed, if not, the couple (1,M/2δ) would be a solution of a homogeneous
system of rank 2, which is impossible. Moreover the polynomial Πm(α)−1×
(2δPn −MQn) has integer coefficients and its degree is at most n. We thus
deduce from (3.1) the estimate

(3.2)
∣∣∣∣Pn
(
−1

8

)
− M

2δ
Qn

(
−1

8

)∣∣∣∣ ≥ 2−δ−3nΠm(α).

Let us now study what happens when m goes to infinity. Define

F1(α) = max
x∈[0,1]

x2−α(1− x)1+α

∣∣∣∣1−
9
8
x

∣∣∣∣
α

,

F2(α) = max
x∈[0,1]

xα(1− x)1+α

∣∣∣∣1 +
x

8

∣∣∣∣
2−α

,

A(α) = (α+ 3) log(α+ 3)− (2− α) log(2− α)

− (1 + α) log(1 + α)− α logα.

Proposition 1. We have the upper bounds
∣∣∣∣Qn

(
−1

8

)∣∣∣∣ ≤
(3m+ n)!

(2m− n− 1)!(m+ n)!n!
· 2F1(α)m−3/2

5
,(3.3)

∣∣∣∣En
(
−1

8

)∣∣∣∣ ≤
(3m+ n)!

(2m− n− 1)!(m+ n)!n!
· 541F2(α)m−3/2

1260
,(3.4)

log
(

(3m+ n)!
(2m− n− 1)!(m+ n)!n!

)
≤ A(α)m+O(1).(3.5)

Moreover we can get a better estimate for α = 15/16:

(3.6) log
(

(3m+ n)!
(2m− n− 1)!(m+ n)!n!

)
≤ A

(
15
16

)
m− log(2π)− 1

12
+

1
m
.

Proof. Use (2.3) and the inequalities

n ≥ α(m− 3/2),(3.7)

n+m ≥ (1 + α)(m− 3/2) + 3/2,(3.8)

2m− n− 1 ≥ (2− α)(m− 3/2),(3.9)

to get

∣∣∣∣Qn
(
−1

8

)∣∣∣∣ ≤
(3m+ n)!

(2m− n− 1)!(m+ n)!n!
F1(α)m−3/2

1�

0

(1− x)3/2 dx,

which shows (3.3). Similarly, application of (2.4) together with the inequality
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2m− n− 1 ≤ (2− α)(m− 3/2) + 2 yields
∣∣∣∣En

(
−1

8

)∣∣∣∣ ≤
(3m+ n)!

(2m− n− 1)!(m+ n)!n!

× F2(α)m−3/2
1�

0

(1− x)3/2(1 + x/8)2 dx,

and (3.4) follows.
We shall now need the following Stirling formula (cf. [8, p. 37]):

logΓ (s) = (s− 1/2) log s− s+ log
√

2π +
1
2

∞�

0

{x} − {x}2
(x+ s)2 dx.

This way we get

log
(

(3m+ n)!
(2m− n− 1)!(m+ n)!n!

)
= ∆+ 1− log(2π) + I,

where ∆ = φ(3m+ n+ 1)− φ(2m− n)− φ(n+m+ 1)− φ(n+ 1), φ(s) =
(s− 1/2) log s and

I =
∞�

0

{x} − {x}2
2

(
1

(3m+ n+ 1 + x)2 −
1

(2m− n+ x)2

− 1
(n+m+ 1 + x)2 −

1
(n+ 1 + x)2

)
dx ≤ 0.

We now use the formula

∆ =
(
n+m+

1
2

)
log
(

3m+ n+ 1
m+ n+ 1

)

+
(

2m− n− 1
2

)
log
(

3m+ n+ 1
2m− n

)
+
(
n+

1
2

)
log
(

3m+ n+ 1
n+ 1

)

to complete the proof of (3.5).
Assume that α ≤ 1. This implies that −1/2 ≤ 1−(3/2)α ≤ n+1−αm ≤

3− (3/2)α. By applying Taylor’s formula to the function φ, we get

∆ ≤ φ((3 + α)m) + (n+ 1− αm)φ′((3 + α)m)

+
(n+ 1− αm)2

2
φ′′((3 + α)m)

− φ((2− α)m) + (n+ 1− αm)φ′((2− α)m)− φ′((2− α)m)

− φ((1 + α)m)− (n+ 1− αm)φ′((1 + α)m)

− φ(αm)− (n+ 1− αm)φ′(αm)
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= A(α)m+
1
2

log
(

α(1 + α)
(2− α)(3 + α)

)
− 1 +

1
2(2− α)m

+ (n+ 1− αm) log
(

α(1 + α)
(2− α)(3 + α)

)

− n+ 1− αm
2m

(
1

3 + α
+

1
2− α −

1
1 + α

− 1
α

)

+
(n+ 1− αm)2

2

(
1

(3 + α)m
+

1
2(3 + α)2m2

)

≤ A(α)m− 1− 3
2

(1− α) log
(

(2− α)(3 + α)
α(1 + α)

)
+

3− (3/2)α
2m

×
(

1 + 2α
α(1 + α)

+
2− (3/2)α

3 + α
+

1/4
(3 + α)2 −

2− (3/2)α
(2− α)(3− (3/2)α)

)

≤ A(α)m− 1− 3
2

(1− α) log
(

(2− α)(3 + α)
α(1 + α)

)
+

505
512m

.

For α = 15/16, we get (3.6).

We still have to determine the asymptotic behavior of Πm(α). Put

Eα = {x > 0 : {(1 + α)x}+ {(2− α)x}+ {αx} ≥ 2} and I(α) =
�

Eα

dx

x2 .

Note that, when α = u/v is a rational, the function x → {(1 + α)x} +
{(2− α)x}+ {αx} is v-periodic and the set Eα may be written as

Eα =
⋃

1≤i≤jα
([ai, bi[ + vN)

with 0 < a1 < b1 < a2 < . . . < bjα ≤ v. Moreover the functions x 7→
{(1 + α)x}, x 7→ {(2 − α)x} and x 7→ {αx} are constant on any of the
intervals [ai, bi[ (otherwise there will be a jump by 1 and there would exist
a point x0 such that {(1 + α)x0}+ {(2− α)x0}+ {αx0} < 2). This in turn
implies that the fractional part is a nondecreasing function on any of the
intervals [(1+α)(ai+vq), (1+α)(bi+vq)[, [(2−α)(ai+vq), (2−α)(bi+vq)[
and [α(ai + vq), α(bi + vq)[.

Proposition 2. When m goes to infinity , we have

(3.10) logΠm(α) ≥ I(α)m+O

(
m

logm

)
.

Moreover , for m ≥ 10740000, the following inequality holds:

(3.11) logΠm(15/16) ≥ 0.3945m+ 9.
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Proof. There exist absolute constants C1, C2 > 0 such that

−C1 ≤ max(n− αm,−n− 1 + αm) ≤ C2.

Put C3 = C2 max(1/α, 1/(2 − α)), C4 = C1 max(1/α, 1/(2 − α)). Assume
m ≥ C3 + C4 and introduce

q0(m) = min
(
a1 + b1
v

(
m

C3 + C4
− 1
)
,

m+ C3

(v + 1)
√

3m

)
= O(

√
m).

Let us prove that, for 0 ≤ q ≤ q0(m) and 1 ≤ i ≤ jα, any prime number
from the interval

]
m+C3
bi+vq

, m−C4
ai+vq

]
belongs to En(m). The definition of q0(m)

implies the inequality m+C3
bi+vq

≤ m−C4
ai+vq

and shows that

m+ C3

bi + vq
≥
√

3m ≥
√

max(n+m, 2m− n− 1).

Thus any prime number from the interval
]
m+C3
bi+vq

, m−C4
ai+vq

]
satisfies the condi-

tion l2 > max(n+m, 2m−n−1). Moreover we have the following inequalities:

m+ n

l
≥ (1 + α)m− C1

l
≥ (1 + α)(ai + vq) +

C4(1 + α)− C1

l

≥ (1 + α)(ai + vq),

m+ n

l
≤ (1 + α)m+ C2

l
< (1 + α)(bi + vq)− C3(1 + α)− C2

l
≤ (1 + α)(bi + vq),

2m− n− 1
l

≥ (2− α)m− C1

l
≥ (2− α)(ai + vq) +

C4(2− α)− C1

l
≥ (2− α)(ai + vq),

2m− n− 1
l

≤ (2− α)m+ C2

l
< (2− α)(bi + vq)− C3(2− α)− C2

l

≤ (2− α)(bi + vq),
n

l
≥ αm− C1

l
≥ α(ai + vq) +

C4α− C1

l
≥ α(ai + vq),

n

l
≤ αm+ C2

l
< α(bi + vq) +

C3α− C2

l
≤ α(bi + vq),

which lead to{
m+ n

l

}
+
{

2m− n− 1
l

}
+
{
n

l

}

≥ {(1 + α)(ai + vq)}+ {(2− α)(ai + vq)}+ {α(ai + vq)} ≥ 2.

Therefore we get the inclusion

En(m) ⊇
⋃

0≤q≤q0(m)

⋃

1≤i≤jα

(]
m+ C3

bi + vq
,
m− C4

ai + vq

]
∩ P

)
.
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This implies the estimate

(3.12) logΠm(α) ≥
∑

0≤q≤q0(m)

∑

1≤i≤jα

(
Θ

(
m− C4

ai + vq

)
−Θ

(
m+ C3

bi + vq

))
,

where Θ(x) =
∑
p∈P, p≤x log p. We now use Schoenfeld’s estimate for the

function Θ(x) [9, Theorem 8*]: |Θ(x)− x| ≤ 8.072x/log2 x for x > 1, to get

Θ

(
m− C4

ai + vq

)
−Θ

(
m+ C3

bi + vq

)

≥ m− C4

ai + vq
− m+ C3

bi + vq
− m− C4

ai + vq

8.072

(log
√

3m)2
− m+ C3

bi + vq

8.072

(log
√

3m)2
,

for q ≤ q0(m). We deduce from (3.12) the lower bound

(3.13) logΠm(α)

≥ m(1 +O(1/m))
�

Eα∩[0,(1+v)q0(m)]

dx

x2 +O

(
m

log2 m

∑

1≤q≤q0(m)

1
q

)

= I(α)m+O(
√
m) +O(m/logm)

and the first part of the proposition is proved.
For α = 15/16, we have C3 = 19/30 and C4 = 17/10. The ai’s and bi’s

are given below:

i (ai, bi) i (ai, bi) i (ai, bi)

1 (32/63, 16/31) 2 (16/21, 16/17) 3 (64/63, 32/31)
4 (32/21, 48/31) 5 (16/9, 32/17) 6 (128/63, 64/31)
7 (160/63, 80/31) 8 (176/63,48/17) 9 (64/21, 96/31)
10 (32/9, 112/31) 11 (256/63, 128/31) 12 (32/7, 144/31)
13 (320/63, 160/31) 14 (352/63,96/17) 15 (128/21,192/31)
16 (400/63,32/5) 17 (64/9, 224/31) 18 (464/63,112/15)
19 (512/63, 256/31) 20 (176/21, 144/17) 21 (64/7, 288/31)
22 (592/63, 160/17) 23 (640/63, 320/31) 24 (704/63,192/17)
25 (736/63, 176/15) 26 (256/21, 208/17) 27 (800/63, 64/5)
28 (96/7, 208/15) 29 (928/63, 224/15) 30 (992/63, 16)

To prove the second part of the proposition, we shall need the bound

(3.14) logΠm(α) ≥
∑

0≤q≤10

∑

1≤i≤30

(
Θ

(
m− 17/10
ai + 16q

)
−Θ

(
m+ 19/30
bi + 16q

))
.

For m > 5 · 1010, we use the following estimates from [9]:

−0.0077629
x

log x
< Θ(x)− x < 0.000081x for x ≥ 1.04 · 107.

We find logΠm(α) ≥ 0.40127m− 32 > 0.3945m+ 9.
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For 5 · 1010 ≥ m > 5 · 107, we use the additional estimates from [9]:
0.998697x < Θ(x) < x for 1155901 ≤ x < 1011. We find logΠm(α) ≥
0.39572m− 27 > 0.3945m+ 9.

For 5 · 107 ≥ m > 1.074 · 107, we use other estimates from [1]:

Θ(x)− x√
x

{
< −0.344 if 0 < x < 108,
> −1.833 if 19801 < x < 108,

together with Theorem 6∗ and Corollary 2 of [9], which give pairs (c, d) such
that Θ(x) > x−x/(c log x) for x ≥ d. We find logΠm(α) ≥ 0.39454m−26 >
0.3945m+ 9.

4. Proof of Theorems 1 and 2. We shall use the notations from the
previous section.

Proposition 3. For any positive number ε and for any integer k >
k0(ε) (k0(ε) effective), we have

(4.1) ‖(3/2)k‖ ≥ e(C1(α)−ε)k − e(C2(α)−ε)k,

where
C1(α) = (−3α log 2 + I(α)− A(α)− logF1(α))/6,

C2(α) = (−6α log 2 + logF2(α)− logF1(α))/6.

Proof. Take k = 6m− δ with δ ∈ {0, 1, 2, 3, 4, 5} and choose the integer
M0 for which the distance from (3/2)k to Z is attained. Then we have

‖(3/2)k‖ = (3/2)−δ((3/2)6m − (3/2)δM0)

= (2/3)δ(−1)m(H(2m,m;−1/8)−M2−δ)

for some integer M , by the definition of H(a, b; t). By (2.1) we know that

H(2m,m;−1/8)−M2−δ

=
Pn(−1/8)−M2−δQn(−1/8)

Qn(−1/8)
+ (−1)m+n2−3(2n+1) En(−1/8)

Qn(−1/8)
.

We use (3.2) to get the inequality

(4.2) ‖(3/2)k‖ ≥ 2−3nΠm(α)− 2δ−3(2n+1)|En(−1/8)|
3δ|Qn(−1/8)| .

The estimates (3.3)–(3.5) and (3.7) then complete the proof of (4.1).

In order to get the best lower bound for ‖(3/2)k‖, we have to find for
which value of α the first exponent in (4.1) is maximal, under the condition
C1(α) > C2(α). It appears that the difference between C1 and C2 is negative
for low values of values of α; moreover, once this difference becomes positive,
the value of C1(α) decreases. Therefore we are looking for good upper bounds
for the solution α0 of C1(α) = C2(α). The computations show that α0 is
smaller than 1, and more precisely that α0 belongs to the range [0.9, 0.95].
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Computing (C1 − C2)(1− 1/p) for p = 10, . . . , 20 gives the better estimate
α0 ∈ [13/14, 14/15]. We can get more precise estimates for α0 by determining
the continued fraction expansion of α0. We find this way

198478
212871

= [0, 1, 13, 1, 3, 1, 3, 6, 3, 1, 2, 1, 7]

< α0 < [0, 1, 13, 1, 3, 1, 3, 6, 3, 1, 2, 1, 8] =
224141
240395

.

Since PARI gives

(C1 − C2)(224141/240395) = 1.0057378 · 10−11

and eC1(224141/240395) = 0.57701737767006 . . . , the proof of Theorem 1 is
complete. Note that Dubickas’s result was obtained by choosing α =
1/1.0723 = 0.93257483 . . . , which was pretty close to our better choice
α = 224141/240395 = 0.93238628 . . . To prove Theorem 2, we shall give
an explicit version of Proposition 3 for α = 15/16.

PARI gives the numerical values

F1(15/16) = 0.0964204654 . . . ,

(F2/F1)(15/16) = 1.7628240038 . . . ,

A(15/16) = 4.1111565348 . . .

From (3.3), (3.4) and (3.6) we deduce
∣∣∣∣Qn

(
−1

8

)∣∣∣∣
−1

≥ exp(−1.7721197321m+ 0.6711),
∣∣∣∣En

(
−1

8

)∣∣∣∣ ≤ exp(2.3390368029m− 0.1084).

Since (15/16)m− 45/32 ≤ n ≤ (15/16)m+ 19/32, from (4.2) and (3.8) we
get

‖(3/2)k‖ ≥ exp(−3.327097m+ 8.43− 1.1δ)

− exp(−3.332035m+ 4.34− 0.4δ)

≥ 2−0.8k(exp(0.17)− exp(−0.005m)) ≥ 2−0.8k

for m ≥ 10740000. Therefore (1.5) is proved for k ≥ 64440000. For
k < 64440000, we shall use the following lemma, inspired by Delmer and
Deshouillers [3].

Lemma 2. For a positive integer n, let l(n) denote the maximal number
of identical consecutive digits in the binary expansion of n. Then, if l(3p) ≤
0.8p− 2, we have

‖(3/2)k‖ ≥ 2−0.8k for
log 3
log 2 p+ l(3p) + 2

log 3
log 2 + 0.8

≤ k ≤ p.
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Proof. Follow exactly the proof of [3, Proposition 1].

Define now the finite sequence (k0, . . . , kr) by the initial value k0 =
64440000 and the recursion relation

ki+1 =
[ log 3

log 2 ki + l(3ki) + 2
log 3
log 2 + 0.8

]
if l(3ki) < 0.8ki − 2.

This sequence is decreasing and terminates when the condition l(3ki) <
0.8ki−2 is not satisfied. PARI gives r = 41 and kr = 11. Since formula (1.5)
is true for k = 5, . . . , 11 and k ∈ {kr + 1, . . . , k0} by Lemma 2, the proof of
Theorem 2 is complete.
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