# Product sets cannot contain long arithmetic progressions 

by<br>Dmitrii Zhelezov (Gothenburg)

1. Introduction. Sum-product estimates are among the most important questions in modern additive combinatorics. In general, one wants to show that if there is enough additive structure in a set $A$ (for example if it has small doubling constant $|A+A| /|A|$ ), then the product set $A . A=\left\{a a^{\prime} \mid a, a^{\prime} \in A\right\}$ is large. The most famous conjecture in this area, posed by Erdős and Szemerédi [4], says that for any set $A$ of complex numbers,

$$
\max (|A \cdot A|,|A+A|) \geq c|A|^{2-\epsilon}
$$

for arbitrary $\epsilon>0$ and some $c>0$ that may depend on $\epsilon$. The state of the art exponent $4 / 3-o(1)$ was obtained by Solymosi in a very elegant way [9]. It is worth noting that each new bound for the exponent required a substantial new idea and attracted considerable attention from experts in the field.

In this note we investigate a different sort of relationship between the additive structure and the size of a product set. Namely, we show that a product set cannot contain extremely long arithmetic progressions. The result is the following.

Theorem 1. Suppose that $B$ is a set of $n$ natural numbers. Then the longest arithmetic progression in $B . B$ has length at most $O\left(n \log ^{2} n / \log \log n\right)$.

A lower bound is provided by
Theorem 2. Given an integer $n>0$ there is a set $B$ of $n$ natural numbers such that B.B contains an arithmetic progression of length $\Omega(n \log n)$.

In the fourth section of this note we will extend Theorem 1 to sets of complex numbers, but with a considerably weaker bound $O\left(n^{3 / 2}\right)$.

[^0]2. Notation. Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{+}$. The following standard notation will be used:

- $f(n)=O(g(n))$ means that $\limsup _{n \rightarrow \infty} f(n) / g(n)<\infty$.
- $f(n)=\Omega(g(n))$ means that $g(n)=O(f(n))$.
- Let $H$ be a fixed graph. Then $\operatorname{ex}(n, H)$ denotes the maximal number of edges among all graphs with $n$ vertices which do not contain $H$ as a subgraph. In particular, ex $\left(n, C_{k}\right)$ denotes the maximal number of edges in a graph with $n$ vertices and no cycles of length $k$.
- Let $p$ be a prime. Then $d=\operatorname{ord}_{p}(n)$ denotes the maximal power of $p$ such that $p^{d} \mid n$.

3. Main result. Let $A=\{r+d i\}, i=0, \ldots, N$, be an arithmetic progression in the product set $B . B$ of a set $B$ of size $n$. We start with the observation that by taking absolute values of $B$ the longest arithmetic progression in $B . B$ can be shortened by a factor of at most two, so we may assume that all elements in $B$ are positive.

We proceed with the following technical lemma.
Lemma 1. We may assume that $A=\left\{D\left(r^{\prime}+d^{\prime} i\right)\right\}$ for some $D>0$ such that $\operatorname{gcd}\left(d^{\prime}, D r^{\prime}\right)=1$.

Proof. Let $p$ be a prime such that $\operatorname{ord}_{p}(d)>\operatorname{ord}_{p}(r)$. If there is no such $p$ then $D=\operatorname{gcd}(r, d), d^{\prime}=d / D, r^{\prime}=r / D$ provides the desired factorization. If $k^{\prime}=\operatorname{ord}_{p}(r)=1$ then every number in $A$ is a product $b_{i} b_{j}$ such that $p \mid b_{i}$ but $p \nmid b_{j}$ and thus we can reduce $B$ to

$$
B^{\prime}=\left\{b_{i} \mid b_{i} \in B, p \nmid b_{i}\right\} \cup\left\{b_{i} / p\left|b_{i} \in B, p\right| b_{i}\right\}
$$

and iterate the lemma again.
So, now we assume that $k=\operatorname{ord}_{p}(d)>k^{\prime}>1$. We divide $B$ into three sets $B_{1}, B_{2}, B_{3}$ such that $b_{i} \in B_{1}$ if $p \nmid b_{i}, b_{i} \in B_{2}$ if $0<\operatorname{ord}_{p}\left(b_{i}\right)<k^{\prime}$ and finally $b_{i} \in B_{3}$ if $p^{k^{\prime}} \mid b_{i}$. Since $\operatorname{ord}_{p}(d)>k^{\prime}$ for every $a \in A$ we have $\operatorname{ord}_{p}(a)=k^{\prime}$ and $a$ can be either a product of two numbers from $B_{2}$ or a product $b_{1} b_{3}$ where $b_{1} \in B_{1}$ and $b_{3} \in B_{3}$. Thus, we can reduce $B$ to

$$
B^{\prime}=\left\{b_{i} \mid b_{i} \in B_{1}\right\} \cup\left\{b_{i} / p \mid b_{i} \in B_{2}\right\} \cup\left\{b_{i} / p^{2} \mid b_{i} \in B_{3}\right\}
$$

such that $B^{\prime} . B^{\prime}$ contains an arithmetic progression $A / p^{2}$ of the same length as $A$, and then iterate the lemma.

From now on we will assume the factorization $A=\{D(r+d i)\}$ such that $\operatorname{gcd}(D r, d)=1$. By $N$ we will always denote the length of $A$ and $a_{k}=D(r+d k)$ will be the $k$ th element of $A$ (if not stated explicitly).

Lemma 2. For $i \neq j$,

$$
\operatorname{gcd}\left(a_{i}, a_{j}\right) \leq D N
$$

Proof. For $i>j$ we have

$$
\begin{aligned}
\operatorname{gcd}\left(a_{i}, a_{j}\right) & =\operatorname{gcd}\left(a_{i}-a_{j}, a_{j}\right)=\operatorname{gcd}(D d(i-j), D(d i+r)) \\
& =D \operatorname{gcd}(d(i-j), d i+r)=D \operatorname{gcd}(i-j, d i+r) \leq D N
\end{aligned}
$$

The last equality follows from $\operatorname{gcd}(d, D r)=1$.
Let us fix a single pair $b_{i}, b_{j} \in B$ for each $a \in A$ such that $b_{i} b_{j}=a$ and make a graph $G$ with $b \in B$ as vertices, such that for every $a \in A$ there is a unique edge between $b_{i}$ and $b_{j}$ which has been previously fixed for such $a$ (for each edge we can simply take the first representation of $a$ in lexicographical order). We will have $n=|B|=|V(G)|$ and $N=|A|=|E(G)|$. It turns out that our further analysis significantly simplifies if $G$ is simple (without loops) and bipartite. However, we can always achieve this sacrificing just a constant factor by simply taking two copies of $B$, say $B_{1}$ and $B_{2}$, that are going to be the color classes of $G$, such that for each edge $e=\left\langle b_{i}, b_{j}\right\rangle \in G$, $i \leq j$, we place an edge between $b_{i} \in B_{1}$ and $b_{j} \in B_{2}$, so the resulting graph is bipartite and simple.

As we will see from our example, which provides a lower bound $N=$ $\Omega(n \log n)$, it is safe to assume $N>2 n$, a very weak yet convenient bound, as it guarantees, for example, that $G$ contains a cycle.

Lemma 3. If $G$ contains an even cycle of size $2 k$, then $r \leq N^{k}$ and $d \leq N^{k}$.

Proof. Let $C=b_{1} \ldots b_{2 k}$ be a simple cycle in $G$ of length $2 k \leq n$, so $b_{i} b_{i+1} \in A, i=1, \ldots, 2 k$ (hereafter we assume addition of indices modulo $2 k)$. By simple algebra we have

$$
\begin{equation*}
b_{2 k} b_{1}=\frac{b_{1} b_{2}}{b_{2} b_{3}} \frac{b_{3} b_{4}}{b_{4} b_{5}} \cdots \frac{b_{2 k-3} b_{2 k-2}}{b_{2 k-2} b_{2 k-1}} b_{2 k-1} b_{2 k} \tag{1}
\end{equation*}
$$

and since for each $i$ there is some $j$ such that $b_{i} b_{i+1}=D\left(r+j_{i} d\right)$ we can rewrite (11) as

$$
\begin{equation*}
\prod_{i=1}^{k}\left(r+j_{2 i} d\right)=\prod_{i=1}^{k}\left(r+j_{2 i-1} d\right) \tag{2}
\end{equation*}
$$

where all $j_{i}$ are distinct (since for every $a \in A$ we have chosen only a single representation). Expanding the brackets, we obtain the equation

$$
\begin{equation*}
c_{0} r^{k}+c_{1} r^{k-1} d+\cdots+c_{k-1} r d^{k-1}+c_{k} d^{k}=0 \tag{3}
\end{equation*}
$$

for integer coefficients $c_{i}$ which depend only on indices $j$. First, let us note that it cannot happen that all $c_{i}$ are zero since then (2) would hold for any $r, d$, which contradicts the fact that all $j$ s are distinct. Let $l$ and $m$ be respectively the smallest and largest indices such that $c_{l}, c_{m} \neq 0$. Obviously,
$l<m$ and dividing (3) by $r^{l} d^{k-m}$ we arrive at

$$
\begin{equation*}
c_{l} r^{m-l}+\cdots+c_{m} d^{m-l}=0 . \tag{4}
\end{equation*}
$$

Since $r$ and $d$ are coprime, $r \mid c_{m}$ and $d \mid c_{l}$ (all the terms in the middle are divisible by $r d$ ), and the claim of the lemma follows if the bound $c_{i} \leq N^{k}$ holds for all coefficients. But on the other hand, $c_{t}$ is a sum of $2\binom{k}{t} t$-fold products of $j$ s. Since each index $j$ is less than $N$, for $t \leq k / 2$ we have

$$
c_{t} \leq 2 k^{t} N^{t}<n^{t} N^{t}<N^{k}
$$

and analogously, for $t \geq k / 2$,

$$
c_{t} \leq 2 k^{k-t} N^{t}<n^{k-t} N^{t}<N^{k}
$$

Here we used the trivial bound $2 k \leq n$.
Lemma 4. If $d<N^{k}, r<N^{k}, 3^{k}<N / 9$ then $N \leq 36 k n \log n$ for sufficiently large $n$.

Proof. Suppose for contradiction that $N>36(k+1) n \log n$. Let $p_{1}, \ldots, p_{K}$ be primes such that $N / 3<p_{i}<N / 2$ and $p_{i} \nmid d$. By the Prime Number Theorem there are more than $N /(6 \log N)>3(k+1) n$ primes in $[N / 3, N / 2]\left({ }^{1}\right)$ (for $N$ large enough) and at most $k$ of them may divide $d$ (since $d<N^{k}$ and $\left.3^{k+1}<N\right)$, so $K>3(k+1) n$.

Recall the graph $G$ with $b \in B$ as vertices and edges that correspond to the relation $b_{i} b_{j} \in A$, with each representation of $a \in A$ being unique. Let us call an edge of $G$ regular if

$$
\operatorname{gcd}\left(b_{i} b_{j} / D, p_{1} \ldots p_{K}\right)=1
$$

or, in words, if $b_{i} b_{j}$ does not have any additional power of the aforementioned $p_{1}, \ldots, p_{K}$ in its prime decomposition. Otherwise, if $\operatorname{ord}_{p}\left(b_{i} b_{j}\right)>\operatorname{ord}_{p}(D)$ let us call an edge $\left(b_{i}, b_{j}\right)$ p-irregular. Further, by an "irregular edge", we mean an edge that is $p$-irregular for at least one $p \in\left\{p_{1}, \ldots, p_{K}\right\}$. Note that it can be irregular for some primes, but regular with respect to others.

Let $p \in P_{K}=\left\{p_{1}, \ldots, p_{K}\right\}$. Since $p \nmid d$, $d j$ covers the full system of residues modulo $p$ when $j$ goes from 0 to $N$. Hence, since $p \in[N / 3, N / 2]$, there are either two or three indices $j$ such that $p \mid d j+r$, and thus two or three $p$-irregular edges in $G$.

By the pigeonhole principle, we can pick a set $S$ of at least $n+1$ distinct irregular edges such that for every $p \in P_{K}$ there is at most one $p$-irregular edge in $S$. Indeed, every element in $A$ can have at most $k+1$ divisors in $P_{K}$ (due to the bounds $d<N^{k}, r<N^{k}$ we have $r+i d<N^{k+1}$ for $0 \leq i \leq n$ ). On the other hand, each $p \in P_{K}$ divides at most three elements in $A$.

[^1]The next step is to clean up our original graph $G$ by removing all edges except those not in $S$. We will refer to the resulting graph as $G^{\prime}$. Of course, it is simple and bipartite as was $G$. Now we claim that it contains no cycles. Indeed, let $e_{p}$ be a (unique) $p$-irregular edge in $G^{\prime}$ and $e_{p}=a_{1} \ldots a_{2 l}$ be a cycle it lies on (of course, here indices of $a$ 's indicate just the ordering in the cycle, not in $A$ ). Note that now we write the cycle as a set of edges rather than vertices, meaning that $a_{i} \in A$ and each $a_{i}$ is a product of two consecutive vertices of the cycle. Thus, arguing exactly as in Lemma 3 it is easy to see that

$$
\prod_{i \text { odd }} a_{i}=\prod_{i \text { even }} a_{i}
$$

But this cannot happen. Indeed, for each $a_{i} \neq e_{p}=a_{1}$ we have $\operatorname{ord}_{p}\left(a_{i}\right)=$ $\operatorname{ord}_{p}(D)$ since $e_{p}$ is the only $p$-irregular edge in $G^{\prime}$, and the $p$-order of the RHS is strictly less than that of the LHS. Thus, $G^{\prime}$ cannot contain more than $n$ edges, a contradiction.

Putting it all together, we obtain the main result of this note.
Proof of Theorem 1. If $G$ does not contain even cycles of length up to $2 k$ the result of Bondy and Simonovits [1] from extremal combinatorics gives

$$
\begin{equation*}
N \leq \operatorname{ex}\left(n, C_{2 k}\right)<100 k n^{1+1 / k} \tag{5}
\end{equation*}
$$

But otherwise Lemmas 3 and 4 apply and we obtain $N \ll(k+1) n \log n$, so finally we have

$$
N \leq O\left(\max \left\{k n^{1+1 / k}, k n \log n\right\}\right)
$$

This can be optimized by taking $k=\log n / \log \log n$, which gives the desired bound $N=O\left(n \log ^{2} n / \log \log n\right)$.

Now we present a construction for the lower bound of Theorem 2.
Proof of Theorem 2. Consider a set $B$ which consists of all natural numbers from 1 to $n$ plus all primes in the interval $[n,\lfloor n \log n\rfloor]$. By the Prime Number theorem, $|B| \leq 2 n$ for large $n$ and $B$. $B$ contains all natural numbers in the interval $[1,\lfloor n \log n\rfloor]$ which is an arithmetic progression of size $\Omega(n \log n)$.

Indeed, suppose $x \in[n,\lfloor n \log n\rfloor]$. If the maximal prime $p$ that divides $x$ is greater than $\log n$, then $x / p \leq n$ and $x=p \cdot \frac{x}{p}$ is clearly in $B \cdot B$, since all primes in the interval $[1,\lfloor n \log n\rfloor]$ are in $B$. Otherwise, we run the following algorithm. Let $p_{1}$ be an arbitrary prime divisor of $x$ and set $d_{1}=p_{1}, d_{2}=x / p_{1}$. Then choose the smallest prime divisor $p^{\prime}$ of $d_{2}$, set $d_{1}:=d_{1} p^{\prime}, d_{2}:=d_{2} / p^{\prime}$ and iterate this procedure until $d_{2}=1$. If there is a moment when both $d_{1}, d_{2} \leq n$ then of course $x \in B . B$ and we are done. Otherwise, at some step $d_{1}<n, d_{2}>n$, but $d_{1} p^{\prime}>n, d_{2} / p^{\prime}<n$. But since
every prime divisor of $x$ is less than $\log n$ we have

$$
x=d_{1} d_{2} \geq n^{2} / \log n
$$

which contradicts $x \in[n,\lfloor n \log n\rfloor]$.

## 4. The case of complex numbers

Theorem 3. Suppose that $B$ is a set of $n$ complex numbers. Then the longest arithmetic progression in $B . B$ has length at most $O\left(n^{3 / 2}\right)$.

Our strategy will be to show that if $B . B$ contains an arithmetic progression $A$ of size $\Omega\left(n^{3 / 2}\right)$ then in fact one can take a new set $B^{\prime}$ of only rational numbers, perhaps twice as big as the original set $B$, such that $B^{\prime} . B^{\prime}$ contains a progression of the same length. Unfortunately, we can prove that such a reduction exists only if the arithmetic progression $A$ in the original set has length at least $\Omega\left(n^{3 / 2}\right)$, so the resulting bound is much weaker than what Theorem 1 gives for sets of natural numbers.

So let $A=\{r+d i\}$ be an arithmetic progression of length $N$ in B.B. The first step is to scale $A$ by simply dividing each element in $B$ by $\sqrt{d}$, and from now on we will assume that $A=\{r+i\}$.

Recall the graph $G$ which provides a one-to-one correspondence between elements of $A$ and its edges, namely an edge $e_{a}=\left\langle b_{i}, b_{j}\right\rangle$ corresponds to the element $a=b_{i} b_{j}$.

Lemma 5. If $G$ contains a 4-cycle then $r$ is rational and so are all elements of $A=\{r+i\}$.

Proof. Let $\left\langle b_{1} b_{2} b_{3} b_{4}\right\rangle$ be a 4 -cycle in $G$. Then both $b_{1}\left(b_{2}-b_{4}\right)$ and $b_{3}\left(b_{2}-b_{4}\right)$ are non-zero integers as they are differences of two distinct elements of $A$. Thus, $b_{1} / b_{3}$ is rational, and so is $q=b_{1} b_{2} / b_{2} b_{3} \neq 1$. On the other hand, writing $b_{1} b_{2}=r+i_{1}$ and $b_{2} b_{3}=r+i_{2}$, we have

$$
\frac{r+i_{1}}{r+i_{2}}=q
$$

so

$$
r=\frac{i_{1}-q i_{2}}{q-1}
$$

is rational since $i_{1}, i_{2}$ are integers.
Corollary 1. If $A=\{r+i\}$ is contained in a product set B.B with $|B|=n$ and $|A|>n^{3 / 2}$ then it consists of rational numbers.

Proof. The claim follows from the well-known fact that a graph with more than $n^{3 / 2}$ edges contains a 4 -cycle $\left(^{2}\right)$ together with Lemma 5 .

$$
\left(^{2}\right) \text { In fact, ex }\left(n, C_{4}\right) \leq \frac{n}{4}(1+\sqrt{4 n-3}) \text { (see 回). }
$$

While the condition that all elements in $A$ are rational is strong, it still does not guarantee that elements in $B$ are rational as well, so some additional tweaks are needed in order to invoke Theorem 1. We will construct a slightly different set $B^{\prime}$ of only rational numbers such that $B^{\prime}$. $B^{\prime}$ contains $A$. Our main observation is the following.

Lemma 6. Assume $A$ consists of rational numbers. Then if $b_{i}$ and $b_{j}$ are connected in $G$ by a path of even length, the quotient $b_{i} / b_{j}$ is rational. If they are connected by a path of odd length, the product $b_{i} b_{j}$ is rational.

Proof. Indeed, if there is a path $L=\left\langle b_{i} b_{i+1} \ldots b_{i+2 k+1}=b_{j}\right\rangle$ of even length we have

$$
\begin{equation*}
\frac{b_{i}}{b_{j}}=\frac{\left(b_{i} b_{i+1}\right)\left(b_{i+2} b_{i+3}\right) \ldots\left(b_{i+2 k-1} b_{i+2 k}\right)}{\left(b_{i+1} b_{i+2}\right) \ldots\left(b_{i+2 k} b_{i+2 k+1}\right)} \tag{6}
\end{equation*}
$$

which is rational. The second claim follows in exactly the same way.
Our next step is to make elements in $B$ rational while preserving the property that $A$ is contained in $B . B$. Remember that from the very beginning we assume our graph $G$ is simple bipartite (which one can always do without loss of generality).

Lemma 7. Let $A$ be a subset of $B . B$ consisting of only rational numbers and suppose the corresponding incidence graph $G$ is bipartite. Then there is a set $B^{\prime}$ of rational numbers of size $|B|$ such that $A \subset B^{\prime} . B^{\prime}$.

Proof. Let $K_{1}, \ldots, K_{l}$ be the connected components of the bipartite graph $G$. We will treat them separately one by one. So let $K$ be one of the components. As $K$ does not contain odd cycles, we can color its vertices black and white so that there are edges only between white and black vertices.

By Lemma 6 the quotient $b_{i} / b_{j}$ is rational for the vertices of the same color, and so is the product of any two vertices of different color. Thus, we can take an arbitrary white element $b_{w}$ from $K$ and modify our set $B$ as follows:

- For all white $b \in K$ set $b:=b / b_{w}$.
- For all black $b \in K$ set $b:=b b_{w}$.

As $K$ is bipartite, this procedure will keep the set $A$ unchanged. On the other hand, it makes all the elements in $K$ rational.

Iterating the procedure above for all components, we finally obtain the set $B^{\prime}$ with the desired properties.

Proof of Theorem 3. Now the theorem follows as an immediate corollary of Corollary 1 and Theorem 1 since multiplying our new set $B^{\prime}$ by a sufficiently composite number we obtain a set of integers whose product set contains an arithmetic progression of the same length. It remains to note
that by taking absolute values of $B^{\prime}$ the longest arithmetic progression in $B^{\prime} . B^{\prime}$ can be shortened by a factor of at most two.
5. Discussion. The motivation for asking how long an arithmetic progression in a product set can be stems from the question of Hegarty 6].

Question 1. Let $B$ be a set of $n$ integers and let $A$ be a strictly convex (or strictly concave) subset of $B+B$. Must $|A|$ be o $\left(n^{2}\right)$ ?

Recall that a sequence of numbers $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is called strictly convex (resp. concave) if the consecutive differences $a_{i}-a_{i-1}$ are strictly increasing (resp. decreasing).

It is not difficult to see that it does not matter whether the numbers in Question 1 are reals or integers. Now suppose that $B=\left\{\log b_{i}^{\prime}\right\}$ for some $b_{i}^{\prime}$, so $B+B=\left\{\log \left(b_{i}^{\prime} b_{j}^{\prime}\right)\right\}$. If $B^{\prime} . B^{\prime}=\left\{b_{i}^{\prime} b_{j}^{\prime}\right\}$ contains a long arithmetic progression, we immediately obtain a convex set of the same size in $B+B$. If we assume that $b_{i}^{\prime}$ are natural numbers then Theorem 1 shows that the longest convex set we can possibly get in this way is of size $O\left(n^{1+o(1)}\right)$. Apart from Hegarty's original inquiry, we now ask the following question that might be simpler.

Question 2. Can one construct an example of a set of size $n$ such that the sumset $B+B$ contains a convex (or concave) set of size $n^{1+\delta}$ for some $\delta>0$ and arbitrarily large $n$ ?

Remark. Erdős and Newman [2] gave an example of a set $B$ of size $n / \log ^{M} n$ such that $B+B$ covers $\left\{1,2^{2}, \ldots, n^{2}\right\}$ for arbitrary $M>0$, which is better than our construction above, but still this lower bound is very weak.

Remark. Erdős and Pomerance [3] asked if it is true that for a large enough $c$, every interval of length $c n$ contains a number divisible by precisely one prime in $(n / 2, n]$. While the question remains open, a positive answer would give an essentially sharp upper bound $O(n \log n)$ for Theorem 1 .

An obvious direction of research is to match the bound for the case of complex numbers to the one of Theorem 1. Moreover, we believe that the lower bound $O(n \log n)$ is sharp for Theorem 1 and perhaps for Theorem 3 as well.

Another interesting twist is to ask the question of the current note for subsets of finite fields $\mathbb{F}_{p}$. By a recent result of Grosu [5], the bound of Theorem 3 translates to subsets $B \subset \mathbb{F}_{p}$ of size $O(\log \log \log p)$. While there are sets $B$ of size $O(\sqrt{p})$ such that $B . B$ covers the whole field $\mathbb{F}_{p}$ and thus contains an AP of size $\Omega\left(|B|^{2}\right)$, we conjecture that for smaller sets the bound $|B|^{1+o(1)}$ holds.

Conjecture 1. There is an absolute constant $c>0$ such that for any $B \subset \mathbb{F}_{p}$ with $|B|<c \sqrt{p}$ the product set $B . B$ contains no arithmetic progression of size greater than $|B|^{1+o(1)}$. Here we assume $p$ and $|B|$ are large.

A lot of related questions arise if we continue the general idea of asking how large a set with additive structure can be if it is contained in a product set. For example, instead of arithmetic progressions one may ask about generalized arithmetic progressions or just sumsets of an arbitrary set.

Acknowledgements. I am grateful to my supervisor Professor Peter Hegarty for helpful discussions and constant support. I also thank Boris Bukh for comments during the poster session at the Erdős 100 conference in Budapest which helped to improve the exposition. Finally, I thank the anonymous referee for valuable comments and especially for pointing out that applying the result of Bondy and Simonovits [1] to our case actually gives a better bound than a more recent result of Lam and Verstraëte [7].

## References

[1] J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974), 97-105.
[2] P. Erdős and D. J. Newman, Bases for sets of integers, J. Number Theory 9 (1977), 420-425.
[3] P. Erdős and C. Pomerance, Matching the natural numbers up to $n$ with distinct multiples in another interval, Nederl. Akad. Wetensch. Proc. Ser. A 83 (1980), 147161.
[4] P. Erdős and E. Szemerédi, Sums and products of integers, in: Studies in Pure Mathematics, Birkhäuser, 1983, 213-218.
[5] C. Grosu, $\mathbb{F}_{p}$ is locally like $\mathbb{C}$, J. London Math. Soc. (2014) (online).
[6] P. Hegarty, http://mathoverflow.net/questions/106817/convex-subsets-of-sumsets
[7] T. Lam and J. Verstraëte, A note on graphs without short even cycles, Electron. J. Combin. 12 (2005), note 5, 6 pp .
[8] I. Reiman, Über ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958), 269-273.
[9] J. Solymosi, Bounding multiplicative energy by the sumset, Adv. Math. 222 (2009), 402-408.

Dmitrii Zhelezov
Department of Mathematical Sciences
Chalmers University of Technology
and
University of Gothenburg
41296 Gothenburg, Sweden
E-mail: zhelezov@chalmers.se


[^0]:    2010 Mathematics Subject Classification: Primary 11B25.
    Key words and phrases: product sets, arithmetic progressions, convex sets.

[^1]:    $\left({ }^{1}\right)$ This is the only place where we use the technical bound $3^{k}<N / 9$, but as we will see later, this restriction does not affect the final bound, as $k$ is going to be $o(\log n)$.

