# Function fields with 3-rank at least 2 

by

Allison M. Pacelli (Williamstown, MA)

1. Introduction. It is well known that there are infinitely many quadratic number fields and function fields with class number divisible by a given integer $n$ (see Nagell [15] (1922) for imaginary number fields, Yamamoto [22] (1969) and Weinberger [21] (1973) for real number fields, and Friesen [6] (1990) for function fields). A related question concerns the $n$-rank of the field, that is, the greatest integer $r$ for which the class group contains a subgroup isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{r}$. In [22], Yamamoto showed that infinitely many imaginary quadratic number fields have $n$-rank at least 2 for any positive integer $n \geq 2$. In 1978, Diaz y Diaz [3] developed an algorithm for generating imaginary quadratic fields with 3-rank 2, and Craig [2] showed in 1973 that there are infinitely many real quadratic number fields with 3 -rank at least 2 and infinitely many imaginary quadratic number fields with 3 -rank at least 3. A few examples of higher 3-rank have also been found (see for instance Llorente and Quer [14, 18] who found three imaginary quadratic number fields with 3-rank 6 in 1987/1988). In a recent paper [4], Erickson, Kaplan, Mendoza, Shayler, and the author gave infinite, simply parameterized families of real and imaginary quadratic fields with 3-rank 2. Here we give a function field analogue.

Note that Bauer, Jacobson, Lee, and Scheidler [1] have given algorithms which yield imaginary quadratic function fields with 3 -rank at least 2 and a possibly empty set of imaginary quadratic function fields with 3-rank at least 3 . The construction below yields infinitely many quadratic function fields, of any given signature, with 3 -rank at least 2. See [9], [11], [12], [16], and [17] for constructions of function fields of arbitrary degree $m$ with large $n$-rank for general $n$.

Throughout we let $q$ be a power of an odd prime, $q \equiv 1(\bmod 3)$. We use $\operatorname{sgn}(f)$ to denote the leading coefficient of a polynomial $f \in \mathbb{F}_{q}[T]$, and we let $|f|=q^{\operatorname{deg}(f)}$ for $f \in \mathbb{F}_{q}[T]$. The main result is as follows.

2000 Mathematics Subject Classification: 11R29, 11R58.
Key words and phrases: 3-rank, class number, class group, quadratic field, function field.

Theorem 1. Let $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$ be any irreducible polynomials over $\mathbb{F}_{q}[T]$. Let $p$ be any irreducible polynomial of even degree in $\mathbb{F}_{q}[T]$ such that $2\left(p^{2}-1\right)$ is not a cube modulo $\mathfrak{p}_{1}$ and $2 p\left(p^{2}-1\right)$ is not a cube modulo $\mathfrak{p}_{2}$. If $c$ and $w$ are any polynomials in $\mathbb{F}_{q}[T]$ such that

$$
w \equiv\left\{\begin{array}{l}
0(\bmod p), \\
0\left(\bmod \mathfrak{p}_{1}\right), \\
-18 c\left(\bmod \mathfrak{p}_{2}\right),
\end{array}\right.
$$

$c \equiv 0\left(\bmod p^{2}-1\right)$, and $c \not \equiv 0\left(\bmod \mathfrak{p}_{1} \mathfrak{p}_{2}\right)$, and
(i) $\operatorname{deg}(w)>\operatorname{deg}(c)$,
(ii) $\left(-2^{10} 3^{6} c^{6}\right)^{(|p|-1) / 3} \not \equiv 1(\bmod p)$,
then

$$
\mathbb{F}_{q}(T)\left(\sqrt{8 c\left(w^{2}+18 c w+108 c^{2}\right)\left[4 w^{3}\left(p^{2}-1\right)-216 c\left(w^{2}+18 c w+108 c^{2}\right)\right]}\right)
$$

has 3 -rank at least 2.
We show in Lemma 1 that it is always possible to choose such primes $\mathfrak{p}_{1}, \mathfrak{p}_{2}$, and $p$. As in [4], the idea of the proof is to construct, for each $d$ of the prescribed form, two distinct, unramified, cyclic, cubic extensions of $\mathbb{F}_{q}(\sqrt{d})$. By class field theory, then, the field has 3 -rank at least 2.
2. 3-Rank 2. Recall that the Hilbert class field of a global function field $K$ is the maximal unramified abelian extension of $K$ in which the prime at infinity splits completely, and that $\operatorname{Gal}(H / K) \cong C l_{K}$, where $C l_{K}$ denotes the ideal class group of $K$ (see [20] for further details about explicit class field theory in function fields). It follows that the class number of $K$ is divisible by 3 if and only if there is a cyclic, cubic, unramified extension of $K$ in which the prime at infinity splits completely. In fact, if $K$ is a quadratic field, then $K$ has 3 -rank $n$ if and only if there are exactly $\left(3^{n}-1\right) / 2$ such extensions of $K([7])$. To prove that a quadratic field $K$ has 3 -rank at least 2, therefore, it suffices to show that $K$ has two distinct cyclic, cubic, unramified extensions in which the infinite prime splits completely.

First, notice that we may assume that $c$ and $w$ are relatively prime, because the quadratic field parameterized by $c$ and $w$ is the same as the field parameterized by $c /(c, w)$ and $w /(c, w)$.

In [8], Kishi and Miyake give a characterization of all quadratic number fields with class number divisible by 3 . The following is a function field analogue of Kishi and Miyake's result. A proof (of an alternative statement of the theorem) can be found in [10]. A proof of the version below can be found in [5]. The proof is very similar to the number field case, and uses a function field version of a result of Llorente and Nart [13] which gives the decomposition of a prime $P \in \mathbb{F}_{q}(T)$ in the cubic extension generated by a root of an irreducible cubic polynomial $g(Z) \in \mathbb{F}_{q}(T)$.

TheOrem 2. Let $u$ and $w$ be relatively prime polynomials in $\mathbb{F}_{q}[T]$ with leading coefficients $\alpha$ and $\beta$, respectively. Suppose that the following conditions hold.
(i) $d=4 u w^{3}-27 u^{2}$ is not a square in $\mathbb{F}_{q}[T]$.
(ii) $g(Z)=Z^{3}-u w Z-u^{2}$ is irreducible over $\mathbb{F}_{q}[T]$.
(iii) One of the following conditions holds:
(1) $\frac{3}{2} \operatorname{deg}(u w)>\operatorname{deg}\left(u^{2}\right)$.
(2) $\frac{3}{2} \operatorname{deg}(u w)=\operatorname{deg}\left(u^{2}\right)$ and $x^{3}-\alpha x+\beta$ has three distinct roots in $\mathbb{F}_{q}$.
(3) $\frac{3}{2} \operatorname{deg}(u w)<\operatorname{deg}\left(u^{2}\right), 3 \mid \operatorname{deg}\left(u^{2}\right)$, and one of the following:
(a) $3 \nmid(q-1)$,
(b) $3 \mid(q-1)$ and $-\beta$ is a cube in $\mathbb{F}_{q}$.

Let $\theta$ be any root of $g(Z)$. Then the normal closure $L$ of $\mathbb{F}_{q}(T)(\theta)$ is a cyclic, cubic, unramified extension of $\mathbb{F}_{q}(T)(\sqrt{d})$ in which the prime at infinity splits completely; in particular, then, $k=\mathbb{F}_{q}(T)(\sqrt{d})$ has class number divisible by 3. Conversely, every quadratic function field $k$ with class number divisible by 3 and every unramified cyclic cubic extension of $k$ in which infinity splits is given by a suitable choice of polynomials $u$ and $w$.

Let $p, \mathfrak{p}_{1}$, and $\mathfrak{p}_{2}$ be as in the statement of Theorem 1 ; Lemma 1 below shows that such polynomials must exist. Given polynomials $c$ and $w$, we define polynomials $u, x$, and $y$ so that the two pairs, $u, w$ and $x, y$, each satisfy the conditions of Theorem 2 and the cubic fields have discriminants with the same square-free part as

$$
d=8 c\left(w^{2}+18 c w+108 c^{2}\right)\left[4 w^{3}\left(p^{2}-1\right)-216 c\left(w^{2}+18 c w+108 c^{2}\right)\right]
$$

By Theorem 2, then, $\mathbb{F}_{q}(T)(\sqrt{d})$ has two cyclic, cubic, unramified extensions $L_{1}$ and $L_{2}$ in which the prime at infinity splits completely. We show that $L_{1}$ and $L_{2}$ are distinct by showing that the prime $p$ splits differently in each. It then follows that $\mathbb{F}_{q}(T)(\sqrt{d})$ has 3 -rank at least 2.

Lemma 1. There exist irreducible polynomials $p, \mathfrak{p}_{1}, \mathfrak{p}_{2} \in \mathbb{F}_{q}[T]$ such that $2\left(p^{2}-1\right)$ is not a cube modulo $\mathfrak{p}_{1}$ and $2 p\left(p^{2}-1\right)$ is not a cube modulo $\mathfrak{p}_{2}$.

Proof. Consider the elliptic curves given by

$$
E_{1}: 2\left(y^{2}-1\right)=x^{3}, \quad E_{2}: 2 y\left(y^{2}-1\right)=x^{3}
$$

To see that $E_{2}$ is, in fact, an elliptic curve, it is enough to show that it is nonsingular, since then the genus is given by $(d-1)(d-2) / 2$; since $d=3$ here, the genus is 1 . In homogeneous coordinates, $E_{2}$ is given by

$$
f(x, y, z)=2\left(y^{3}-y z^{2}\right)-x^{3}
$$

The derivatives are:

$$
\frac{\partial f}{\partial x}=-3 x^{2}, \quad \frac{\partial f}{\partial y}=6 y^{2}-2 z^{2}, \quad \frac{\partial f}{\partial z}=-4 y z
$$

It is not hard to see that there are no nonzero values for $x, y, z$ with the partial derivatives simultaneously zero, so $E_{2}$ is nonsingular.

We just need to show for $i=1,2$, that there exists $\beta_{i} \in \mathbb{F}_{q}[T]$ for which there is no $\alpha_{i} \in \mathbb{F}_{q}[T]$ with $\left(\alpha_{i}, \beta_{i}\right) \in E_{i}\left(\bmod \mathfrak{p}_{i}\right)$; choosing an irreducible polynomial $p \in \mathbb{F}_{q}[T]$ with $p \equiv \beta_{i}\left(\bmod \mathfrak{p}_{i}\right)$ gives the desired result. Notice that $E_{1}$ and $E_{2}$ are both constant elliptic curves since the coefficients are in $\mathbb{F}_{q}$ rather than $\mathbb{F}_{q}[T]$. Let $P_{i}$ be an irreducible polynomial in $\mathbb{F}_{q}[T]$ of degree $d_{i}$. Then the zeta function for $E_{i}$ is

$$
\zeta_{\mathbb{F}}\left(E_{i}\right)=\frac{\left(1-\pi_{i} q^{-s}\right)\left(1-\bar{\pi}_{i} q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where $\left|\pi_{i}\right|=\sqrt{q}$ and $\bar{\pi}_{i}$ denotes the complex conjugate of $\pi_{i}$. The number of points on $E_{i}$ over $\mathbb{F}_{q}$ is given by

$$
N_{i}=q+1-\pi_{i}-\bar{\pi}_{i}=q+1-2 \sqrt{q} \cos \left(\theta_{i}\right)
$$

where $\theta_{i}$ is defined by $\pi_{i} / \bar{\pi}_{i}=e^{i \theta_{i}}$. For $E_{i}\left(\bmod \mathfrak{p}_{i}\right)$, there exists $\pi_{d_{i}}$ with $\left|\pi_{d_{i}}\right|=q^{d_{i} / 2}$ and zeta function

$$
\zeta_{\mathbb{F}_{q^{d}}}\left(E_{i}\right)=\frac{\left(1-\pi_{d_{i}} q^{-d_{i} s}\right)\left(1-\bar{\pi}_{d_{i}} q^{-d_{i} s}\right)}{\left(1-q^{-d s}\right)\left(1-q^{d_{i}(1-s)}\right)}
$$

The number of points on $E_{i}$ modulo $\mathfrak{p}_{i}$ then is given by

$$
N_{d_{i}}=q^{d_{i}}+1-\pi_{d_{i}}-\bar{\pi}_{d_{i}}=q^{d_{i}}+1-2 q^{d_{i} / 2} \cos \left(\Theta_{i}\right)
$$

where $\Theta_{i}$ is defined by $\pi_{d_{i}} / \bar{\pi}_{d_{i}}=e^{i \Theta_{i}}$. We claim that we can choose $\mathfrak{p}_{i}$ so that $\cos \left(\Theta_{i}\right)$ is sufficiently large to guarantee that $N_{d_{i}}<q^{d_{i}}$. The result follows; if for all $\alpha \in E_{i}\left(\bmod \mathfrak{p}_{i}\right)$, there exists at least one $\beta \in E_{i}\left(\bmod \mathfrak{p}_{i}\right)$ for which $(\alpha, \beta)$ is a point on the curve, then $N_{d_{i}} \geq q^{d_{i}}$, a contradiction.

Since $E_{i}$ is a constant curve, we have $\pi_{d_{i}}=\pi_{i}^{d_{i}}$. Thus $\Theta_{i}=d_{i} \theta_{i}$. It remains to show that we can choose $d_{i}$ so that $\cos \left(\Theta_{i}\right)$ is sufficiently large. If not, then $\theta_{i} / \pi$ is a rational number, say $m / n$ for some integers $m$ and $n$. Then $\theta_{i}=m \pi / n$, so $e^{i \theta_{i}}$ is a $2 n$th root of unity. We claim this is impossible.

Write $\pi_{d_{i}}=\sqrt{q} e^{i \Theta_{i}}$. Raising both sides to the $2 n$th power, we get $\pi_{d_{i}}^{2 n}=q^{n}$, so $q \mid \pi_{d_{i}}^{2 n}$. Notice that $E_{1}$ and $E_{2}$ both have complex multiplication by $\mathbb{Q}\left(\zeta_{3}\right)$, where $\zeta_{3}$ is a complex cube root of unity. Since $q \equiv 1$ $(\bmod 3)$, it follows that $E_{i}$ is supersingular modulo $q$, and so there is a point of order $q$ on $E_{i}$ over $\overline{\mathbb{F}}_{q}$, and hence a point of order $q$ on $E_{i}$ over $\mathbb{F}_{q^{s}}$ for some positive integer $s$. Then the number of points on $E_{i}$ over $\mathbb{F}_{q^{2 n s}}$ is

$$
N_{q^{2 n s}}=q^{2 n s}+1-\pi_{d_{i}}^{2 n s}-\bar{\pi}_{d_{i}}^{2 n s} .
$$

This implies that $q \nmid N_{q^{2 n s}}$ since $q \nmid 1$, so $E_{i}$ does not have a point of order $q$ over $\mathbb{F}_{q^{2 n s}}$, a contradiction since $\mathbb{E}\left(\mathbb{F}_{q^{s}}\right) \subset \mathbb{E}\left(\mathbb{F}_{q^{2 n s}}\right)$.

Thus, $e^{i \theta_{i}}$ is not a root of unity, so $\theta_{i}$ is commensurable with $2 \pi$. We can therefore choose irreducible primes $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ of degrees $d_{1}$ and $d_{2}$ with $N_{d_{i}}<q^{d_{i}}$, as desired.

Lemma 2. Choose $c, w \in \mathbb{F}_{q}[T]$ such that

$$
w \equiv\left\{\begin{array}{l}
0(\bmod p) \\
0\left(\bmod \mathfrak{p}_{1}\right) \\
-18 c\left(\bmod \mathfrak{p}_{2}\right)
\end{array}\right.
$$

$c \equiv 0\left(\bmod p^{2}-1\right), c \not \equiv 0\left(\bmod \mathfrak{p}_{1} \mathfrak{p}_{2}\right)$, and $\operatorname{deg}(w)>\operatorname{deg}(c)$. If

$$
u=\frac{8 c}{p^{2}-1}\left(w^{2}+18 c w+108 c^{2}\right), \quad x=p^{2} u, \quad y=w+18 c
$$

then the pairs $u, w$ and $x, y$ each satisfy the hypotheses of Theorem 2 ; that is, $\mathbb{F}_{q}(T)\left(\sqrt{4 u w^{3}-27 u^{2}}\right)$ and $\mathbb{F}_{q}(T)\left(\sqrt{4 x y^{3}-27 x^{2}}\right)$ each admit cyclic, cubic, unramified extensions in which the prime at infinity splits completely.

Proof. First we show that $u$ and $w$ are relatively prime. If any prime $\mathfrak{q}$ divides both $u$ and $w$, then we must have $\mathfrak{q} \mid 864^{3}$, contradicting the fact that $c$ and $w$ are relatively prime. If a prime $\mathfrak{q}$ divides both $x$ and $y$, then first notice that $\mathfrak{q} \neq p$. Otherwise, since $p \mid w$ and $p \mid y$, it would follow that $p \mid c$, again contradicting the fact that $c$ and $w$ are relatively prime. Now

$$
\begin{aligned}
x & =\frac{8 p^{2} c}{p^{2}-1}\left(w^{2}+18 c w+108 c^{2}\right)=\frac{8 p^{2} c w(w+18 c)}{p^{2}-1}+\frac{864 p^{2} c^{3}}{p^{2}-1} \\
& \equiv \frac{864 p^{2} c^{3}}{p^{2}-1}(\bmod y)
\end{aligned}
$$

Since $\mathfrak{q} \neq p$, it follows that $\mathfrak{q} \mid c$. But then since $\mathfrak{q} \mid y$, we infer that $\mathfrak{q} \mid w$, a contradiction. Thus $x$ and $y$ must also be relatively prime.

Next we show that $g_{1}(Z)=Z^{3}-u w Z-u^{2}$ and $g_{2}(Z)=Z^{3}-x y Z-x^{2}$ are irreducible over $\mathbb{F}_{q}[T]$. Write $c=\bar{c}\left(p^{2}-1\right)$. Notice that $u \equiv 864 \bar{c}^{3}\left(p^{2}-1\right)^{2}$ $\left(\bmod \mathfrak{p}_{1}\right)$. Then

$$
g_{1}(Z) \equiv Z^{3}-\left(864 \bar{c}^{3}\right)^{2}\left(p^{2}-1\right)^{4}=Z^{3}-2\left(p^{2}-1\right)\left[72 \bar{c}^{2}\left(p^{2}-1\right)\right]^{3}\left(\bmod \mathfrak{p}_{1}\right)
$$

Since $2\left(p^{2}-1\right)$ is not a cube modulo $\mathfrak{p}_{1}, g_{1}(Z)$ is irreducible modulo $\mathfrak{p}_{1}$, and so $g_{1}(Z)$ is irreducible over $\mathbb{F}_{q}[T]$. To see that $g_{2}(Z)$ is also irreducible, notice that $y=w+18 c \equiv 0\left(\bmod \mathfrak{p}_{2}\right)$. We also have

$$
u=\frac{8 c}{p^{2}-1}\left(w(w+18 c)+108 c^{2}\right) \equiv 864 \bar{c}^{3}\left(p^{2}-1\right)^{2}\left(\bmod \mathfrak{p}_{2}\right)
$$

so $x=p^{2} u \equiv 864 p^{2} \bar{c}^{3}\left(p^{2}-1\right)^{2}\left(\bmod \mathfrak{p}_{2}\right)$. Then

$$
\begin{aligned}
g_{2}(Z) & \equiv Z^{3}-x y Z-x^{2} \equiv Z^{3}-864^{2} p^{4} \bar{c}^{6}\left(p^{2}-1\right)^{4} \\
& \equiv 2 p\left(p^{2}-1\right)\left[72 p \bar{c}^{2}\left(p^{2}-1\right)\right]^{3}\left(\bmod \mathfrak{p}_{2}\right)
\end{aligned}
$$

Since $2 p\left(p^{2}-1\right)$ is not a cube modulo $\mathfrak{p}_{2}$, it follows that $g_{2}(Z)$ is irreducible modulo $\mathfrak{p}_{2}$, and therefore irreducible over $\mathbb{F}_{q}[T]$.

For condition (iii), we will show that $\frac{3}{2} \operatorname{deg}(u w)>\operatorname{deg}\left(u^{2}\right)$ and $\frac{3}{2} \operatorname{deg}(x y)$ $>\operatorname{deg}\left(x^{2}\right)$. Since $\operatorname{deg}(w)>\operatorname{deg}(c)$, we see that

$$
\begin{aligned}
\frac{3}{2} \operatorname{deg}(u w) & =\frac{3}{2}(\operatorname{deg}(c)+3 \operatorname{deg}(w)-2 \operatorname{deg}(p)) \\
& >2 \operatorname{deg}(c)+4 \operatorname{deg}(w)-4 \operatorname{deg}(p)=\operatorname{deg}\left(u^{2}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{3}{2} \operatorname{deg}(x y) & =\frac{3}{2}(2 \operatorname{deg}(p)+\operatorname{deg}(u)+\operatorname{deg}(w))=\frac{3}{2}(\operatorname{deg}(c)+3 \operatorname{deg}(w)) \\
& >2 \operatorname{deg}(c)+4 \operatorname{deg}(w)=4 \operatorname{deg}(p)+2 \operatorname{deg}(u)=\operatorname{deg}\left(x^{2}\right)
\end{aligned}
$$

Finally, we show that condition (i) is also satisfied, namely, that $4 u w^{3}-$ $27 u^{2}$ and $4 x y^{3}-27 x^{2}$ are not squares in $\mathbb{F}_{q}[T]$. This follows from the other conditions. Let $\theta_{1}$ and $\theta_{2}$ be roots of $g_{1}(Z)$ and $g_{2}(Z)$, respectively, and let $L_{1}$ and $L_{2}$ be the normal closures of $\mathbb{F}_{q}(T)\left(\theta_{1}\right)$ and $\mathbb{F}_{q}(T)\left(\theta_{2}\right)$ respectively. It suffices to show that the Galois groups of $L_{1}$ and $L_{2}$ over $\mathbb{F}_{q}(T)$ are $S_{3}$ since cubic fields with square discriminants are normal. So for $i=1,2$ suppose, for contradiction, that the Galois group of $L_{i}$ over $\mathbb{F}_{q}(T)$ is $\mathbb{Z} / 3 \mathbb{Z}$. Let $\mathfrak{q}$ be a prime in $\mathbb{F}_{q}[T]$ that is totally ramified in $L_{i}$. If $v_{\mathfrak{q}}(a)$ denotes the exact power of $\mathfrak{p}$ dividing $a$, then a function field analogue of Llorente and Nart's characterization of prime decomposition in cubic fields [13] implies that $\mathfrak{q}|u w, \mathfrak{q}| u^{2}$, and $1 \leq v_{\mathfrak{q}}\left(b_{i}\right) \leq v_{\mathfrak{q}}\left(a_{i}\right)$, where $g_{i}^{*}(Z)=Z^{3}+a_{i} Z+b_{i}$ is obtained from $g_{i}(Z)$ by substituting $Z / h$ for $Z$ with appropriate $h \in \mathbb{F}_{q}[T]$ so that $v_{\mathfrak{p}}\left(a_{i}\right) \leq 1$ or $v_{\mathfrak{p}}\left(b_{i}\right) \leq 2$ for all primes $\mathfrak{p} \in \mathbb{F}_{q}[T]$. Now $u$ and $w$ are relatively prime, so $\mathfrak{q} \mid u$ and $\mathfrak{q} \nmid w$. This contradicts the condition that $v_{\mathfrak{q}}\left(b_{i}\right) \leq v_{\mathfrak{q}}\left(a_{i}\right)$. Thus, no prime is totally ramified in $L_{1}$, contradicting the assumption that the splitting field of $g_{1}(Z)$ is a $\mathbb{Z} / 3 \mathbb{Z}$-extension of $\mathbb{F}_{q}(T)$. The argument for $L_{2}$ is similar. The pairs $u, w$ and $x, y$ must therefore each generate cubic, cyclic, unramified extensions of the quadratic fields $\mathbb{F}_{q}(T)\left(\sqrt{4 u w^{3}-27 u^{2}}\right)$ and $\mathbb{F}_{q}(T)\left(\sqrt{4 x y^{3}-27 x^{2}}\right)$, respectively, in which the infinite prime splits completely.

The following lemma is part of a function field analogue of Llorente and Nart's [13] determination of prime decomposition in cubic fields. We include the statement and proof of only the cases we require. A complete statement and proof can be found in [5].

Lemma 3. Let $p$ be an irreducible polynomial in $\mathbb{F}_{q}[T]$, and $g(Z)=$ $Z^{3}-A Z+B \in \mathbb{F}_{q}(T)[Z]$. Let $\theta$ be a root of $g$.
(i) If $p \mid A, p \nmid B, \operatorname{deg}(p)$ even, and $(-B)^{(|p|-1) / 3} \not \equiv 1(\bmod p)$, then $p$ is inert in $\mathbb{F}_{q}(T)(\theta)$.
(ii) If $p \nmid A, p \mid B$, and $A$ is a square modulo $p$, then $p$ splits completely in $\mathbb{F}_{q}(T)(\theta)$.
(iii) If $p \nmid A, p \mid B$, and $A$ is not a square modulo $p$, then $p$ splits into two distinct primes in $\mathbb{F}_{q}(T)(\theta)$, both unramified.

Proof. (i) If $p \mid A$ and $p \nmid B$, then

$$
g(Z)=Z^{3}-A Z+B \equiv Z^{3}+B(\bmod p)
$$

It suffices to show that $Z^{3}+B$ is irreducible modulo $p$ if $\operatorname{deg}(p)$ is even and $(-B)^{(|p|-1) / 3} \not \equiv 1(\bmod p)$. Since $\operatorname{deg}(p)$ is even and $(-B)^{(|p|-1) / 3} \not \equiv 1$, it follows that $-B$ is not a cube modulo $p$, so the polynomial is irreducible as claimed.
(ii) If $p \nmid A$ and $p \mid B$, then

$$
g(Z)=Z^{3}-A Z+B \equiv Z^{3}-A Z \equiv Z\left(Z^{2}-A\right)(\bmod p)
$$

Since $A$ is a square modulo $p$, then $g$ factors into three distinct factors modulo $p$, so $p$ splits completely in $\mathbb{F}_{q}(T)(\theta)$.
(iii) As in case (ii), we have

$$
g(Z)=Z^{3}-A Z+B \equiv Z^{3}-A Z \equiv Z\left(Z^{2}-A\right)(\bmod p)
$$

But since $A$ is not a square modulo $p$, the two polynomials on the right are both irreducible. Thus $p$ splits into two primes in $\mathbb{F}_{q}(T)(\theta)$, both unramified, one of relative degree 1 and one of relative degree 2 .

We are now ready to prove the main theorem.
Proof of Theorem 1. Given $c, w \in \mathbb{F}_{q}(T)$, set

$$
u=\frac{8 c}{p^{2}-1}\left(w^{2}+18 c w+108 c^{2}\right), \quad x=p^{2} u, \quad y=w+18 c
$$

Let $\theta_{1}$ be a root of $g_{1}(Z)=Z^{3}-u w Z-u^{2}$ and $\theta_{2}$ a root of $g_{2}(Z)=$ $Z^{3}-x y Z-x^{2}$. Let $L_{1}$ and $L_{2}$ denote the normal closures of $\mathbb{F}_{q}\left(\theta_{1}\right)$ and $\mathbb{F}_{q}\left(\theta_{2}\right)$, respectively. By Lemma 2, the pairs $u, w$ and $x, y$ satisfy the hypotheses of Theorem 2, so that $L_{1}$ and $L_{2}$ are unramified, cyclic, cubic extensions of $\mathbb{F}_{q}\left(\theta_{1}\right)$ and $\mathbb{F}_{q}\left(\theta_{2}\right)$, respectively. Notice, however, that the cubic fields $\mathbb{F}_{q}\left(\theta_{1}\right)$ and $\mathbb{F}_{q}\left(\theta_{2}\right)$ have discriminants which differ by a square factor:

$$
\begin{aligned}
4 x y^{3}-27 x^{2} & =4\left(p^{2} u\right)(w+18 c)^{3}-27\left(p^{2} u\right)^{2} \\
& =p^{2}\left[4 u\left(w^{3}+54 c\left(w^{2}+18 w c+108 c^{2}\right)\right)-27 p^{2} u^{2}\right] \\
& =p^{2}\left[4 u w^{3}+27 u^{2}\left(p^{2}-1\right)-27 p^{2} u^{2}\right] \\
& =p^{2}\left(4 u w^{3}-27 u^{2}\right)
\end{aligned}
$$

Thus $L_{1}$ and $L_{2}$ are both $S_{3}$-extensions of $\mathbb{F}_{q}(T)$ with the same quadratic subfield

$$
\begin{aligned}
& \mathbb{F}_{q}( (T)\left(\sqrt{4 u w^{3}-27 u^{2}}\right) \\
& \quad= \mathbb{F}_{q}(T)\left(\sqrt{\frac{8 c}{p^{2}-1}\left(w^{2}+18 c w+108 c^{2}\right)\left(4 w^{3}-27 u\right)}\right) \\
& \quad=\mathbb{F}_{q}(T)\left(\sqrt{\frac{8 c}{p^{2}-1}\left(w^{2}+18 c w+108 c^{2}\right)\left[4 w^{3}-\frac{216 c}{p^{2}-1}\left(w^{2}+18 c w+108 c^{2}\right)\right]}\right) \\
& \quad=\mathbb{F}_{q}(T)\left(\sqrt{\frac{8 c}{\left(p^{2}-1\right)^{2}}\left(w^{2}+18 c w+108 c^{2}\right)\left[4 w^{3}\left(p^{2}-1\right)-216 c\left(w^{2}+18 c w+108 c^{2}\right)\right]}\right) \\
& \quad=\mathbb{F}_{q}(T)(\sqrt{d}) .
\end{aligned}
$$

Finally, we claim that $L_{1}$ and $L_{2}$ are not isomorphic. We will show that the prime $p \in \mathbb{F}_{q}[T]$ decomposes differently in the two fields. For $L_{2}$, notice that $v_{p}(x)=2$ and $p \nmid y$. To apply Lemma 3, we first substitute $Z / p$ for $Z$. The new " $A$ " is then $x y / p^{2}$, and we have

$$
\frac{x y}{p^{2}}=u(w+18 c) \equiv \frac{864 \cdot 18 c^{4}}{-1}=-2^{6} 3^{5} c^{4}=-3\left(2^{3} 3^{2} c^{2}\right)^{2}(\bmod p)
$$

Since $p$ has even degree, -3 is a square modulo $p$, so by parts (ii) and (iii) of the lemma, we see that $p$ splits completely in $K_{2}=\mathbb{F}_{q}(T)\left(\theta_{2}\right)$ and therefore $p$ splits completely in the normal closure $L_{2}$. Now for $L_{1}$, notice that $p \mid w$ and $p \nmid u$. Furthermore,

$$
\left(u^{2}\right)^{(|p|-1) / 3} \equiv\left[\left(\frac{64 c^{2}}{-1}\right)\left(108 c^{2}\right)^{2}\right]^{(|p|-1) / 3}=\left(-2^{10} 3^{6} c^{6}\right)^{(|p|-1) / 3} \not \equiv 1(\bmod p)
$$

By Lemma 3 (i) then, $p$ is inert in $K_{1}=\mathbb{F}_{q}(T)\left(\theta_{1}\right)$, so clearly $p$ does not split completely in $L_{1}$. Thus $p$ splits differently in $L_{1}$ and $L_{2}$, so the two fields are not isomorphic. Thus $\mathbb{F}_{q}(T)(\sqrt{d})$ has two distinct cubic, cyclic, unramified extensions in which the prime at infinity splits completely, and therefore has 3 -rank at least 2.

We conclude this section by showing that Theorem 1 yields infinitely many real and infinitely many imaginary quadratic function fields with 3rank at least 2. The following lemma can be found in [19].

Lemma 4. Let $d$ be any square-free polynomial in $\mathbb{F}_{q}[T]$. The prime at infinity in $\mathbb{F}_{q}(T)$ decomposes in the quadratic extension $\mathbb{F}_{q}(T)(\sqrt{d})$ as follows.
(i) If $\operatorname{deg}(d)$ is odd, then infinity is totally ramified.
(ii) If $\operatorname{deg}(d)$ is even and $\operatorname{sgn}(d)$ is a square in $\mathbb{F}_{q}$, then infinity splits completely.
(iii) If $\operatorname{deg}(d)$ is even and $\operatorname{sgn}(d)$ is not a square in $\mathbb{F}_{q}$, then infinity is inert.
We say that $\mathbb{F}_{q}(T)(\sqrt{d})$ is real in case (ii) and imaginary otherwise. Note that since $\operatorname{deg}(w)>\operatorname{deg}(c)$, we have

$$
\operatorname{deg}(d)=\operatorname{deg}(c)+5 \operatorname{deg}(w)+2 \operatorname{deg}(p)
$$

If $\operatorname{deg}(c)$ and $\operatorname{deg}(w)$ have opposite parities, then $\operatorname{deg}(d)$ is odd, and so the prime at infinity is totally ramified in $\mathbb{F}_{q}(T)(\sqrt{d})$. If, however, $\operatorname{deg}(c)$ and $\operatorname{deg}(w)$ have the same parity, then $\operatorname{deg}(d)$ is even. We also have

$$
\operatorname{sgn}(c)=32 \operatorname{sgn}(c) \operatorname{sgn}(w)^{5} \operatorname{sgn}\left(p^{2}\right),
$$

so infinity splits completely in $\mathbb{F}_{q}(T)(\sqrt{d})$ if $2 \operatorname{sgn}(c) \operatorname{sgn}(w)$ is a square in $\mathbb{F}_{q}$ and is inert otherwise. We can easily choose $c$ and $w$ whose leading terms have the desired properties; therefore Theorem 1 produces infinitely many quadratic function fields of any desired signature with 3 -rank at least 2 .

Acknowledgments. The author was supported, in part, by a grant from the AWM. She would also like to thank Michael Rosen for several helpful discussions.

## References

[1] M. Bauer, M. Jacobson, Y. Lee, and R. Scheidler, Construction of hyperelliptic function fields of high 3-rank, Math. Comp. 77 (2008), 503-530.
[2] M. Craig, A type of class group for imaginary quadratic fields, Acta Arith. 22 (1973), 449-459.
[3] F. Diaz y Diaz, On some families of imaginary quadratic fields, Math. Comp. 32 (1978), 637-650.
[4] C. Erickson, N. Kaplan, N. Mendoza, A. M. Pacelli, and T. Shayler, Parametrized families of quadratic number fields with 3-rank at least 2, Acta Arith. 130 (2007), 141-147.
[5] C. Erickson, N. Kaplan, N. Mendoza, and T. Shayler, Williams College SMALL REU Algebraic Number Theory report, unpublished.
[6] C. Friesen, Class number divisibility in real quadratic function fields, Canad. Math. Bull. 35 (1992), 361-370.
[7] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), 565-582.
[8] Y. Kishi and K. Miyake, Parametrization of the quadratic fields whose class numbers are divisible by three, J. Number Theory 80 (2000), 209-217.
[9] Y. Lee, The structure of the class groups of global function fields with any unit rank, J. Ramanujan Math. Soc. 20 (2005), 125-145.
[10] -, Class number divisibility of relative quadratic function fields, Acta Arith. 121 (2006), 161-173.
[11] Y. Lee and A. Pacelli, Subgroups of the class groups of global function fields: the inert case, Proc. Amer. Math. Soc. 133 (2005), 2883-2889.
[12] -, 一, Higher rank subgroups in the class groups of imaginary function fields, J. Pure Appl. Algebra 207 (2006), 51-62.
[13] P. Llorente and E. Nart, Effective determination of the decomposition of rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
[14] P. Llorente and J. Quer, On the 3-Sylow subgroup of the class group of quadratic fields, Math. Comp. 50 (1988), 321-333.
[15] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150.
[16] A. Pacelli, Abelian subgroups of any order in class groups of global function fields, J. Number Theory 106 (2004), 29-49.
[17] -, The prime at infinity and the rank of the class group of a global function field, ibid. 116 (2006), 311-323.
[18] J. Quer, Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 215-218.
[19] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002.
[20] -, The Hilbert class field in function fields, Expo. Math. 5 (1987), 365-378.
[21] P. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237-241.
[22] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.

Department of Mathematics
Williams College
Williamstown, MA 01267, U.S.A.
E-mail: Allison.Pacelli@williams.edu

Received on 5.11.2007
and in revised form on 30.3.2009

