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Product sets cannot contain long arithmetic progressions

by

Dmitrii Zhelezov (Gothenburg)

1. Introduction. Sum-product estimates are among the most impor-
tant questions in modern additive combinatorics. In general, one wants
to show that if there is enough additive structure in a set A (for exam-
ple if it has small doubling constant |A+A|/|A|), then the product set
A.A = {aa′ | a, a′ ∈ A} is large. The most famous conjecture in this area,
posed by Erdős and Szemerédi [4], says that for any set A of complex num-
bers,

max(|A.A|, |A+A|) ≥ c|A|2−ε

for arbitrary ε > 0 and some c > 0 that may depend on ε. The state of
the art exponent 4/3 − o(1) was obtained by Solymosi in a very elegant
way [9]. It is worth noting that each new bound for the exponent required
a substantial new idea and attracted considerable attention from experts in
the field.

In this note we investigate a different sort of relationship between the
additive structure and the size of a product set. Namely, we show that
a product set cannot contain extremely long arithmetic progressions. The
result is the following.

Theorem 1. Suppose that B is a set of n natural numbers. Then the
longest arithmetic progression inB.B has length at mostO(n log2 n/log log n).

A lower bound is provided by

Theorem 2. Given an integer n > 0 there is a set B of n natural num-
bers such that B.B contains an arithmetic progression of length Ω(n log n).

In the fourth section of this note we will extend Theorem 1 to sets of
complex numbers, but with a considerably weaker bound O(n3/2).
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2. Notation. Let f, g : N → R+. The following standard notation will
be used:

• f(n) = O(g(n)) means that lim supn→∞ f(n)/g(n) <∞.
• f(n) = Ω(g(n)) means that g(n) = O(f(n)).
• Let H be a fixed graph. Then ex(n,H) denotes the maximal number

of edges among all graphs with n vertices which do not contain H as
a subgraph. In particular, ex(n,Ck) denotes the maximal number of
edges in a graph with n vertices and no cycles of length k.
• Let p be a prime. Then d = ordp(n) denotes the maximal power of p

such that pd |n.

3. Main result. Let A = {r + di}, i = 0, . . . , N , be an arithmetic
progression in the product set B.B of a set B of size n. We start with
the observation that by taking absolute values of B the longest arithmetic
progression in B.B can be shortened by a factor of at most two, so we may
assume that all elements in B are positive.

We proceed with the following technical lemma.

Lemma 1. We may assume that A = {D(r′ + d′i)} for some D > 0
such that gcd(d′, Dr′) = 1.

Proof. Let p be a prime such that ordp(d) > ordp(r). If there is no such
p then D = gcd(r, d), d′ = d/D, r′ = r/D provides the desired factorization.
If k′ = ordp(r) = 1 then every number in A is a product bibj such that p | bi
but p - bj and thus we can reduce B to

B′ = {bi | bi ∈ B, p - bi} ∪ {bi/p | bi ∈ B, p | bi}
and iterate the lemma again.

So, now we assume that k = ordp(d) > k′ > 1. We divide B into three
sets B1, B2, B3 such that bi ∈ B1 if p - bi, bi ∈ B2 if 0 < ordp(bi) < k′

and finally bi ∈ B3 if pk
′ | bi. Since ordp(d) > k′ for every a ∈ A we have

ordp(a) = k′ and a can be either a product of two numbers from B2 or a
product b1b3 where b1 ∈ B1 and b3 ∈ B3. Thus, we can reduce B to

B′ = {bi | bi ∈ B1} ∪ {bi/p | bi ∈ B2} ∪ {bi/p2 | bi ∈ B3}
such that B′.B′ contains an arithmetic progression A/p2 of the same length
as A, and then iterate the lemma.

From now on we will assume the factorization A = {D(r + di)} such
that gcd(Dr, d) = 1. By N we will always denote the length of A and
ak = D(r + dk) will be the kth element of A (if not stated explicitly).

Lemma 2. For i 6= j,

gcd(ai, aj) ≤ DN.
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Proof. For i > j we have

gcd(ai, aj) = gcd(ai − aj , aj) = gcd(Dd(i− j), D(di+ r))

= D gcd(d(i− j), di+ r) = D gcd(i− j, di+ r) ≤ DN.

The last equality follows from gcd(d,Dr) = 1.

Let us fix a single pair bi, bj ∈ B for each a ∈ A such that bibj = a and
make a graph G with b ∈ B as vertices, such that for every a ∈ A there is a
unique edge between bi and bj which has been previously fixed for such a (for
each edge we can simply take the first representation of a in lexicographical
order). We will have n = |B| = |V (G)| and N = |A| = |E(G)|. It turns
out that our further analysis significantly simplifies if G is simple (without
loops) and bipartite. However, we can always achieve this sacrificing just a
constant factor by simply taking two copies of B, say B1 and B2, that are
going to be the color classes of G, such that for each edge e = 〈bi, bj〉 ∈ G,
i ≤ j, we place an edge between bi ∈ B1 and bj ∈ B2, so the resulting graph
is bipartite and simple.

As we will see from our example, which provides a lower bound N =
Ω(n log n), it is safe to assume N > 2n, a very weak yet convenient bound,
as it guarantees, for example, that G contains a cycle.

Lemma 3. If G contains an even cycle of size 2k, then r ≤ Nk and
d ≤ Nk.

Proof. Let C = b1 . . . b2k be a simple cycle in G of length 2k ≤ n, so
bibi+1 ∈ A, i = 1, . . . , 2k (hereafter we assume addition of indices modulo
2k). By simple algebra we have

(1) b2kb1 =
b1b2
b2b3

b3b4
b4b5

· · · b2k−3b2k−2
b2k−2b2k−1

b2k−1b2k,

and since for each i there is some j such that bibi+1 = D(r + jid) we can
rewrite (1) as

(2)

k∏
i=1

(r + j2id) =

k∏
i=1

(r + j2i−1d),

where all ji are distinct (since for every a ∈ A we have chosen only a single
representation). Expanding the brackets, we obtain the equation

(3) c0r
k + c1r

k−1d+ · · ·+ ck−1rd
k−1 + ckd

k = 0

for integer coefficients ci which depend only on indices j. First, let us note
that it cannot happen that all ci are zero since then (2) would hold for
any r, d, which contradicts the fact that all js are distinct. Let l and m be
respectively the smallest and largest indices such that cl, cm 6= 0. Obviously,
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l < m and dividing (3) by rldk−m we arrive at

(4) clr
m−l + · · ·+ cmd

m−l = 0.

Since r and d are coprime, r | cm and d | cl (all the terms in the middle are
divisible by rd), and the claim of the lemma follows if the bound ci ≤ Nk

holds for all coefficients. But on the other hand, ct is a sum of 2
(
k
t

)
t-fold

products of js. Since each index j is less than N , for t ≤ k/2 we have

ct ≤ 2ktN t < ntN t < Nk,

and analogously, for t ≥ k/2,

ct ≤ 2kk−tN t < nk−tN t < Nk.

Here we used the trivial bound 2k ≤ n.

Lemma 4. If d < Nk, r < Nk, 3k < N/9 then N ≤ 36kn log n for
sufficiently large n.

Proof. Suppose for contradiction thatN>36(k+1)n log n. Let p1, . . . , pK
be primes such that N/3 < pi < N/2 and pi - d. By the Prime Number The-
orem there are more than N/(6 logN) > 3(k+ 1)n primes in [N/3, N/2] (1)
(for N large enough) and at most k of them may divide d (since d < Nk

and 3k+1 < N), so K > 3(k + 1)n.

Recall the graph G with b ∈ B as vertices and edges that correspond to
the relation bibj ∈ A, with each representation of a ∈ A being unique. Let
us call an edge of G regular if

gcd(bibj/D, p1 . . . pK) = 1,

or, in words, if bibj does not have any additional power of the aforementioned
p1, . . . , pK in its prime decomposition. Otherwise, if ordp(bibj) > ordp(D)
let us call an edge (bi, bj) p-irregular. Further, by an “irregular edge”, we
mean an edge that is p-irregular for at least one p ∈ {p1, . . . , pK}. Note that
it can be irregular for some primes, but regular with respect to others.

Let p ∈ PK = {p1, . . . , pK}. Since p - d, dj covers the full system of
residues modulo p when j goes from 0 to N . Hence, since p ∈ [N/3, N/2],
there are either two or three indices j such that p | dj + r, and thus two or
three p-irregular edges in G.

By the pigeonhole principle, we can pick a set S of at least n+1 distinct
irregular edges such that for every p ∈ PK there is at most one p-irregular
edge in S. Indeed, every element in A can have at most k+ 1 divisors in PK
(due to the bounds d < Nk, r < Nk we have r + id < Nk+1 for 0 ≤ i ≤ n).
On the other hand, each p ∈ PK divides at most three elements in A.

(1) This is the only place where we use the technical bound 3k < N/9, but as we will
see later, this restriction does not affect the final bound, as k is going to be o(logn).
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The next step is to clean up our original graph G by removing all edges
except those not in S. We will refer to the resulting graph as G′. Of course,
it is simple and bipartite as was G. Now we claim that it contains no cycles.
Indeed, let ep be a (unique) p-irregular edge in G′ and ep = a1 . . . a2l be a
cycle it lies on (of course, here indices of a’s indicate just the ordering in
the cycle, not in A). Note that now we write the cycle as a set of edges
rather than vertices, meaning that ai ∈ A and each ai is a product of two
consecutive vertices of the cycle. Thus, arguing exactly as in Lemma 3 it is
easy to see that ∏

i odd

ai =
∏
i even

ai.

But this cannot happen. Indeed, for each ai 6= ep = a1 we have ordp(ai) =
ordp(D) since ep is the only p-irregular edge in G′, and the p-order of the
RHS is strictly less than that of the LHS. Thus, G′ cannot contain more
than n edges, a contradiction.

Putting it all together, we obtain the main result of this note.

Proof of Theorem 1. If G does not contain even cycles of length up to 2k
the result of Bondy and Simonovits [1] from extremal combinatorics gives

(5) N ≤ ex(n,C2k) < 100kn1+1/k.

But otherwise Lemmas 3 and 4 apply and we obtain N � (k+ 1)n log n, so
finally we have

N ≤ O(max{kn1+1/k, kn log n}).

This can be optimized by taking k = log n/log logn, which gives the desired
bound N = O(n log2 n/log logn).

Now we present a construction for the lower bound of Theorem 2.

Proof of Theorem 2. Consider a set B which consists of all natural num-
bers from 1 to n plus all primes in the interval [n, bn log nc]. By the Prime
Number theorem, |B| ≤ 2n for large n and B.B contains all natural num-
bers in the interval [1, bn log nc] which is an arithmetic progression of size
Ω(n log n).

Indeed, suppose x ∈ [n, bn log nc]. If the maximal prime p that divides
x is greater than log n, then x/p ≤ n and x = p · xp is clearly in B.B,

since all primes in the interval [1, bn log nc] are in B. Otherwise, we run
the following algorithm. Let p1 be an arbitrary prime divisor of x and set
d1 = p1, d2 = x/p1. Then choose the smallest prime divisor p′ of d2, set
d1 := d1p

′, d2 := d2/p
′ and iterate this procedure until d2 = 1. If there is

a moment when both d1, d2 ≤ n then of course x ∈ B.B and we are done.
Otherwise, at some step d1 < n, d2 > n, but d1p

′ > n, d2/p
′ < n. But since
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every prime divisor of x is less than log n we have

x = d1d2 ≥ n2/log n,

which contradicts x ∈ [n, bn log nc].

4. The case of complex numbers

Theorem 3. Suppose that B is a set of n complex numbers. Then the
longest arithmetic progression in B.B has length at most O(n3/2).

Our strategy will be to show that if B.B contains an arithmetic pro-
gression A of size Ω(n3/2) then in fact one can take a new set B′ of only
rational numbers, perhaps twice as big as the original set B, such that B′.B′

contains a progression of the same length. Unfortunately, we can prove that
such a reduction exists only if the arithmetic progression A in the original
set has length at least Ω(n3/2), so the resulting bound is much weaker than
what Theorem 1 gives for sets of natural numbers.

So let A = {r + di} be an arithmetic progression of length N in B.B.
The first step is to scale A by simply dividing each element in B by

√
d, and

from now on we will assume that A = {r + i}.
Recall the graph G which provides a one-to-one correspondence between

elements of A and its edges, namely an edge ea = 〈bi, bj〉 corresponds to the
element a = bibj .

Lemma 5. If G contains a 4-cycle then r is rational and so are all
elements of A = {r + i}.

Proof. Let 〈b1b2b3b4〉 be a 4-cycle in G. Then both b1(b2 − b4) and
b3(b2 − b4) are non-zero integers as they are differences of two distinct el-
ements of A. Thus, b1/b3 is rational, and so is q = b1b2/b2b3 6= 1. On the
other hand, writing b1b2 = r + i1 and b2b3 = r + i2, we have

r + i1
r + i2

= q,

so

r =
i1 − qi2
q − 1

is rational since i1, i2 are integers.

Corollary 1. If A = {r + i} is contained in a product set B.B with
|B| = n and |A| > n3/2 then it consists of rational numbers.

Proof. The claim follows from the well-known fact that a graph with
more than n3/2 edges contains a 4-cycle (2) together with Lemma 5.

(2) In fact, ex(n,C4) ≤ n
4

(1 +
√

4n− 3) (see [8]).



Product sets arithmetic progressions 305

While the condition that all elements in A are rational is strong, it still
does not guarantee that elements inB are rational as well, so some additional
tweaks are needed in order to invoke Theorem 1. We will construct a slightly
different set B′ of only rational numbers such that B′.B′ contains A. Our
main observation is the following.

Lemma 6. Assume A consists of rational numbers. Then if bi and bj
are connected in G by a path of even length, the quotient bi/bj is rational.
If they are connected by a path of odd length, the product bibj is rational.

Proof. Indeed, if there is a path L = 〈bibi+1 . . . bi+2k+1 = bj〉 of even
length we have

(6)
bi
bj

=
(bibi+1)(bi+2bi+3) . . . (bi+2k−1bi+2k)

(bi+1bi+2) . . . (bi+2kbi+2k+1)
,

which is rational. The second claim follows in exactly the same way.

Our next step is to make elements in B rational while preserving the
property that A is contained in B.B. Remember that from the very begin-
ning we assume our graph G is simple bipartite (which one can always do
without loss of generality).

Lemma 7. Let A be a subset of B.B consisting of only rational numbers
and suppose the corresponding incidence graph G is bipartite. Then there is
a set B′ of rational numbers of size |B| such that A ⊂ B′.B′.

Proof. Let K1, . . . ,Kl be the connected components of the bipartite
graph G. We will treat them separately one by one. So let K be one of
the components. As K does not contain odd cycles, we can color its ver-
tices black and white so that there are edges only between white and black
vertices.

By Lemma 6 the quotient bi/bj is rational for the vertices of the same
color, and so is the product of any two vertices of different color. Thus, we
can take an arbitrary white element bw from K and modify our set B as
follows:

• For all white b ∈ K set b := b/bw.
• For all black b ∈ K set b := bbw.

As K is bipartite, this procedure will keep the set A unchanged. On the
other hand, it makes all the elements in K rational.

Iterating the procedure above for all components, we finally obtain the
set B′ with the desired properties.

Proof of Theorem 3. Now the theorem follows as an immediate corol-
lary of Corollary 1 and Theorem 1 since multiplying our new set B′ by a
sufficiently composite number we obtain a set of integers whose product set
contains an arithmetic progression of the same length. It remains to note
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that by taking absolute values of B′ the longest arithmetic progression in
B′.B′ can be shortened by a factor of at most two.

5. Discussion. The motivation for asking how long an arithmetic pro-
gression in a product set can be stems from the question of Hegarty [6].

Question 1. Let B be a set of n integers and let A be a strictly convex
(or strictly concave) subset of B +B. Must |A| be o(n2)?

Recall that a sequence of numbers A = {a1, . . . , an} is called strictly
convex (resp. concave) if the consecutive differences ai − ai−1 are strictly
increasing (resp. decreasing).

It is not difficult to see that it does not matter whether the numbers
in Question 1 are reals or integers. Now suppose that B = {log b′i} for
some b′i, so B+B = {log(b′ib

′
j)}. If B′.B′ = {b′ib′j} contains a long arithmetic

progression, we immediately obtain a convex set of the same size in B +B.
If we assume that b′i are natural numbers then Theorem 1 shows that the
longest convex set we can possibly get in this way is of size O(n1+o(1)).
Apart from Hegarty’s original inquiry, we now ask the following question
that might be simpler.

Question 2. Can one construct an example of a set of size n such that
the sumset B +B contains a convex (or concave) set of size n1+δ for some
δ > 0 and arbitrarily large n?

Remark. Erdős and Newman [2] gave an example of a set B of size
n/logM n such that B+B covers {1, 22, . . . , n2} for arbitrary M > 0, which
is better than our construction above, but still this lower bound is very
weak.

Remark. Erdős and Pomerance [3] asked if it is true that for a large
enough c, every interval of length cn contains a number divisible by precisely
one prime in (n/2, n]. While the question remains open, a positive answer
would give an essentially sharp upper bound O(n log n) for Theorem 1.

An obvious direction of research is to match the bound for the case of
complex numbers to the one of Theorem 1. Moreover, we believe that the
lower bound O(n log n) is sharp for Theorem 1 and perhaps for Theorem 3
as well.

Another interesting twist is to ask the question of the current note for
subsets of finite fields Fp. By a recent result of Grosu [5], the bound of
Theorem 3 translates to subsets B ⊂ Fp of size O(log log log p). While there
are sets B of size O(

√
p) such that B.B covers the whole field Fp and thus

contains an AP of size Ω(|B|2), we conjecture that for smaller sets the bound
|B|1+o(1) holds.
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Conjecture 1. There is an absolute constant c > 0 such that for any
B ⊂ Fp with |B| < c

√
p the product set B.B contains no arithmetic progres-

sion of size greater than |B|1+o(1). Here we assume p and |B| are large.

A lot of related questions arise if we continue the general idea of asking
how large a set with additive structure can be if it is contained in a product
set. For example, instead of arithmetic progressions one may ask about
generalized arithmetic progressions or just sumsets of an arbitrary set.
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[2] P. Erdős and D. J. Newman, Bases for sets of integers, J. Number Theory 9 (1977),
420–425.
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