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1. Introduction. A classical technique for constructing quadratic num-
ber fields with class number divisible by n is studying integral solutions of
the equation

(1.1) X2 −∆Y 2 = 4Zn, gcd(X,Z) = 1, ∆ a fundamental discriminant.

For each integral point (X,Y, Z) we can form the ideal

a =
(
X + Y

√
∆

2
, Z

)
in the ring of integers of Q(

√
∆ ); the ideal a has norm |Z| and satisfies

an =
(
X+Y

√
∆

2

)
, hence generates an ideal class of order dividing n.

It seems that P. Joubert [6] was the first to observe that a class of prime
order n in the group of binary quadratic forms with negative discriminant ∆
implies the solvability of the equation (1.1); Joubert used techniques from
the theory of complex multiplication to exploit this observation. Nagell [11]
later used (1.1) to prove the existence of infinitely many complex quadratic
number fields with class number divisible by n. By extending Nagell’s ap-
proach, Yamamoto [13] was able to prove the existence of infinitely many
real quadratic number fields with class number divisible by n.

The same approach was further extended by various authors; we mention
in particular Craig [4].

In this article, we interpret (1.1) as an affine surface and show that a
certain subset Sn(Z) of the integral points on (1.1) can be given a group
structure in such a way that

(a) the integral points on the hyperplane Z = 1, which lie on the Pell
conic X2 −∆Y 2 = 4, form a subgroup with respect to the classical
group structure on Pell conics (see [7, 8, 9]);
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(b) there is a surjective group homomorphism Sn(Z) → Cl+(K)[n] to
the n-torsion of the narrow class group of K = Q(

√
∆ ).

These results explain the success of Yamamoto’s approach, and at the same
time raise a few new problems that we do not yet fully understand. The
rational points on the surface lying on the hyperplane Y = 1 form (the
affine part of) a hyperelliptic curve E : X2 = 4Zn + ∆; in the case n = 3,
this is an elliptic curve. Although the integral points on E do not form a
group in general, it was observed by Buell [2, 3] and Soleng [12] that the
integral points on E (and, more generally, certain rational points satisfying
some technical conditions) give ideal classes of order dividing 3 in such a
way that the map from E to the 3-class group respects the group law on the
elliptic curve, i.e., that collinear points get mapped to classes whose product
is trivial. Bölling [1] has extended Buell’s results [2, 3] to the hyperelliptic
curves lying on the surface (1.1).

Fig. 1. Top: Different views of S3 for some ∆ > 0 showing cross-sections Z = 1, a Pell
conic on the left, and Y = 1, an elliptic curve on the right. Bottom: The corresponding
curves in the XY and XZ planes respectively.

Although we will see below that the group law (1) is best understood by
using ideals in quadratic number fields, the explicit addition formulas are
tied closely to the composition of binary quadratic forms. For this reason,
we replace the equation (1.1) of the surface by Q0(X,Y ) = Zn, where Q0 is
the principal form with discriminant ∆ defined below. For a brief introduc-
tion to the composition of binary quadratic forms via Bhargava’s cubes see

(1) The group law on Pell surfaces was discovered by the first author, as was the
homomorphism to the class group.
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Fig. 2. Different views of S3 for some ∆ < 0 showing cross sections as in Figure 1

Lemmermeyer [10]; more details along more classical lines can be found in
Flath [5].

2. Primitive points on Pell surfaces. Let ∆ be a fundamental dis-
criminant (the discriminant of a quadratic number field). The principal form
with discriminant ∆ is defined by

Q0(x, y) =
{
x2 −my2 if ∆ = 4m,
x2 + xy −my2 if ∆ = 4m+ 1.

By Q = (a, b, c) we denote the binary quadratic form ax2 + bxy+ cy2. Such
a form Q represents an integer d if Q(x, y) = d for some integers x, y; it is
said to represent d primitively if, in addition, gcd(x, y) = 1.

An integral point (A,B,C) on the Pell surface

(2.1) Sn : Q0(B,C) = An

is called primitive if gcd(B,C) = 1. The set of primitive points on Sn will
be denoted by Sn(Z).

Now consider (1.1) and map a point (A,B,C) on the Pell surface (2.1)
to a point (X,Y, Z) on (1.1) by setting

(X,Y, Z) =
{

(2B,C,A) if ∆ = 4m,
(2B + C,C,A) if ∆ = 4m+ 1.

This clearly gives a bijection between the integral points on these surfaces. In
addition, Yamamoto’s condition gcd(X,Z) = 1 is easily seen to be equivalent
to the primitivity of (A,B,C), that is, to gcd(B,C) = 1.
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3. The group law. Let O denote the ring of integers of the quadratic
number field Q(

√
∆). There is a natural map π0 : Sn(Z) → O defined by

π0(A,B,C) = B + Cω, where

ω =
σ +
√
∆

2
,

and σ ∈ {0, 1} is defined by ∆ = 4m + σ. The elements in the image
of π0 have the property that their norms are nth powers: N(π0(A,B,C)) =
Q0(B,C) = An.

Consider the set O∗ of nonzero elements in O and its subset N of nonzero
natural numbers. The set O∗/Nn, using Nn to refer to positive integers which
are nth powers, is a group with respect to multiplication: the neutral element
is 1Nn, the inverse of αNn is α−1|N(α)|nNn (the element |Nα|/α is, up to
sign, simply the conjugate α′ of α, and so belongs to O∗). The norm map
induces a group homomorphism N : O∗/Nn → Z∗/Z∗n, where Z∗ = Z \ {0}
and N denote the monoids of nonzero and of positive integers, respectively.

Observe that if α, β ∈ O∗ are primitive (this means that p - α for all
primes p ∈ N) and αNn · βNn = γNn, then in general γ cannot be chosen
to be primitive. An example is provided by α = 3 +

√
3 and β =

√
3, where

γ = 3+3
√

3; here γNn is not generated by a primitive element for any n ≥ 2.
On the other hand we shall prove below

Proposition 3.1. The cosets of primitive elements in the kernel of the
norm map N : O∗/Nn → Z∗/Z∗n form a subgroup Πn of O∗/Nn.

This fact allows us to prove that there is a bijective map π : Sn(Z)→ Πn

given by π(A,B,C) = (B+Cω)Nn; using this bijection we can make Sn(Z)
into an abelian group. The situation is summed up by the following diagram:

Sn(Z) π−−−−→
'

Πny
1 −−−−→ kerN −−−−→ O∗/Nn N−−−−→ Z∗/Z∗n

Theorem 3.2. The map π : Sn(Z) → Πn is bijective; thus Sn(Z) be-
comes an abelian group by transport of structure.

Proof. Injectivity. Assume that there are elements (A,B,C), (A′, B′, C ′)
∈ Sn(Z) with π(A,B,C) = π(A′, B′, C ′). Then there exist a, b ∈ N with
(B + Cω)an = (B′ + C ′ω)bn, and the primitivity of B + Cω and B′ + C ′ω
implies that an and bn must be units. Since a, b ∈ N, this implies an = bn = 1.

Surjectivity. Assume that α = B + Cω is primitive with αNn ∈ Πn.
Then Nα = An for some number A ∈ Z∗ implies Q0(B,C) = An, hence
(A,B,C) ∈ Sn(Z) with π(A,B,C) = α.
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Observe that the neutral element of Sn(Z) is the point (A,B,C) =
(1, 1, 0), and that the inverse of (A,B,C) is given by

−(A,B,C) =
{

(A,B + σC,−C) if A > 0,
(A,−B − σC,C) if A < 0.

Observe also that the integral points on the Pell conic Q0(T,U) = 1,
which correspond to the points (1, T, U) on the Pell surface, inherit their
classical group structure since (T1 + U1ω)(T2 + U2ω) = T3 + U3ω, where
(T3, U3) = (T1T2 + mU1U2, T1U2 + T2U1) if ∆ = 4m and (T3, U3) =
(T1T2 + mU1U2, T1U2 + T2U1 + U1U2) if ∆ = 4m + 1. In fact, since the
elements αj = Tj + Ujω have norm 1, the element α3 = α1α2 is always
primitive.

For proving Proposition 3.1 we use the following characterization of prim-
itive elements:

Lemma 3.3. Let α ∈ O∗ be a nonzero element of the order O.

(a) α is primitive if and only if (α) + (α′) = d for some ideal d dividing
the product of all ramified primes.

(b) If Nα = an for some n ≥ 2, then α is primitive if and only if
(α) + (α′) = (1).

Proof. Assume first that α is primitive, let p be an unramified prime
ideal, and set (α) + (α′) = d. If we had p | d, then p | (α) and p′ | (α). Since
p is unramified, the prime p below p either splits (and then (p) = pp′), or
p = (p) is inert. In both cases we deduce that p | (α), which contradicts our
assumption that α be primitive.

Conversely, assume that d divides the product of all ramified primes.
If p | α for some prime p ∈ N, then p | α′, hence p | d. This shows that
(α) + (α′) is divisible either by an unramified prime ideal or by the square
of a ramified prime ideal, proving (a).

To prove (b), assume first that (α) + (α′) = (1); then (α) is primitive by
what we have already proved.

Finally, if Nα = an and α is primitive, then d is a product of ramified
prime ideals. But if p ‖α for some ramified prime ideal p above p, then
p ‖αα′ = an, and this is impossible for n ≥ 2.

Lemma 3.4. Let α be a primitive element. If αNn ∈ kerN , then (α) = an

is an nth ideal power. The converse holds if α is totally positive.

Proof. The claim is trivial for n = 1; assume therefore that n ≥ 2.
If α is primitive and Nα = an, Lemma 3.3 implies that α and α′ are

coprime. Now (α)(α′) = an implies that (α) = an is an nth ideal power.
Now assume that (α) = an. Then Nα = ±An for some positive integer A,

and since α is totally positive, we have Nα > 0.
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Proof of Proposition 3.1. Assume that α and β are primitive elements
representing cosets in the kernel of the norm map. Write αβ = γan with
γ ∈ O∗ and with a ≥ 1 maximal. We have to show that γ is primitive.

Assume not; then p | γ for some rational prime p. Since p - α and p - β
(by the primitivity of these elements), the prime p cannot be inert, and
there is a prime ideal p above p with p | (α) and p′ | (β). Since α and β are
nth ideal powers, we must have pkn ‖ (α) and p′kn ‖ (β), and this implies
pkn = (pp′)kn ‖ γan. By the maximality of a we must have pkn ‖ an, and this
implies p - γ.

Thus Πn is closed under multiplication; since the inverse of αNn is ±α′Nn

(with the sign chosen in such a way that α · (±α′) > 0), the set Πn forms a
subgroup of kerN .

Remark. The points with A = 1 on Sn form a subgroup of Sn(Z); such
points (1, B, C) correspond to units B + Cω ∈ O, and the group law is
induced by the usual multiplication of units. This shows that the group law
on the Pell conic Q0(B,C) = 1 coincides with the standard group law on
these curves.

4. The homomorphism Sn(Z) → Cl+(K)[n]. We have already re-
marked that the set Sn(Z) was used to extract information on the n-torsion
of the class group Cl(K) of the quadratic number field K = Q(

√
∆ ). Given

a point (A,B,C) ∈ Sn(Z), we know that α = B + Cω is an nth ideal
power: (α) = an. Sending α to the narrow ideal class of a we get a map
c : Sn(Z) → Cl+(K)[n] from Sn(Z) to the group of ideal classes (in the
strict sense) in K whose order divides n:

Proposition 4.1. The map

c : Sn(Z)→ Cl+(K)[n]

is a surjective group homomorphism.

Proof. Proving that c is a group homomorphism is easy: let Pj =
(Aj , Bj , Cj) ∈ Sn(Z) with P1 ⊕ P2 = P3, and put αj = Bj + Cjω. Then
(αj) = anj , and α1Nn · α2Nn = α3Nn for some α3 that differs from α1α2 by
the nth power of some positive integer a. This implies that an1an2 = an3 · an,
hence c(P1)c(P2) = c(P1 ⊕ P2) as claimed.

To prove that c is onto, consider the narrow ideal class [a] ∈ Cl+(K)[n]
for some ideal a coprime to the discriminant. Then an = (α) for some
α = B + Cω. We claim that we can choose a in such a way that α is
primitive. In fact, let p be a prime dividing B and C. If p is inert, then
a = pb, and replacing a by b does not change the ideal class. If (p) = pp′ is
split, then we must have p | a and p′ | a, so again a = pb. Since a is coprime to
the discriminant, ramified prime ideals do not divide a. Since (α) is principal
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in the strict sense, we have An = Nα > 0; writing α = B + Cω we find
(A,B,C) ∈ Sn(Z) as claimed.

Observe that S+
n (Z), the subset of all (A,B,C) ∈ Sn(Z) with A > 0,

forms a subgroup of Sn(Z), and that the proof above shows that the natural
map S+

n (Z)→ Cl+(K)[n] is surjective.
It is in general difficult to tell whether a point (A,B,C) ∈ Sn(Z) gives

rise to an element of exact order n or not, or more generally, whether two
points generate independent elements. In the following, we shall briefly recall
the criterion used by Yamamoto.

To this end, we introduce a natural homomorphisms between the groups
Sn(Z):

Proposition 4.2. Assume that m |n; then there is a group homomor-
phism

ιm→n : Sm(Z)→ Sn(Z).

In order to avoid a problematic case, we let S1(Z) denote the set of all
primitive points (A,B,C) such that gcd(A,∆) = 1; equivalently, B +Cω is
primitive and not divisible by any ramified prime ideal.

Proof. Assume that (A,B,C) ∈ Sm(Z). With α = B + Cω we have
(α) = am; setting n = km, we find (αk) = an, hence N(αk) = (Am)k = An.
Observe that αk is primitive if α is, except possibly when m = 1 and α is
divisible by a ramified prime.

Setting αk = B′ + C ′ω, we have (A,B′, C ′) ∈ Sn(Z). Since the map
ιm→n sending (A,B,C) to (A,B′, C ′) is compatible with the group structure
(in fact: if (B1 + C1ω)am1 · (B2 + C2ω)am2 = (B3 + C3ω)am3 , then raising
this equation to the kth power shows that (B′1 + C ′1ω)an1 · (B′2 + C ′2ω)an2 =
(B′3 + C ′3ω)an3 ), the claim follows.

As an example, consider the surface B2 + BC + 6C2 = A3; using the
point (6, 1,−1) on S1(Z) we find (1 − ω)3 = −11 + 5ω, which gives us the
point (6,−11, 5) ∈ S3(Z).

It is desirable to have criteria for deciding whether a point P ∈ Sn(Z) is
actually a newpoint, i.e., does not come from Sm(Z) for some proper divisor
m of n.

Proposition 4.3. Assume that ∆ < −4. If P = (A,B,C) ∈ Sn(Z) and
n = mp for some odd prime p, then P = ιm→n(Q) for some Q ∈ Sm(Z)
implies that 2B + σC is a pth power modulo q for every prime q |A.

Proof. Let α = B + Cω and (α) = an. If P = ιm→n(Q) for some Q ∈
Sm(Z), then am = (β) for β = b + cω and Q = (A, b, c). Thus α = ±βp =
(±β)p is a pth power. Let q be a prime dividing A; then (q) = qq′ splits in k,
and we have β ∈ q′ and β′ ∈ q.
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If ∆ = 4m, then b ≡ c
√
m mod q, hence β = b + c

√
m ≡ 2b mod q,

α = B + C
√
m ≡ 2B mod q, and so 2B ≡ α = βp ≡ (2b)p mod q. This

implies 2B ≡ (2b)p mod q as claimed.
Now assume that∆= 4m+1. Then b+cω′∈q shows that b+ c≡ cω mod q

(since ωω′ = 1), hence 2B + C ≡ B + Cω = (b+ cω)p ≡ (2b+ c)p mod q.

This criterion is not very strong; it does not detect that the points (2, 1, 1)
or (3, 1, 2) on S3 : B2 +BC + 6C2 = A3 are newpoints. On the other hand,
(13, 37, 6) must be a newpoint since 80 = 2 · 37 + 6 is not a cube modulo 13.

5. Explicit formulas. Let us now make the group law on Sn(Z) explicit
by deriving addition formulas

(5.1) (A1, B1, C1)⊕ (A2, B2, C2) = (A3, B3, C3).

From the definition of the group law it is clear that such addition formu-
las must involve computations of greatest common divisors. The following
lemma contains the technical part of the proof:

Lemma 5.1. For points (Aj , Bj , Cj) ∈ Sn(Z), j ≤ 3, we set αj = Bj +
Cjω. Let d = (α1, α

′
2); then d = en is an nth ideal power, and with e = Ne,

we have

(5.2) gcd(B1B2 +mC1C2, B1C2 +B2C1 + σC1C2) = en.

Conversely, the gcd on the left hand side of (5.2) is an nth power, and if
(5.2) holds, then (α1, α

′
2) = en for an ideal e with norm e.

Fig. 3. From left to right, (3, 92, 13)⊕ (3, 17,−2)⊕ (9, 93,−11) = (1, 1, 0) on B2 +BC −
57C2 = A3.

Proof. Since (αj) = anj , the ideal d must be an nth power. From e | a1

and e | a′2 we deduce that (en) = (ee′)n | (α1α2), and now

α1α2 = (B1 + C1ω)(B2 + C2ω)(5.3)
= B1B2 + C1C2m+ (B1C2 +B2C1 + σC1C2)ω

implies en | gcd(B1B2 + C1C2m,B1C2 +B2C1 + σC1C2).
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If, conversely, p is a prime dividing d = gcd(B1B2 + C1C2m,B1C2 +
B2C1 + σC1C2), then the primitivity of Pj implies that (p) = pp′ must be
split in K = Q(

√
∆ ). If, say, p |α1, then the primitivity of α1 shows that

we must have p′ |α2 and therefore p′ |α′1. Thus if pm is the exact power
of p dividing d, then pm is the exact power of p dividing α1, and the fact
that (α1) is an nth ideal power shows that m must be a multiple of n. This
implies that

• d = en must be an nth power,
• (e) = ee′ is the norm of an ideal e, and
• en | (α1, α

′
2).

This completes the proof.

Now we can present the explicit formulas for adding points on Sn(Z):

Proposition 5.2. For (A1, B1, C1), (A2, B2, C2) ∈ Sn(Z) we have the
addition formula (5.1), where

A3 =
A1A2

e2
, B3 =

B1B2 +mC1C2

en
, C3 =

B1C2 +B2C1 + σC1C2

en
,

with e as in (5.2).

Proof. The group law is defined via α1Nn · α2Nn = α3Nn, where α3 is
required to be primitive. Equation (5.3) and Lemma 5.1 show that α3 =
α1α2/e

n. Taking norms yields An3 = An1A
n
2/e

2n, and this proves the claim.

6. From points to forms. Since there is a bijection between ideal
classes and equivalence classes of binary quadratic forms, we can also de-
scribe the group law in terms of forms. It turns out that the geometric aspect
of the description of the group law on Sn(Z) in terms of forms adds a lot
to our understanding of the arithmetic of Pell surfaces and Pell conics. For
this reason, we will now construct a map sending primitive points on Sn(Z)
to primitive quadratic forms with discriminant ∆.

Given (A,B,C) ∈ Sn(Z), consider the form

Q̃P = (A, 2B + σC,An−1).

In order to get positive definite forms if ∆ < 0 we now agree to replace Sn(Z)
by Sn(Z)+ in this case. It is easily checked that disc Q̃P = ∆C2; moreover,
Dirichlet composition immediately shows that Q̃nP is the principal form (with
discriminant ∆C2). To construct a form with discriminant ∆, we have to
“underive” Q̃P . This process replaces a form (a, b, c) with discriminant ∆C2

by an equivalent form (a′, b′C, c′C2), and then maps it to QP = (a′, b′, c′),
which is a primitive form with discriminant ∆. Mapping P ∈ Sn(Z) to
the equivalence class of the form QP turns out to be a homomorphism
Sn(Z)→ Cl+(∆)[n].
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Underiving Q̃P is accomplished by changing the middle coefficient mod-
ulo 2A in such a way that it becomes a multiple of C. To motivate the
following lemma, consider the equation 2B + 2Ak = 2βC; dividing through
by 2 and reducing mod A yields βC ≡ B mod A, and this congruence has a
unique solution. In this way we find

Lemma 6.1. Given a point P = (A,B,C) ∈ Sn(Z) with B2 − 4AC =
∆C2, let β be an integer satisfying the congruence β ≡ B/C mod A; then
β2 ≡ ∆ mod A. Define a quadratic form QP = (A, 2β + σ, γ) with γ =
Q0(β, 1)/A. Then QP is a primitive form with discriminant ∆, and QP is
positive definite if ∆ < 0.

Proof. The claim concerning β follows easily from β2 ≡ B2/C2 ≡
(B2 − 4AC)/C2 = ∆ mod A.

Assume now that ∆ = 4m, and set A = (A, 2B,An−1). From β ≡
B/C mod A we see that there is an integer k with βC = B + Ak. Setting
S =

(
1 k
0 1

)
we find Q′ = Q|S = (A, 2B′, C ′) with 2B′ = 2B + 2Ak = 2βC;

the integer C ′ is determined by (2B′)2 − 4AC ′ = ∆C2, which gives C ′ =
β2−m
A C2. Set γ = (β2 −m)/A; then the form Q1 = (A, 2β, γ) is primitive,

has discriminant ∆, and the fact that A > 0 implies that Q1 is positive
definite if ∆ < 0.

The proof in the case ∆ = 4m + 1 is analogous; here we find γ =
(β2 + β −m)/A.

Sending P 7→ QP defines a map b : Sn(Z)→ Cl+(∆) between two abelian
groups; we already know that the corresponding map to the ideal class group
is a homomorphism, and of course the same holds for form classes. We will
check the details below; now let us determine the kernel of b. To this end,
recall how we constructed b: to a point (A,B,C) ∈ Sn(Z) we have attached
a quadratic form Q̃P = (A, 2B + σC,An−1) with discriminant ∆C2; this
form Q̃P is equivalent to a form Q′P = (A, (2β + σ)C, γC2), and underiving
Q′P gave us QP = (A, 2β + σ, γ).

Now a point P = (A,B,C) ∈ Sn(Z) is in the kernel if and only if
QP ∼ Q0, which happens if and only ifQP represents 1. MultiplyingQP (x, y)
= 1 through by C2 this shows that Q′P (Cx, y) = C2 (conversely, this equa-
tion implies QP (x, y) = 1). But Q′P represents C2 properly if and only if the
equivalent form Q̃P does. Thus we have shown

Proposition 6.2. The kernel of the map b : Sn(Z) → Cl+(∆) con-
sists of all points (A,B,C) ∈ Sn(Z) with the following property: there exist
coprime integers T , U such that AT 2 + (2B + σC)TU +An−1U2 = C2.

To decide whether the point (2, 1, 1) on S3 : B2 + BC + 6C2 = A3 is in
the kernel of b we have to look at 2T 2 + 3TU + 4U2 = 1. This equation has
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solutions if and only if the form (2, 3, 4) with discriminant −23 represents 1,
hence is equivalent to the principal form Q0. This is not the case, since
(2, 3, 4) ∼ (2,−1, 6). We may also multiply the original equation through
by 8 and complete squares; this gives (4T + 3U)2 + 23U2 = 8. This equation
is clearly unsolvable in integers, but has rational solutions, such as (T,U) =
(0, 1/2), for example; this implies that we do not have a chance to show the
unsolvability of the equation using congruences or p-adic methods.

The map b : Sn(Z) → Cl+(∆) is a homomorphism. Consider a point
P = (A,B,C) on Sn(Z). We know that α = B + Cω = an for some ideal a
in the maximal order of K. To find the form attached to a we have to find an
oriented Z-basis {A, b+ω} of a. Let c be an integer such that cC ≡ 1 mod A;
then (A,B+Cω) = (A, cB+ cCω) = (A, β+ω), where β denotes an integer
in the residue class cB ≡ B/C mod A. It is easy to see that {A, β + ω} has
the desired properties; the form attached to a then is

Qa(x, y) =
N(Ax+ (β + ω)y)

A
= (A, 2β + σ, γ),

where γ = N(β + ω)/A = Q0(β, 1)/A. In particular, Qa = QP .
The map sending a to Qa is known to induce an isomorphism between

the ideal class group of Q(
√
∆ ) and the strict class group of forms with

discriminant ∆.
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