Function fields with 3-rank at least 2

by

Allison M. Pacelli (Williamstown, MA)

1. Introduction. It is well known that there are infinitely many quadratic number fields and function fields with class number divisible by a given integer n (see Nagell [15] (1922) for imaginary number fields, Yamamoto [22] (1969) and Weinberger [21] (1973) for real number fields, and Friesen [6] (1990) for function fields). A related question concerns the n-rank of the field, that is, the greatest integer r for which the class group contains a subgroup isomorphic to $(\mathbb{Z}/n\mathbb{Z})^r$. In [22], Yamamoto showed that infinitely many imaginary quadratic number fields have n-rank at least 2 for any positive integer $n \ge 2$. In 1978, Diaz y Diaz [3] developed an algorithm for generating imaginary quadratic fields with 3-rank 2, and Craig [2] showed in 1973 that there are infinitely many real quadratic number fields with 3-rank at least 2 and infinitely many imaginary quadratic number fields with 3-rank at least 3. A few examples of higher 3-rank have also been found (see for instance Llorente and Quer [14, 18] who found three imaginary quadratic number fields with 3-rank 6 in 1987/1988). In a recent paper [4], Erickson, Kaplan, Mendoza, Shayler, and the author gave infinite, simply parameterized families of real and imaginary quadratic fields with 3-rank 2. Here we give a function field analogue.

Note that Bauer, Jacobson, Lee, and Scheidler [1] have given algorithms which yield imaginary quadratic function fields with 3-rank at least 2 and a possibly empty set of imaginary quadratic function fields with 3-rank at least 3. The construction below yields infinitely many quadratic function fields, of any given signature, with 3-rank at least 2. See [9], [11], [12], [16], and [17] for constructions of function fields of arbitrary degree m with large n-rank for general n.

Throughout we let q be a power of an odd prime, $q \equiv 1 \pmod{3}$. We use $\operatorname{sgn}(f)$ to denote the leading coefficient of a polynomial $f \in \mathbb{F}_q[T]$, and we let $|f| = q^{\operatorname{deg}(f)}$ for $f \in \mathbb{F}_q[T]$. The main result is as follows.

2000 Mathematics Subject Classification: 11R29, 11R58.

Key words and phrases: 3-rank, class number, class group, quadratic field, function field.

DOI: 10.4064/aa139-2-1

THEOREM 1. Let \mathfrak{p}_1 and \mathfrak{p}_2 be any irreducible polynomials over $\mathbb{F}_q[T]$. Let p be any irreducible polynomial of even degree in $\mathbb{F}_q[T]$ such that $2(p^2-1)$ is not a cube modulo \mathfrak{p}_1 and $2p(p^2-1)$ is not a cube modulo \mathfrak{p}_2 . If c and w are any polynomials in $\mathbb{F}_q[T]$ such that

$$w \equiv \begin{cases} 0 \pmod{p}, \\ 0 \pmod{\mathfrak{p}_1}, \\ -18c \pmod{\mathfrak{p}_2} \end{cases}$$

 $c \equiv 0 \pmod{p^2 - 1}$, and $c \not\equiv 0 \pmod{\mathfrak{p}_1 \mathfrak{p}_2}$, and

(i) $\deg(w) > \deg(c)$,

(ii)
$$(-2^{10}3^6c^6)^{(|p|-1)/3} \not\equiv 1 \pmod{p},$$

then

 $\mathbb{F}_q(T)(\sqrt{8c(w^2 + 18cw + 108c^2)[4w^3(p^2 - 1) - 216c(w^2 + 18cw + 108c^2)]})$ has 3-rank at least 2.

We show in Lemma 1 that it is always possible to choose such primes $\mathfrak{p}_1, \mathfrak{p}_2$, and p. As in [4], the idea of the proof is to construct, for each d of the prescribed form, two distinct, unramified, cyclic, cubic extensions of $\mathbb{F}_q(\sqrt{d})$. By class field theory, then, the field has 3-rank at least 2.

2. 3-Rank 2. Recall that the Hilbert class field of a global function field K is the maximal unramified abelian extension of K in which the prime at infinity splits completely, and that $\operatorname{Gal}(H/K) \cong Cl_K$, where Cl_K denotes the ideal class group of K (see [20] for further details about explicit class field theory in function fields). It follows that the class number of K is divisible by 3 if and only if there is a cyclic, cubic, unramified extension of K in which the prime at infinity splits completely. In fact, if K is a quadratic field, then K has 3-rank n if and only if there are exactly $(3^n - 1)/2$ such extensions of K ([7]). To prove that a quadratic field K has 3-rank at least 2, therefore, it suffices to show that K has two distinct cyclic, cubic, unramified extensions in which the infinite prime splits completely.

First, notice that we may assume that c and w are relatively prime, because the quadratic field parameterized by c and w is the same as the field parameterized by c/(c, w) and w/(c, w).

In [8], Kishi and Miyake give a characterization of all quadratic number fields with class number divisible by 3. The following is a function field analogue of Kishi and Miyake's result. A proof (of an alternative statement of the theorem) can be found in [10]. A proof of the version below can be found in [5]. The proof is very similar to the number field case, and uses a function field version of a result of Llorente and Nart [13] which gives the decomposition of a prime $P \in \mathbb{F}_q(T)$ in the cubic extension generated by a root of an irreducible cubic polynomial $g(Z) \in \mathbb{F}_q(T)$.

THEOREM 2. Let u and w be relatively prime polynomials in $\mathbb{F}_{a}[T]$ with leading coefficients α and β , respectively. Suppose that the following conditions hold.

- (i) d = 4uw³ − 27u² is not a square in F_q[T].
 (ii) g(Z) = Z³ − uwZ − u² is irreducible over F_q[T].
- (iii) One of the following conditions holds:
 - (1) $\frac{3}{2} \deg(uw) > \deg(u^2)$.
 - (2) $\frac{3}{2} \deg(uw) = \deg(u^2)$ and $x^3 \alpha x + \beta$ has three distinct roots in \mathbb{F}_q .
 - (3) $\frac{3}{2} \deg(uw) < \deg(u^2)$, $3 | \deg(u^2)$, and one of the following:

(a)
$$3 \nmid (q-1)$$
,
(b) $3 \mid (q-1)$ and $-\beta$ is a cube in \mathbb{F}_q .

Let θ be any root of g(Z). Then the normal closure L of $\mathbb{F}_q(T)(\theta)$ is a cyclic, cubic, unramified extension of $\mathbb{F}_q(T)(\sqrt{d})$ in which the prime at infinity splits completely; in particular, then, $k = \mathbb{F}_{q}(T)(\sqrt{d})$ has class number divisible by 3. Conversely, every quadratic function field k with class number divisible by 3 and every unramified cyclic cubic extension of k in which infinity splits is given by a suitable choice of polynomials u and w.

Let p, \mathfrak{p}_1 , and \mathfrak{p}_2 be as in the statement of Theorem 1; Lemma 1 below shows that such polynomials must exist. Given polynomials c and w, we define polynomials u, x, and y so that the two pairs, u, w and x, y, each satisfy the conditions of Theorem 2 and the cubic fields have discriminants with the same square-free part as

$$d = 8c(w^{2} + 18cw + 108c^{2})[4w^{3}(p^{2} - 1) - 216c(w^{2} + 18cw + 108c^{2})].$$

By Theorem 2, then, $\mathbb{F}_q(T)(\sqrt{d})$ has two cyclic, cubic, unramified extensions L_1 and L_2 in which the prime at infinity splits completely. We show that L_1 and L_2 are distinct by showing that the prime p splits differently in each. It then follows that $\mathbb{F}_q(T)(\sqrt{d})$ has 3-rank at least 2.

LEMMA 1. There exist irreducible polynomials $p, \mathfrak{p}_1, \mathfrak{p}_2 \in \mathbb{F}_q[T]$ such that $2(p^2-1)$ is not a cube modulo \mathfrak{p}_1 and $2p(p^2-1)$ is not a cube modulo \mathfrak{p}_2 .

Proof. Consider the elliptic curves given by

$$E_1: 2(y^2 - 1) = x^3, \quad E_2: 2y(y^2 - 1) = x^3.$$

To see that E_2 is, in fact, an elliptic curve, it is enough to show that it is nonsingular, since then the genus is given by (d-1)(d-2)/2; since d=3here, the genus is 1. In homogeneous coordinates, E_2 is given by

$$f(x, y, z) = 2(y^3 - yz^2) - x^3.$$

The derivatives are:

$$\frac{\partial f}{\partial x} = -3x^2, \quad \frac{\partial f}{\partial y} = 6y^2 - 2z^2, \quad \frac{\partial f}{\partial z} = -4yz.$$

It is not hard to see that there are no nonzero values for x, y, z with the partial derivatives simultaneously zero, so E_2 is nonsingular.

We just need to show for i = 1, 2, that there exists $\beta_i \in \mathbb{F}_q[T]$ for which there is no $\alpha_i \in \mathbb{F}_q[T]$ with $(\alpha_i, \beta_i) \in E_i \pmod{\mathfrak{p}_i}$; choosing an irreducible polynomial $p \in \mathbb{F}_q[T]$ with $p \equiv \beta_i \pmod{\mathfrak{p}_i}$ gives the desired result. Notice that E_1 and E_2 are both constant elliptic curves since the coefficients are in \mathbb{F}_q rather than $\mathbb{F}_q[T]$. Let P_i be an irreducible polynomial in $\mathbb{F}_q[T]$ of degree d_i . Then the zeta function for E_i is

$$\zeta_{\mathbb{F}}(E_i) = \frac{(1 - \pi_i q^{-s})(1 - \overline{\pi}_i q^{-s})}{(1 - q^{-s})(1 - q^{1-s})},$$

where $|\pi_i| = \sqrt{q}$ and $\overline{\pi}_i$ denotes the complex conjugate of π_i . The number of points on E_i over \mathbb{F}_q is given by

$$N_i = q + 1 - \pi_i - \overline{\pi}_i = q + 1 - 2\sqrt{q}\cos(\theta_i),$$

where θ_i is defined by $\pi_i/\overline{\pi}_i = e^{i\theta_i}$. For $E_i \pmod{\mathfrak{p}_i}$, there exists π_{d_i} with $|\pi_{d_i}| = q^{d_i/2}$ and zeta function

$$\zeta_{\mathbb{F}_{q^{d_i}}}(E_i) = \frac{(1 - \pi_{d_i} q^{-d_i s})(1 - \overline{\pi}_{d_i} q^{-d_i s})}{(1 - q^{-d_s})(1 - q^{d_i(1-s)})}$$

The number of points on E_i modulo \mathfrak{p}_i then is given by

$$N_{d_i} = q^{d_i} + 1 - \pi_{d_i} - \overline{\pi}_{d_i} = q^{d_i} + 1 - 2q^{d_i/2}\cos(\Theta_i),$$

where Θ_i is defined by $\pi_{d_i}/\overline{\pi}_{d_i} = e^{i\Theta_i}$. We claim that we can choose \mathfrak{p}_i so that $\cos(\Theta_i)$ is sufficiently large to guarantee that $N_{d_i} < q^{d_i}$. The result follows; if for all $\alpha \in E_i \pmod{\mathfrak{p}_i}$, there exists at least one $\beta \in E_i \pmod{\mathfrak{p}_i}$ for which (α, β) is a point on the curve, then $N_{d_i} \ge q^{d_i}$, a contradiction.

Since E_i is a constant curve, we have $\pi_{d_i} = \pi_i^{d_i}$. Thus $\Theta_i = d_i \theta_i$. It remains to show that we can choose d_i so that $\cos(\Theta_i)$ is sufficiently large. If not, then θ_i/π is a rational number, say m/n for some integers m and n. Then $\theta_i = m\pi/n$, so $e^{i\theta_i}$ is a 2*n*th root of unity. We claim this is impossible.

Write $\pi_{d_i} = \sqrt{q} e^{i\Theta_i}$. Raising both sides to the 2*n*th power, we get $\pi_{d_i}^{2n} = q^n$, so $q \mid \pi_{d_i}^{2n}$. Notice that E_1 and E_2 both have complex multiplication by $\mathbb{Q}(\zeta_3)$, where ζ_3 is a complex cube root of unity. Since $q \equiv 1 \pmod{3}$, it follows that E_i is supersingular modulo q, and so there is a point of order q on E_i over $\overline{\mathbb{F}}_q$, and hence a point of order q on E_i over $\mathbb{F}_{q^{2ns}}$ for some positive integer s. Then the number of points on E_i over $\mathbb{F}_{q^{2ns}}$ is

$$N_{q^{2ns}} = q^{2ns} + 1 - \pi_{d_i}^{2ns} - \overline{\pi}_{d_i}^{2ns}.$$

104

This implies that $q \nmid N_{q^{2ns}}$ since $q \nmid 1$, so E_i does not have a point of order q over $\mathbb{F}_{q^{2ns}}$, a contradiction since $\mathbb{E}(\mathbb{F}_{q^s}) \subset \mathbb{E}(\mathbb{F}_{q^{2ns}})$.

Thus, $e^{i\theta_i}$ is not a root of unity, so θ_i is commensurable with 2π . We can therefore choose irreducible primes $\mathfrak{p}_1, \mathfrak{p}_2$ of degrees d_1 and d_2 with $N_{d_i} < q^{d_i}$, as desired.

LEMMA 2. Choose $c, w \in \mathbb{F}_q[T]$ such that

$$w \equiv \begin{cases} 0 \pmod{p}, \\ 0 \pmod{\mathfrak{p}_1}, \\ -18c \pmod{\mathfrak{p}_2}, \end{cases}$$

 $c \equiv 0 \pmod{p^2 - 1}, c \not\equiv 0 \pmod{\mathfrak{p}_1 \mathfrak{p}_2}, and \deg(w) > \deg(c).$ If

$$u = \frac{8c}{p^2 - 1} (w^2 + 18cw + 108c^2), \quad x = p^2 u, \quad y = w + 18c,$$

then the pairs u, w and x, y each satisfy the hypotheses of Theorem 2; that is, $\mathbb{F}_q(T)(\sqrt{4uw^3 - 27u^2})$ and $\mathbb{F}_q(T)(\sqrt{4xy^3 - 27x^2})$ each admit cyclic, cubic, unramified extensions in which the prime at infinity splits completely.

Proof. First we show that u and w are relatively prime. If any prime \mathfrak{q} divides both u and w, then we must have $\mathfrak{q} | 864^3$, contradicting the fact that c and w are relatively prime. If a prime \mathfrak{q} divides both x and y, then first notice that $\mathfrak{q} \neq p$. Otherwise, since p | w and p | y, it would follow that p | c, again contradicting the fact that c and w are relatively prime. Now

$$x = \frac{8p^2c}{p^2 - 1} \left(w^2 + 18cw + 108c^2\right) = \frac{8p^2cw(w + 18c)}{p^2 - 1} + \frac{864p^2c^3}{p^2 - 1}$$
$$\equiv \frac{864p^2c^3}{p^2 - 1} \pmod{y}.$$

Since $q \neq p$, it follows that $q \mid c$. But then since $q \mid y$, we infer that $q \mid w$, a contradiction. Thus x and y must also be relatively prime.

Next we show that $g_1(Z) = Z^3 - uwZ - u^2$ and $g_2(Z) = Z^3 - xyZ - x^2$ are irreducible over $\mathbb{F}_q[T]$. Write $c = \overline{c}(p^2-1)$. Notice that $u \equiv 864\overline{c}^3(p^2-1)^2$ (mod \mathfrak{p}_1). Then

$$g_1(Z) \equiv Z^3 - (864\overline{c}^3)^2(p^2 - 1)^4 = Z^3 - 2(p^2 - 1)[72\overline{c}^2(p^2 - 1)]^3 \pmod{\mathfrak{p}_1}.$$

Since $2(p^2 - 1)$ is not a cube modulo \mathfrak{p}_1 , $g_1(Z)$ is irreducible modulo \mathfrak{p}_1 , and so $g_1(Z)$ is irreducible over $\mathbb{F}_q[T]$. To see that $g_2(Z)$ is also irreducible, notice that $y = w + 18c \equiv 0 \pmod{\mathfrak{p}_2}$. We also have

$$u = \frac{8c}{p^2 - 1} \left(w(w + 18c) + 108c^2 \right) \equiv 864\bar{c}^3(p^2 - 1)^2 \pmod{\mathfrak{p}_2},$$

so
$$x = p^2 u \equiv 864p^2 \overline{c}^3 (p^2 - 1)^2 \pmod{\mathfrak{p}_2}$$
. Then
 $g_2(Z) \equiv Z^3 - xyZ - x^2 \equiv Z^3 - 864^2 p^4 \overline{c}^6 (p^2 - 1)^4$
 $\equiv 2p(p^2 - 1)[72p\overline{c}^2(p^2 - 1)]^3 \pmod{\mathfrak{p}_2}.$

Since $2p(p^2-1)$ is not a cube modulo \mathfrak{p}_2 , it follows that $g_2(Z)$ is irreducible modulo \mathfrak{p}_2 , and therefore irreducible over $\mathbb{F}_q[T]$.

For condition (iii), we will show that $\frac{3}{2} \deg(uw) > \deg(u^2)$ and $\frac{3}{2} \deg(xy) > \deg(x^2)$. Since $\deg(w) > \deg(c)$, we see that

$$\frac{3}{2} \deg(uw) = \frac{3}{2} \left(\deg(c) + 3 \deg(w) - 2 \deg(p) \right)$$

> 2 deg(c) + 4 deg(w) - 4 deg(p) = deg(u²).

Similarly,

$$\frac{3}{2}\deg(xy) = \frac{3}{2}\left(2\deg(p) + \deg(u) + \deg(w)\right) = \frac{3}{2}\left(\deg(c) + 3\deg(w)\right)$$
$$> 2\deg(c) + 4\deg(w) = 4\deg(p) + 2\deg(u) = \deg(x^2).$$

Finally, we show that condition (i) is also satisfied, namely, that $4uw^3$ – $27u^2$ and $4xy^3 - 27x^2$ are not squares in $\mathbb{F}_q[T]$. This follows from the other conditions. Let θ_1 and θ_2 be roots of $g_1(Z)$ and $g_2(Z)$, respectively, and let L_1 and L_2 be the normal closures of $\mathbb{F}_q(T)(\theta_1)$ and $\mathbb{F}_q(T)(\theta_2)$ respectively. It suffices to show that the Galois groups of L_1 and L_2 over $\mathbb{F}_q(T)$ are S_3 since cubic fields with square discriminants are normal. So for i = 1, 2suppose, for contradiction, that the Galois group of L_i over $\mathbb{F}_q(T)$ is $\mathbb{Z}/3\mathbb{Z}$. Let **q** be a prime in $\mathbb{F}_q[T]$ that is totally ramified in L_i . If $v_q(a)$ denotes the exact power of \mathfrak{p} dividing a, then a function field analogue of Llorente and Nart's characterization of prime decomposition in cubic fields [13] implies that $\mathfrak{q} | uw, \mathfrak{q} | u^2$, and $1 \leq v_{\mathfrak{q}}(b_i) \leq v_{\mathfrak{q}}(a_i)$, where $g_i^*(Z) = Z^3 + a_i Z + b_i$ is obtained from $g_i(Z)$ by substituting Z/h for Z with appropriate $h \in \mathbb{F}_q[T]$ so that $v_{\mathfrak{p}}(a_i) \leq 1$ or $v_{\mathfrak{p}}(b_i) \leq 2$ for all primes $\mathfrak{p} \in \mathbb{F}_q[T]$. Now u and w are relatively prime, so $\mathfrak{q} \mid u$ and $\mathfrak{q} \nmid w$. This contradicts the condition that $v_{\mathfrak{q}}(b_i) \leq v_{\mathfrak{q}}(a_i)$. Thus, no prime is totally ramified in L_1 , contradicting the assumption that the splitting field of $g_1(Z)$ is a $\mathbb{Z}/3\mathbb{Z}$ -extension of $\mathbb{F}_q(T)$. The argument for L_2 is similar. The pairs u, w and x, y must therefore each generate cubic, cyclic, unramified extensions of the quadratic fields $\mathbb{F}_{q}(T)(\sqrt{4uw^{3}-27u^{2}})$ and $\mathbb{F}_{q}(T)(\sqrt{4xy^{3}-27x^{2}})$, respectively, in which the infinite prime splits completely.

The following lemma is part of a function field analogue of Llorente and Nart's [13] determination of prime decomposition in cubic fields. We include the statement and proof of only the cases we require. A complete statement and proof can be found in [5]. LEMMA 3. Let p be an irreducible polynomial in $\mathbb{F}_q[T]$, and $g(Z) = Z^3 - AZ + B \in \mathbb{F}_q(T)[Z]$. Let θ be a root of g.

- (i) If $p \mid A, p \nmid B, \deg(p) even$, and $(-B)^{(|p|-1)/3} \not\equiv 1 \pmod{p}$, then p is inert in $\mathbb{F}_q(T)(\theta)$.
- (ii) If p ∤ A, p | B, and A is a square modulo p, then p splits completely in F_q(T)(θ).
- (iii) If p ∤ A, p | B, and A is not a square modulo p, then p splits into two distinct primes in F_q(T)(θ), both unramified.

Proof. (i) If $p \mid A$ and $p \nmid B$, then

$$g(Z) = Z^3 - AZ + B \equiv Z^3 + B \pmod{p}.$$

It suffices to show that $Z^3 + B$ is irreducible modulo p if deg(p) is even and $(-B)^{(|p|-1)/3} \not\equiv 1 \pmod{p}$. Since deg(p) is even and $(-B)^{(|p|-1)/3} \not\equiv 1$, it follows that -B is not a cube modulo p, so the polynomial is irreducible as claimed.

(ii) If $p \nmid A$ and $p \mid B$, then

$$g(Z) = Z^3 - AZ + B \equiv Z^3 - AZ \equiv Z(Z^2 - A) \pmod{p}.$$

Since A is a square modulo p, then g factors into three distinct factors modulo p, so p splits completely in $\mathbb{F}_{q}(T)(\theta)$.

(iii) As in case (ii), we have

$$g(Z) = Z^3 - AZ + B \equiv Z^3 - AZ \equiv Z(Z^2 - A) \pmod{p}.$$

But since A is not a square modulo p, the two polynomials on the right are both irreducible. Thus p splits into two primes in $\mathbb{F}_q(T)(\theta)$, both unramified, one of relative degree 1 and one of relative degree 2.

We are now ready to prove the main theorem.

Proof of Theorem 1. Given $c, w \in \mathbb{F}_q(T)$, set

$$u = \frac{8c}{p^2 - 1} \left(w^2 + 18cw + 108c^2 \right), \quad x = p^2 u, \quad y = w + 18c$$

Let θ_1 be a root of $g_1(Z) = Z^3 - uwZ - u^2$ and θ_2 a root of $g_2(Z) = Z^3 - xyZ - x^2$. Let L_1 and L_2 denote the normal closures of $\mathbb{F}_q(\theta_1)$ and $\mathbb{F}_q(\theta_2)$, respectively. By Lemma 2, the pairs u, w and x, y satisfy the hypotheses of Theorem 2, so that L_1 and L_2 are unramified, cyclic, cubic extensions of $\mathbb{F}_q(\theta_1)$ and $\mathbb{F}_q(\theta_2)$, respectively. Notice, however, that the cubic fields $\mathbb{F}_q(\theta_1)$ and $\mathbb{F}_q(\theta_2)$ have discriminants which differ by a square factor:

A. M. Pacelli

$$\begin{split} 4xy^3 - 27x^2 &= 4(p^2u)(w+18c)^3 - 27(p^2u)^2 \\ &= p^2[4u(w^3+54c(w^2+18wc+108c^2)) - 27p^2u^2] \\ &= p^2[4uw^3+27u^2(p^2-1) - 27p^2u^2] \\ &= p^2(4uw^3-27u^2). \end{split}$$

Thus L_1 and L_2 are both S_3 -extensions of $\mathbb{F}_q(T)$ with the same quadratic subfield

$$\begin{split} \mathbb{F}_q(T)(\sqrt{4uw^3 - 27u^2}) \\ &= \mathbb{F}_q(T) \left(\sqrt{\frac{8c}{p^2 - 1}(w^2 + 18cw + 108c^2)(4w^3 - 27u)}} \right) \\ &= \mathbb{F}_q(T) \left(\sqrt{\frac{8c}{p^2 - 1}(w^2 + 18cw + 108c^2) \left[4w^3 - \frac{216c}{p^2 - 1}(w^2 + 18cw + 108c^2) \right]} \right) \\ &= \mathbb{F}_q(T) \left(\sqrt{\frac{8c}{(p^2 - 1)^2}(w^2 + 18cw + 108c^2)[4w^3(p^2 - 1) - 216c(w^2 + 18cw + 108c^2)]} \right) \\ &= \mathbb{F}_q(T)(\sqrt{d}). \end{split}$$

Finally, we claim that L_1 and L_2 are not isomorphic. We will show that the prime $p \in \mathbb{F}_q[T]$ decomposes differently in the two fields. For L_2 , notice that $v_p(x) = 2$ and $p \nmid y$. To apply Lemma 3, we first substitute Z/p for Z. The new "A" is then xy/p^2 , and we have

$$\frac{xy}{p^2} = u(w+18c) \equiv \frac{864 \cdot 18c^4}{-1} = -2^6 3^5 c^4 = -3(2^3 3^2 c^2)^2 \pmod{p}.$$

Since p has even degree, -3 is a square modulo p, so by parts (ii) and (iii) of the lemma, we see that p splits completely in $K_2 = \mathbb{F}_q(T)(\theta_2)$ and therefore p splits completely in the normal closure L_2 . Now for L_1 , notice that $p \mid w$ and $p \nmid u$. Furthermore,

$$(u^2)^{(|p|-1)/3} \equiv \left[\left(\frac{64c^2}{-1} \right) (108c^2)^2 \right]^{(|p|-1)/3} = (-2^{10}3^6c^6)^{(|p|-1)/3} \not\equiv 1 \pmod{p}.$$

By Lemma 3(i) then, p is inert in $K_1 = \mathbb{F}_q(T)(\theta_1)$, so clearly p does not split completely in L_1 . Thus p splits differently in L_1 and L_2 , so the two fields are not isomorphic. Thus $\mathbb{F}_q(T)(\sqrt{d})$ has two distinct cubic, cyclic, unramified extensions in which the prime at infinity splits completely, and therefore has 3-rank at least 2.

We conclude this section by showing that Theorem 1 yields infinitely many real and infinitely many imaginary quadratic function fields with 3rank at least 2. The following lemma can be found in [19].

LEMMA 4. Let d be any square-free polynomial in $\mathbb{F}_q[T]$. The prime at infinity in $\mathbb{F}_q(T)$ decomposes in the quadratic extension $\mathbb{F}_q(T)(\sqrt{d})$ as follows.

108

- (i) If $\deg(d)$ is odd, then infinity is totally ramified.
- (ii) If deg(d) is even and sgn(d) is a square in \mathbb{F}_q , then infinity splits completely.
- (iii) If deg(d) is even and sgn(d) is not a square in \mathbb{F}_q , then infinity is inert.

We say that $\mathbb{F}_q(T)(\sqrt{d})$ is real in case (ii) and imaginary otherwise. Note that since $\deg(w) > \deg(c)$, we have

$$\deg(d) = \deg(c) + 5\deg(w) + 2\deg(p).$$

If deg(c) and deg(w) have opposite parities, then deg(d) is odd, and so the prime at infinity is totally ramified in $\mathbb{F}_q(T)(\sqrt{d})$. If, however, deg(c) and deg(w) have the same parity, then deg(d) is even. We also have

$$\operatorname{sgn}(c) = 32 \operatorname{sgn}(c) \operatorname{sgn}(w)^5 \operatorname{sgn}(p^2),$$

so infinity splits completely in $\mathbb{F}_q(T)(\sqrt{d})$ if $2\operatorname{sgn}(c)\operatorname{sgn}(w)$ is a square in \mathbb{F}_q and is inert otherwise. We can easily choose c and w whose leading terms have the desired properties; therefore Theorem 1 produces infinitely many quadratic function fields of any desired signature with 3-rank at least 2.

Acknowledgments. The author was supported, in part, by a grant from the AWM. She would also like to thank Michael Rosen for several helpful discussions.

References

- M. Bauer, M. Jacobson, Y. Lee, and R. Scheidler, Construction of hyperelliptic function fields of high 3-rank, Math. Comp. 77 (2008), 503–530.
- [2] M. Craig, A type of class group for imaginary quadratic fields, Acta Arith. 22 (1973), 449–459.
- [3] F. Diaz y Diaz, On some families of imaginary quadratic fields, Math. Comp. 32 (1978), 637–650.
- [4] C. Erickson, N. Kaplan, N. Mendoza, A. M. Pacelli, and T. Shayler, Parametrized families of quadratic number fields with 3-rank at least 2, Acta Arith. 130 (2007), 141–147.
- [5] C. Erickson, N. Kaplan, N. Mendoza, and T. Shayler, Williams College SMALL REU Algebraic Number Theory report, unpublished.
- C. Friesen, Class number divisibility in real quadratic function fields, Canad. Math. Bull. 35 (1992), 361–370.
- H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), 565–582.
- [8] Y. Kishi and K. Miyake, Parametrization of the quadratic fields whose class numbers are divisible by three, J. Number Theory 80 (2000), 209–217.
- Y. Lee, The structure of the class groups of global function fields with any unit rank, J. Ramanujan Math. Soc. 20 (2005), 125–145.
- [10] —, Class number divisibility of relative quadratic function fields, Acta Arith. 121 (2006), 161–173.

A. M. Pacelli

- [11] Y. Lee and A. Pacelli, Subgroups of the class groups of global function fields: the inert case, Proc. Amer. Math. Soc. 133 (2005), 2883–2889.
- [12] —, —, Higher rank subgroups in the class groups of imaginary function fields, J. Pure Appl. Algebra 207 (2006), 51–62.
- [13] P. Llorente and E. Nart, Effective determination of the decomposition of rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579–585.
- [14] P. Llorente and J. Quer, On the 3-Sylow subgroup of the class group of quadratic fields, Math. Comp. 50 (1988), 321–333.
- [15] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140–150.
- [16] A. Pacelli, Abelian subgroups of any order in class groups of global function fields, J. Number Theory 106 (2004), 29–49.
- [17] —, The prime at infinity and the rank of the class group of a global function field, ibid. 116 (2006), 311–323.
- [18] J. Quer, Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 215–218.
- [19] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002.
- [20] —, The Hilbert class field in function fields, Expo. Math. 5 (1987), 365–378.
- [21] P. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237–241.
- [22] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76.

Department of Mathematics Williams College Williamstown, MA 01267, U.S.A. E-mail: Allison.Pacelli@williams.edu

> Received on 5.11.2007 and in revised form on 30.3.2009

(5565)