Explicit lower bounds for $\left\|(3 / 2)^{k}\right\|$

by
Laurent Habsieger (Bordeaux)

1. Introduction. Let $\{x\}$ (resp. $[x],\|x\|$) denote the fractional part (resp. the integer part, the distance to the nearest integer) of a real number x. It has been proved that the function $g(k)$ occurring in Waring's problem is given by the formula

$$
g(k)=2^{k}+\left[(3 / 2)^{k}\right]-2
$$

if the following inequality holds:

$$
\begin{equation*}
\left\{(3 / 2)^{k}\right\} \leq 1-(3 / 4)^{k} \tag{1.1}
\end{equation*}
$$

Moreover Mahler [7] showed that (1.1) is valid for k large enough. However his proof is ineffective and does not provide a bound from which (1.1) is satisfied. In 1990, Kubina and Wunderlich [6] checked (1.1) for $k \leq 471600000$.

In 1981, Beukers [2] proved that, for $k \geq 5000$,

$$
\begin{equation*}
\left\|(3 / 2)^{k}\right\|>2^{-0.9 k}=(0.53588 \ldots)^{k} \tag{1.2}
\end{equation*}
$$

This result was asymptotically improved by Dubickas [4] who showed that

$$
\begin{equation*}
\left\|(3 / 2)^{k}\right\|>(0.5769)^{k} \tag{1.3}
\end{equation*}
$$

for k large enough. However he did not compute the range of validity of (1.3). We refine Dubickas's computations to prove the following theorem.

Theorem 1. For k large enough, we have

$$
\begin{equation*}
\left\|(3 / 2)^{k}\right\|>(0.5770173776 \ldots)^{k} \tag{1.4}
\end{equation*}
$$

We also improve on Beukers's result (1.2) by showing the following inequality.

[^0]Theorem 2. For $k \geq 5$, we have

$$
\begin{equation*}
\left\|(3 / 2)^{k}\right\|>2^{-0.8 k}=(0.57434 \ldots)^{k} \tag{1.5}
\end{equation*}
$$

Our proof proceeds as those of Beukers and Dubickas. We describe diagonal Padé approximants of the function $H(a, b ; t)$, the polynomial part of $(1-t)^{a+b} t^{-b}$. A precise study of the asymptotic and arithmetic behavior of these approximants leads to (1.4) and to (1.5) for $k \geq 64440000$. The range [5, 64440000] is checked by using Delmer and Deshouillers's technique [3].

All the computations were performed using the system PARI.
2. Padé approximations. Let a, b be fixed nonnegative integers. Beukers [2] introduced the function

$$
H(a, b ; t)=t^{-b}\left((1-t)^{a+b}-\sum_{r=0}^{b-1}\binom{a+b}{r}(-t)^{r}\right)
$$

and determined diagonal Padé approximants for this function. More precisely, he showed that, for any nonnegative integer n,

$$
\begin{equation*}
P_{n}(t)-Q_{n}(t) H(a, b ; t)=(-1)^{n+b} t^{2 n+1} E_{n}(t) \tag{2.1}
\end{equation*}
$$

where P_{n} is a polynomial of degree at most n with integer coefficients, and where

$$
\begin{align*}
Q_{n}(t) & =\sum_{r=0}^{n}\binom{2 n+b-r}{n+b}\binom{a-n+r-1}{r} t^{r} \tag{2.2}\\
& =\frac{(a+b+n)!}{(a-n-1)!(b+n)!n!} \int_{0}^{1} x^{a-n-1}(1-x)^{n+b}(1-x+t x)^{n} d x \tag{2.3}
\end{align*}
$$

$$
\begin{equation*}
E_{n}(t)=\frac{(a+b+n)!}{(a-n-1)!(b+n)!n!} \int_{0}^{1} x^{n}(1-x)^{n+b}(1-t x)^{a-n-1} d x \tag{2.4}
\end{equation*}
$$

Moreover he proved that these approximants are distinct by establishing the following relation:

$$
\begin{align*}
& P_{n}(t) Q_{n+1}(t)-P_{n+1}(t) Q_{n}(t) \tag{2.5}\\
& =(-1)^{n+b}\binom{a+b+n}{2 n+b+1}\binom{2 n+b+2}{n+b+1} t^{2 n+1}
\end{align*}
$$

We now restrict our attention to the case $(a, b)=(2 m, m)$, where m is a fixed positive integer. The key point of Beukers's proof was to exhibit nontrivial divisors of the content of the polynomials P_{n} and Q_{n}. Dubickas got his improvement by refining this part of the proof. Let us show an equivalent form of Dubickas's lemma. Let \mathcal{P} denote the set of all prime numbers.

Lemma 1. Define

$$
\begin{aligned}
& E_{n}(m)=\left\{l \in \mathcal{P}, l^{2}>\max (n+m, 2 m-n-1):\right. \\
& \left.\qquad\left\{\frac{n+m}{l}\right\}+\left\{\frac{2 m-n-1}{l}\right\}+\left\{\frac{n}{l}\right\} \geq 2\right\}
\end{aligned}
$$

Then, for any element l from $E_{n}(m)$, we have $\left\{P_{n}(t), Q_{n}(t)\right\} \subset l \mathbb{Z}[t]$.
Proof. Let l be in \mathcal{P}, with $l^{2}>\max (n+m, 2 m-n-1)$. We first consider the content of $Q_{n}(t)$. Let r be an integer from $\{0, \ldots, n\}$. By (2.2), we want to show that l divides $\binom{2 n+m-r}{n+m}\binom{2 m-n+r-1}{r}$. Put

$$
\eta_{1}=\left\{\frac{n+m}{l}\right\}, \quad \eta_{2}=\left\{\frac{2 m-n-1}{l}\right\}, \quad \eta_{3}=\left\{\frac{n}{l}\right\}, \quad \theta=\left\{\frac{j}{l}\right\}
$$

and let ω_{l} denote the l-adic valuation of $\binom{2 n+m-r}{n+m}\binom{2 m-n+r-1}{r}$. The size of l gives the following expressions for ω_{l} :

$$
\begin{aligned}
\omega_{l}= & {\left[\frac{2 n+m-r}{l}\right]-\left[\frac{n+m}{l}\right]-\left[\frac{n-r}{l}\right] } \\
& +\left[\frac{2 m-n+r-1}{l}\right]-\left[\frac{2 m-n-1}{l}\right]-\left[\frac{r}{l}\right] \\
= & {\left[\eta_{1}+\eta_{3}-\theta\right]-\left[\eta_{1}\right]-\left[\eta_{3}-\theta\right]+\left[\eta_{2}+\theta\right]-\left[\eta_{2}\right]-[\theta] } \\
= & {\left[\eta_{1}+\eta_{3}-\theta\right]-\left[\eta_{3}-\theta\right]+\left[\eta_{2}+\theta\right], }
\end{aligned}
$$

which lead to the estimate

$$
\omega_{l} \geq\left[\eta_{1}+\eta_{3}-\theta\right]+\left[\eta_{2}+\theta\right] \geq\left[\eta_{1}+\eta_{2}+\eta_{3}\right]-1
$$

When l belongs to $E_{n}(m)$, we know that $\eta_{1}+\eta_{2}+\eta_{3}$ is greater than or equal to 2 , which implies that ω_{l} is positive. Therefore l divides the content of Q_{n}. Since the supports of $P_{n}(t)$ and $t^{2 n+1} E_{n}(t)$ are disjoint, this also shows that l divides the content of P_{n}, by (2.1).

The form given to this lemma was inspired by Hata's work on irrationality measures [5]. It makes it easier to compute the asymptotic behavior of the product of the elements of $E_{n}(m)$, as shown in the next section.
3. Asymptotic behavior. Consider $n=[\alpha(m-3 / 2)]+1+\eta$ with (m, α, η) belonging to the set $(\mathbb{N} \backslash\{0,1\}) \times] 0,2\left[\times\{0,1\}\right.$. Put $\Pi_{m}(\alpha)=$ $\prod_{l \in E_{n}(m)} l$.

Let $\delta \in\{0,1,2,3,4,5\}$ and M be an integer. By (2.5), we may choose η such that

$$
\begin{equation*}
P_{n}\left(-\frac{1}{8}\right)-\frac{M}{2^{\delta}} Q_{n}\left(-\frac{1}{8}\right) \neq 0 \tag{3.1}
\end{equation*}
$$

Indeed, if not, the couple $\left(1, M / 2^{\delta}\right)$ would be a solution of a homogeneous system of rank 2, which is impossible. Moreover the polynomial $\Pi_{m}(\alpha)^{-1} \times$ $\left(2^{\delta} P_{n}-M Q_{n}\right)$ has integer coefficients and its degree is at most n. We thus deduce from (3.1) the estimate

$$
\begin{equation*}
\left|P_{n}\left(-\frac{1}{8}\right)-\frac{M}{2^{\delta}} Q_{n}\left(-\frac{1}{8}\right)\right| \geq 2^{-\delta-3 n} \Pi_{m}(\alpha) \tag{3.2}
\end{equation*}
$$

Let us now study what happens when m goes to infinity. Define

$$
\begin{aligned}
F_{1}(\alpha)= & \max _{x \in[0,1]} x^{2-\alpha}(1-x)^{1+\alpha}\left|1-\frac{9}{8} x\right|^{\alpha} \\
F_{2}(\alpha)= & \max _{x \in[0,1]} x^{\alpha}(1-x)^{1+\alpha}\left|1+\frac{x}{8}\right|^{2-\alpha}, \\
A(\alpha)= & (\alpha+3) \log (\alpha+3)-(2-\alpha) \log (2-\alpha) \\
& -(1+\alpha) \log (1+\alpha)-\alpha \log \alpha
\end{aligned}
$$

Proposition 1. We have the upper bounds

$$
\begin{align*}
& \left|Q_{n}\left(-\frac{1}{8}\right)\right| \leq \frac{(3 m+n)!}{(2 m-n-1)!(m+n)!n!} \cdot \frac{2 F_{1}(\alpha)^{m-3 / 2}}{5} \tag{3.3}\\
& \left|E_{n}\left(-\frac{1}{8}\right)\right| \leq \frac{(3 m+n)!}{(2 m-n-1)!(m+n)!n!} \cdot \frac{541 F_{2}(\alpha)^{m-3 / 2}}{1260} \\
& \log \left(\frac{(3 m+n)!}{(2 m-n-1)!(m+n)!n!}\right) \leq A(\alpha) m+O(1) \tag{3.5}
\end{align*}
$$

Moreover we can get a better estimate for $\alpha=15 / 16$:

$$
\begin{equation*}
\log \left(\frac{(3 m+n)!}{(2 m-n-1)!(m+n)!n!}\right) \leq A\left(\frac{15}{16}\right) m-\log (2 \pi)-\frac{1}{12}+\frac{1}{m} \tag{3.6}
\end{equation*}
$$

Proof. Use (2.3) and the inequalities

$$
\begin{align*}
n & \geq \alpha(m-3 / 2) \tag{3.7}\\
n+m & \geq(1+\alpha)(m-3 / 2)+3 / 2 \tag{3.8}\\
2 m-n-1 & \geq(2-\alpha)(m-3 / 2) \tag{3.9}
\end{align*}
$$

to get

$$
\left|Q_{n}\left(-\frac{1}{8}\right)\right| \leq \frac{(3 m+n)!}{(2 m-n-1)!(m+n)!n!} F_{1}(\alpha)^{m-3 / 2} \int_{0}^{1}(1-x)^{3 / 2} d x
$$

which shows (3.3). Similarly, application of (2.4) together with the inequality
$2 m-n-1 \leq(2-\alpha)(m-3 / 2)+2$ yields

$$
\begin{aligned}
\left|E_{n}\left(-\frac{1}{8}\right)\right| \leq & \frac{(3 m+n)!}{(2 m-n-1)!(m+n)!n!} \\
& \times F_{2}(\alpha)^{m-3 / 2} \int_{0}^{1}(1-x)^{3 / 2}(1+x / 8)^{2} d x
\end{aligned}
$$

and (3.4) follows.
We shall now need the following Stirling formula (cf. [8, p. 37]):

$$
\log \Gamma(s)=(s-1 / 2) \log s-s+\log \sqrt{2 \pi}+\frac{1}{2} \int_{0}^{\infty} \frac{\{x\}-\{x\}^{2}}{(x+s)^{2}} d x
$$

This way we get

$$
\log \left(\frac{(3 m+n)!}{(2 m-n-1)!(m+n)!n!}\right)=\Delta+1-\log (2 \pi)+I
$$

where $\Delta=\phi(3 m+n+1)-\phi(2 m-n)-\phi(n+m+1)-\phi(n+1), \phi(s)=$ $(s-1 / 2) \log s$ and

$$
\begin{aligned}
& I=\int_{0}^{\infty} \frac{\{x\}-\{x\}^{2}}{2}\left(\frac{1}{(3 m+n+1+x)^{2}}-\frac{1}{(2 m-n+x)^{2}}\right. \\
&\left.-\frac{1}{(n+m+1+x)^{2}}-\frac{1}{(n+1+x)^{2}}\right) d x \leq 0
\end{aligned}
$$

We now use the formula

$$
\begin{aligned}
\Delta= & \left(n+m+\frac{1}{2}\right) \log \left(\frac{3 m+n+1}{m+n+1}\right) \\
& +\left(2 m-n-\frac{1}{2}\right) \log \left(\frac{3 m+n+1}{2 m-n}\right)+\left(n+\frac{1}{2}\right) \log \left(\frac{3 m+n+1}{n+1}\right)
\end{aligned}
$$

to complete the proof of (3.5).
Assume that $\alpha \leq 1$. This implies that $-1 / 2 \leq 1-(3 / 2) \alpha \leq n+1-\alpha m \leq$ $3-(3 / 2) \alpha$. By applying Taylor's formula to the function ϕ, we get

$$
\begin{aligned}
\Delta \leq & \phi((3+\alpha) m)+(n+1-\alpha m) \phi^{\prime}((3+\alpha) m) \\
& +\frac{(n+1-\alpha m)^{2}}{2} \phi^{\prime \prime}((3+\alpha) m) \\
& -\phi((2-\alpha) m)+(n+1-\alpha m) \phi^{\prime}((2-\alpha) m)-\phi^{\prime}((2-\alpha) m) \\
& -\phi((1+\alpha) m)-(n+1-\alpha m) \phi^{\prime}((1+\alpha) m) \\
& -\phi(\alpha m)-(n+1-\alpha m) \phi^{\prime}(\alpha m)
\end{aligned}
$$

$$
\begin{aligned}
= & A(\alpha) m+\frac{1}{2} \log \left(\frac{\alpha(1+\alpha)}{(2-\alpha)(3+\alpha)}\right)-1+\frac{1}{2(2-\alpha) m} \\
& +(n+1-\alpha m) \log \left(\frac{\alpha(1+\alpha)}{(2-\alpha)(3+\alpha)}\right) \\
& -\frac{n+1-\alpha m}{2 m}\left(\frac{1}{3+\alpha}+\frac{1}{2-\alpha}-\frac{1}{1+\alpha}-\frac{1}{\alpha}\right) \\
& +\frac{(n+1-\alpha m)^{2}}{2}\left(\frac{1}{(3+\alpha) m}+\frac{1}{2(3+\alpha)^{2} m^{2}}\right) \\
\leq & A(\alpha) m-1-\frac{3}{2}(1-\alpha) \log \left(\frac{(2-\alpha)(3+\alpha)}{\alpha(1+\alpha)}\right)+\frac{3-(3 / 2) \alpha}{2 m} \\
& \times\left(\frac{1+2 \alpha}{\alpha(1+\alpha)}+\frac{2-(3 / 2) \alpha}{3+\alpha}+\frac{1 / 4}{(3+\alpha)^{2}}-\frac{2-(3 / 2) \alpha}{(2-\alpha)(3-(3 / 2) \alpha)}\right) \\
\leq & A(\alpha) m-1-\frac{3}{2}(1-\alpha) \log \left(\frac{(2-\alpha)(3+\alpha)}{\alpha(1+\alpha)}\right)+\frac{505}{512 m} .
\end{aligned}
$$

For $\alpha=15 / 16$, we get (3.6).
We still have to determine the asymptotic behavior of $\Pi_{m}(\alpha)$. Put

$$
E_{\alpha}=\{x>0:\{(1+\alpha) x\}+\{(2-\alpha) x\}+\{\alpha x\} \geq 2\} \quad \text { and } \quad I(\alpha)=\int_{E_{\alpha}} \frac{d x}{x^{2}}
$$

Note that, when $\alpha=u / v$ is a rational, the function $x \rightarrow\{(1+\alpha) x\}+$ $\{(2-\alpha) x\}+\{\alpha x\}$ is v-periodic and the set E_{α} may be written as

$$
E_{\alpha}=\bigcup_{1 \leq i \leq j_{\alpha}}\left(\left[a_{i}, b_{i}[+v \mathbb{N})\right.\right.
$$

with $0<a_{1}<b_{1}<a_{2}<\ldots<b_{j_{\alpha}} \leq v$. Moreover the functions $x \mapsto$ $\{(1+\alpha) x\}, x \mapsto\{(2-\alpha) x\}$ and $x \mapsto\{\alpha x\}$ are constant on any of the intervals $\left[a_{i}, b_{i}[\right.$ (otherwise there will be a jump by 1 and there would exist a point x_{0} such that $\left.\left\{(1+\alpha) x_{0}\right\}+\left\{(2-\alpha) x_{0}\right\}+\left\{\alpha x_{0}\right\}<2\right)$. This in turn implies that the fractional part is a nondecreasing function on any of the intervals $\left[(1+\alpha)\left(a_{i}+v q\right),(1+\alpha)\left(b_{i}+v q\right)\left[,\left[(2-\alpha)\left(a_{i}+v q\right),(2-\alpha)\left(b_{i}+v q\right)[\right.\right.\right.$ and $\left[\alpha\left(a_{i}+v q\right), \alpha\left(b_{i}+v q\right)[\right.$.

Proposition 2. When m goes to infinity, we have

$$
\begin{equation*}
\log \Pi_{m}(\alpha) \geq I(\alpha) m+O\left(\frac{m}{\log m}\right) \tag{3.10}
\end{equation*}
$$

Moreover, for $m \geq 10740000$, the following inequality holds:

$$
\begin{equation*}
\log \Pi_{m}(15 / 16) \geq 0.3945 m+9 \tag{3.11}
\end{equation*}
$$

Proof. There exist absolute constants $C_{1}, C_{2}>0$ such that

$$
-C_{1} \leq \max (n-\alpha m,-n-1+\alpha m) \leq C_{2}
$$

Put $C_{3}=C_{2} \max (1 / \alpha, 1 /(2-\alpha)), C_{4}=C_{1} \max (1 / \alpha, 1 /(2-\alpha))$. Assume $m \geq C_{3}+C_{4}$ and introduce

$$
q_{0}(m)=\min \left(\frac{a_{1}+b_{1}}{v}\left(\frac{m}{C_{3}+C_{4}}-1\right), \frac{m+C_{3}}{(v+1) \sqrt{3 m}}\right)=O(\sqrt{m})
$$

Let us prove that, for $0 \leq q \leq q_{0}(m)$ and $1 \leq i \leq j_{\alpha}$, any prime number from the interval $\left.] \frac{m+C_{3}}{b_{i}+v q}, \frac{m-C_{4}}{a_{i}+v q}\right]$ belongs to $E_{n}(m)$. The definition of $q_{0}(m)$ implies the inequality $\frac{m+C_{3}}{b_{i}+v q} \leq \frac{m-C_{4}}{a_{i}+v q}$ and shows that

$$
\frac{m+C_{3}}{b_{i}+v q} \geq \sqrt{3 m} \geq \sqrt{\max (n+m, 2 m-n-1)}
$$

Thus any prime number from the interval $\left.] \frac{m+C_{3}}{b_{i}+v q}, \frac{m-C_{4}}{a_{i}+v q}\right]$ satisfies the condition $l^{2}>\max (n+m, 2 m-n-1)$. Moreover we have the following inequalities:

$$
\begin{aligned}
\frac{m+n}{l} & \geq \frac{(1+\alpha) m-C_{1}}{l} \geq(1+\alpha)\left(a_{i}+v q\right)+\frac{C_{4}(1+\alpha)-C_{1}}{l} \\
& \geq(1+\alpha)\left(a_{i}+v q\right), \\
\frac{m+n}{l} & \leq \frac{(1+\alpha) m+C_{2}}{l}<(1+\alpha)\left(b_{i}+v q\right)-\frac{C_{3}(1+\alpha)-C_{2}}{l} \\
& \leq(1+\alpha)\left(b_{i}+v q\right), \\
\frac{2 m-n-1}{l} & \geq \frac{(2-\alpha) m-C_{1}}{l} \geq(2-\alpha)\left(a_{i}+v q\right)+\frac{C_{4}(2-\alpha)-C_{1}}{l} \\
& \geq(2-\alpha)\left(a_{i}+v q\right), \\
\frac{2 m-n-1}{l} & \leq \frac{(2-\alpha) m+C_{2}}{l}<(2-\alpha)\left(b_{i}+v q\right)-\frac{C_{3}(2-\alpha)-C_{2}}{l} \\
& \leq(2-\alpha)\left(b_{i}+v q\right), \\
\frac{n}{l} & \geq \frac{\alpha m-C_{1}}{l} \geq \alpha\left(a_{i}+v q\right)+\frac{C_{4} \alpha-C_{1}}{l} \geq \alpha\left(a_{i}+v q\right), \\
\frac{n}{l} & \leq \frac{\alpha m+C_{2}}{l}<\alpha\left(b_{i}+v q\right)+\frac{C_{3} \alpha-C_{2}}{l} \leq \alpha\left(b_{i}+v q\right),
\end{aligned}
$$

which lead to

$$
\begin{aligned}
& \left\{\frac{m+n}{l}\right\}+\left\{\frac{2 m-n-1}{l}\right\}+\left\{\frac{n}{l}\right\} \\
& \quad \geq\left\{(1+\alpha)\left(a_{i}+v q\right)\right\}+\left\{(2-\alpha)\left(a_{i}+v q\right)\right\}+\left\{\alpha\left(a_{i}+v q\right)\right\} \geq 2
\end{aligned}
$$

Therefore we get the inclusion

$$
\left.\left.E_{n}(m) \supseteq \bigcup_{0 \leq q \leq q_{0}(m)} \bigcup_{1 \leq i \leq j_{\alpha}}(\rceil \frac{m+C_{3}}{b_{i}+v q}, \frac{m-C_{4}}{a_{i}+v q}\right] \cap \mathcal{P}\right)
$$

This implies the estimate

$$
\begin{equation*}
\log \Pi_{m}(\alpha) \geq \sum_{0 \leq q \leq q_{0}(m)} \sum_{1 \leq i \leq j_{\alpha}}\left(\Theta\left(\frac{m-C_{4}}{a_{i}+v q}\right)-\Theta\left(\frac{m+C_{3}}{b_{i}+v q}\right)\right) \tag{3.12}
\end{equation*}
$$

where $\Theta(x)=\sum_{p \in \mathcal{P}, p \leq x} \log p$. We now use Schoenfeld's estimate for the function $\Theta(x)\left[9\right.$, Theorem $\left.8^{*}\right]:|\Theta(x)-x| \leq 8.072 x / \log ^{2} x$ for $x>1$, to get

$$
\begin{aligned}
& \Theta\left(\frac{m-C_{4}}{a_{i}+v q}\right)-\Theta\left(\frac{m+C_{3}}{b_{i}+v q}\right) \\
& \quad \quad \geq \frac{m-C_{4}}{a_{i}+v q}-\frac{m+C_{3}}{b_{i}+v q}-\frac{m-C_{4}}{a_{i}+v q} \frac{8.072}{(\log \sqrt{3 m})^{2}}-\frac{m+C_{3}}{b_{i}+v q} \frac{8.072}{(\log \sqrt{3 m})^{2}},
\end{aligned}
$$

for $q \leq q_{0}(m)$. We deduce from (3.12) the lower bound
(3.13) $\quad \log \Pi_{m}(\alpha)$

$$
\begin{aligned}
& \geq m(1+O(1 / m)) \int_{E_{\alpha} \cap\left[0,(1+v) q_{0}(m)\right]} \frac{d x}{x^{2}}+O\left(\frac{m}{\log ^{2} m} \sum_{1 \leq q \leq q_{0}(m)} \frac{1}{q}\right) \\
& =I(\alpha) m+O(\sqrt{m})+O(m / \log m)
\end{aligned}
$$

and the first part of the proposition is proved.
For $\alpha=15 / 16$, we have $C_{3}=19 / 30$ and $C_{4}=17 / 10$. The a_{i} 's and b_{i} 's are given below:

i	$\left(a_{i}, b_{i}\right)$	i	$\left(a_{i}, b_{i}\right)$	i	$\left(a_{i}, b_{i}\right)$
1	$(32 / 63,16 / 31)$	2	$(16 / 21,16 / 17)$	3	$(64 / 63,32 / 31)$
4	$(32 / 21,48 / 31)$	5	$(16 / 9,32 / 17)$	6	$(128 / 63,64 / 31)$
7	$(160 / 63,80 / 31)$	8	$(176 / 63,48 / 17)$	9	$(64 / 21,96 / 31)$
10	$(32 / 9,112 / 31)$	11	$(256 / 63,128 / 31)$	12	$(32 / 7,144 / 31)$
13	$(320 / 63,160 / 31)$	14	$(352 / 63,96 / 17)$	15	$(128 / 21,192 / 31)$
16	$(400 / 63,32 / 5)$	17	$(64 / 9,224 / 31)$	18	$(464 / 63,112 / 15)$
19	$(512 / 63,256 / 31)$	20	$(176 / 21,144 / 17)$	21	$(64 / 7,288 / 31)$
22	$(592 / 63,160 / 17)$	23	$(640 / 63,320 / 31)$	24	$(704 / 63,192 / 17)$
25	$(736 / 63,176 / 15)$	26	$(256 / 21,208 / 17)$	27	$(800 / 63,64 / 5)$
28	$(96 / 7,208 / 15)$	29	$(928 / 63,224 / 15)$	30	$(992 / 63,16)$

To prove the second part of the proposition, we shall need the bound

$$
\begin{equation*}
\log \Pi_{m}(\alpha) \geq \sum_{0 \leq q \leq 10} \sum_{1 \leq i \leq 30}\left(\Theta\left(\frac{m-17 / 10}{a_{i}+16 q}\right)-\Theta\left(\frac{m+19 / 30}{b_{i}+16 q}\right)\right) . \tag{3.14}
\end{equation*}
$$

For $m>5 \cdot 10^{10}$, we use the following estimates from [9]:

$$
-0.0077629 \frac{x}{\log x}<\Theta(x)-x<0.000081 x \quad \text { for } x \geq 1.04 \cdot 10^{7}
$$

We find $\log \Pi_{m}(\alpha) \geq 0.40127 m-32>0.3945 m+9$.

For $5 \cdot 10^{10} \geq m>5 \cdot 10^{7}$, we use the additional estimates from [9]: $0.998697 x<\Theta(x)<x$ for $1155901 \leq x<10^{11}$. We find $\log \Pi_{m}(\alpha) \geq$ $0.39572 m-27>0.3945 m+9$.

For $5 \cdot 10^{7} \geq m>1.074 \cdot 10^{7}$, we use other estimates from [1]:

$$
\frac{\Theta(x)-x}{\sqrt{x}} \begin{cases}<-0.344 & \text { if } 0<x<10^{8} \\ >-1.833 & \text { if } 19801<x<10^{8}\end{cases}
$$

together with Theorem 6^{*} and Corollary 2 of [9], which give pairs (c, d) such that $\Theta(x)>x-x /(c \log x)$ for $x \geq d$. We find $\log \Pi_{m}(\alpha) \geq 0.39454 m-26>$ $0.3945 m+9$.
4. Proof of Theorems 1 and 2. We shall use the notations from the previous section.

Proposition 3. For any positive number ε and for any integer $k>$ $k_{0}(\varepsilon)\left(k_{0}(\varepsilon)\right.$ effective), we have

$$
\begin{equation*}
\left\|(3 / 2)^{k}\right\| \geq e^{\left(C_{1}(\alpha)-\varepsilon\right) k}-e^{\left(C_{2}(\alpha)-\varepsilon\right) k} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{1}(\alpha)=\left(-3 \alpha \log 2+I(\alpha)-A(\alpha)-\log F_{1}(\alpha)\right) / 6 \\
& C_{2}(\alpha)=\left(-6 \alpha \log 2+\log F_{2}(\alpha)-\log F_{1}(\alpha)\right) / 6
\end{aligned}
$$

Proof. Take $k=6 m-\delta$ with $\delta \in\{0,1,2,3,4,5\}$ and choose the integer M_{0} for which the distance from $(3 / 2)^{k}$ to \mathbb{Z} is attained. Then we have

$$
\begin{aligned}
\left\|(3 / 2)^{k}\right\| & =(3 / 2)^{-\delta}\left((3 / 2)^{6 m}-(3 / 2)^{\delta} M_{0}\right) \\
& =(2 / 3)^{\delta}(-1)^{m}\left(H(2 m, m ;-1 / 8)-M 2^{-\delta}\right)
\end{aligned}
$$

for some integer M, by the definition of $H(a, b ; t)$. By (2.1) we know that

$$
\begin{aligned}
& H(2 m, m ;-1 / 8)-M 2^{-\delta} \\
& \quad=\frac{P_{n}(-1 / 8)-M 2^{-\delta} Q_{n}(-1 / 8)}{Q_{n}(-1 / 8)}+(-1)^{m+n} 2^{-3(2 n+1)} \frac{E_{n}(-1 / 8)}{Q_{n}(-1 / 8)}
\end{aligned}
$$

We use (3.2) to get the inequality

$$
\begin{equation*}
\left\|(3 / 2)^{k}\right\| \geq \frac{2^{-3 n} \Pi_{m}(\alpha)-2^{\delta-3(2 n+1)}\left|E_{n}(-1 / 8)\right|}{3^{\delta}\left|Q_{n}(-1 / 8)\right|} \tag{4.2}
\end{equation*}
$$

The estimates (3.3)-(3.5) and (3.7) then complete the proof of (4.1).
In order to get the best lower bound for $\left\|(3 / 2)^{k}\right\|$, we have to find for which value of α the first exponent in (4.1) is maximal, under the condition $C_{1}(\alpha)>C_{2}(\alpha)$. It appears that the difference between C_{1} and C_{2} is negative for low values of values of α; moreover, once this difference becomes positive, the value of $C_{1}(\alpha)$ decreases. Therefore we are looking for good upper bounds for the solution α_{0} of $C_{1}(\alpha)=C_{2}(\alpha)$. The computations show that α_{0} is smaller than 1 , and more precisely that α_{0} belongs to the range [0.9, 0.95].

Computing $\left(C_{1}-C_{2}\right)(1-1 / p)$ for $p=10, \ldots, 20$ gives the better estimate $\alpha_{0} \in[13 / 14,14 / 15]$. We can get more precise estimates for α_{0} by determining the continued fraction expansion of α_{0}. We find this way

$$
\begin{aligned}
\frac{198478}{212871} & =[0,1,13,1,3,1,3,6,3,1,2,1,7] \\
& <\alpha_{0}<[0,1,13,1,3,1,3,6,3,1,2,1,8]=\frac{224141}{240395}
\end{aligned}
$$

Since PARI gives

$$
\left(C_{1}-C_{2}\right)(224141 / 240395)=1.0057378 \cdot 10^{-11}
$$

and $e^{C_{1}(224141 / 240395)}=0.57701737767006 \ldots$, the proof of Theorem 1 is complete. Note that Dubickas's result was obtained by choosing $\alpha=$ $1 / 1.0723=0.93257483 \ldots$, which was pretty close to our better choice $\alpha=224141 / 240395=0.93238628 \ldots$ To prove Theorem 2, we shall give an explicit version of Proposition 3 for $\alpha=15 / 16$.

PARI gives the numerical values

$$
\begin{aligned}
& F_{1}(15 / 16)=0.0964204654 \ldots \\
& \left(F_{2} / F_{1}\right)(15 / 16)=1.7628240038 \ldots \\
& A(15 / 16)=4.1111565348 \ldots
\end{aligned}
$$

From (3.3), (3.4) and (3.6) we deduce

$$
\begin{aligned}
& \left|Q_{n}\left(-\frac{1}{8}\right)\right|^{-1} \geq \exp (-1.7721197321 m+0.6711) \\
& \left|E_{n}\left(-\frac{1}{8}\right)\right| \leq \exp (2.3390368029 m-0.1084)
\end{aligned}
$$

Since $(15 / 16) m-45 / 32 \leq n \leq(15 / 16) m+19 / 32$, from (4.2) and (3.8) we get

$$
\begin{aligned}
\left\|(3 / 2)^{k}\right\| \geq & \exp (-3.327097 m+8.43-1.1 \delta) \\
& -\exp (-3.332035 m+4.34-0.4 \delta) \\
\geq & 2^{-0.8 k}(\exp (0.17)-\exp (-0.005 m)) \geq 2^{-0.8 k}
\end{aligned}
$$

for $m \geq 10740000$. Therefore (1.5) is proved for $k \geq 64440000$. For $k<64440000$, we shall use the following lemma, inspired by Delmer and Deshouillers [3].

Lemma 2. For a positive integer n, let $l(n)$ denote the maximal number of identical consecutive digits in the binary expansion of n. Then, if $l\left(3^{p}\right) \leq$ $0.8 p-2$, we have

$$
\left\|(3 / 2)^{k}\right\| \geq 2^{-0.8 k} \quad \text { for } \quad \frac{\frac{\log 3}{\log 2} p+l\left(3^{p}\right)+2}{\frac{\log 3}{\log 2}+0.8} \leq k \leq p
$$

Proof. Follow exactly the proof of [3, Proposition 1].
Define now the finite sequence $\left(k_{0}, \ldots, k_{r}\right)$ by the initial value $k_{0}=$ 64440000 and the recursion relation

$$
k_{i+1}=\left[\frac{\frac{\log 3}{\log 2} k_{i}+l\left(3^{k_{i}}\right)+2}{\frac{\log 3}{\log 2}+0.8}\right] \quad \text { if } \quad l\left(3^{k_{i}}\right)<0.8 k_{i}-2 .
$$

This sequence is decreasing and terminates when the condition $l\left(3^{k_{i}}\right)<$ $0.8 k_{i}-2$ is not satisfied. PARI gives $r=41$ and $k_{r}=11$. Since formula (1.5) is true for $k=5, \ldots, 11$ and $k \in\left\{k_{r}+1, \ldots, k_{0}\right\}$ by Lemma 2 , the proof of Theorem 2 is complete.

References

[1] K. I. Appel and J. B. Rosser, Tables for estimating functions of primes, Comm. Res. Div. Tech. Rep. 4 (1961).
[2] F. Beukers, Fractional parts of powers of rationals, Math. Proc. Cambridge Philos. Soc. 90 (1981), 13-20.
[3] F. Delmer and J.-M. Deshouillers, The computation of $g(k)$ in Waring's problem, Math. Comp. 54 (1990), 885-893.
[4] A. K. Dubickas, A lower bound for the quantity $\left\|(3 / 2)^{k}\right\|$, Russian Math. Surveys 45 (1990), 163-164.
[5] M. Hata, Legendre type polynomials and irrationality measures, J. Reine Angew. Math. 407 (1990), 99-125.
[6] J. Kubina and M. Wunderlich, Extending Waring's conjecture up to 471600000, Math. Comp. 55 (1990), 815-820.
[7] K. Mahler, On the fractional parts of powers of real numbers, Mathematika 4 (1957), 122-124.
[8] H. Rademacher, Topics in Analytic Number Theory, Springer, 1973.
[9] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$ II, Math. Comp. 30 (1976), 337-360.

A2X
CNRS UMR 5465
Université Bordeaux 1
351 cours de la Libération
F-33405 Talence Cedex, France
E-mail: Laurent.Habsieger@math.u-bordeaux.fr

[^0]: 2000 Mathematics Subject Classification: 11J04, 11P05.
 Key words and phrases: Waring's problem, diophantine approximation, Padé approximation.

