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Function fields with 3-rank at least 2
by

ArLLISON M. PaceLLl (Williamstown, MA)

1. Introduction. It is well known that there are infinitely many
quadratic number fields and function fields with class number divisible by
a given integer n (see Nagell [15] (1922) for imaginary number fields, Ya-
mamoto [22] (1969) and Weinberger [21] (1973) for real number fields, and
Friesen [6] (1990) for function fields). A related question concerns the n-rank
of the field, that is, the greatest integer r for which the class group contains a
subgroup isomorphic to (Z/nZ)". In [22], Yamamoto showed that infinitely
many imaginary quadratic number fields have n-rank at least 2 for any
positive integer n > 2. In 1978, Diaz y Diaz [3] developed an algorithm for
generating imaginary quadratic fields with 3-rank 2, and Craig [2] showed in
1973 that there are infinitely many real quadratic number fields with 3-rank
at least 2 and infinitely many imaginary quadratic number fields with 3-rank
at least 3. A few examples of higher 3-rank have also been found (see for
instance Llorente and Quer [14, 18] who found three imaginary quadratic
number fields with 3-rank 6 in 1987/1988). In a recent paper [4], Erickson,
Kaplan, Mendoza, Shayler, and the author gave infinite, simply parameter-
ized families of real and imaginary quadratic fields with 3-rank 2. Here we
give a function field analogue.

Note that Bauer, Jacobson, Lee, and Scheidler [1] have given algorithms
which yield imaginary quadratic function fields with 3-rank at least 2 and
a possibly empty set of imaginary quadratic function fields with 3-rank at
least 3. The construction below yields infinitely many quadratic function
fields, of any given signature, with 3-rank at least 2. See [9], [11], [12], [16],
and [17] for constructions of function fields of arbitrary degree m with large
n-rank for general n.

Throughout we let ¢ be a power of an odd prime, ¢ = 1 (mod 3). We use
sgn(f) to denote the leading coefficient of a polynomial f € Fy[T], and we
let | f| = ¢i8) for f € F,[T]. The main result is as follows.
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THEOREM 1. Let p1 and pa be any irreducible polynomials over Fy[T].
Let p be any irreducible polynomial of even degree in Fy[T] such that 2(p*—1)
is not a cube modulo p1 and 2p(p* — 1) is not a cube modulo ps. If ¢ and w
are any polynomials in Fy[T] such that

0 (mod p),
w =4 0 (mod py),
—18¢ (mod p2),
c=0 (mod p? — 1), and ¢ £ 0 (mod p1p2), and
(i) deg(w) > deg(c),
(i) (—21935¢8)b1=1/3 2 1 (mod p),
then
Fy(T)(v/8c(w? + 18cw + 108¢2) [4w3(p? — 1) — 216¢(w? + 18cw + 108¢2)])
has 3-rank at least 2.

We show in Lemma 1 that it is always possible to choose such primes
p1, P2, and p. As in [4], the idea of the proof is to construct, for each d of the
prescribed form, two distinct, unramified, cyclic, cubic extensions of ]F'q(\/;Z).
By class field theory, then, the field has 3-rank at least 2.

2. 3-Rank 2. Recall that the Hilbert class field of a global function
field K is the maximal unramified abelian extension of K in which the
prime at infinity splits completely, and that Gal(H/K) = Clg, where Clg
denotes the ideal class group of K (see [20] for further details about explicit
class field theory in function fields). It follows that the class number of K is
divisible by 3 if and only if there is a cyclic, cubic, unramified extension of K
in which the prime at infinity splits completely. In fact, if K is a quadratic
field, then K has 3-rank n if and only if there are exactly (3™ — 1)/2 such
extensions of K ([7]). To prove that a quadratic field K has 3-rank at least 2,
therefore, it suffices to show that K has two distinct cyclic, cubic, unramified
extensions in which the infinite prime splits completely.

First, notice that we may assume that ¢ and w are relatively prime,
because the quadratic field parameterized by ¢ and w is the same as the
field parameterized by ¢/(c,w) and w/(c, w).

In [8], Kishi and Miyake give a characterization of all quadratic number
fields with class number divisible by 3. The following is a function field
analogue of Kishi and Miyake’s result. A proof (of an alternative statement
of the theorem) can be found in [10]. A proof of the version below can be
found in [5]. The proof is very similar to the number field case, and uses a
function field version of a result of Llorente and Nart [13] which gives the
decomposition of a prime P € F,(T) in the cubic extension generated by a
root of an irreducible cubic polynomial g(Z) € Fy(T).
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THEOREM 2. Let u and w be relatively prime polynomials in Fy[T] with
leading coefficients o and (3, respectively. Suppose that the following condi-
tions hold.

(i) d = duw?® — 27u? is not a square in F,[T).
(ii) g(Z) = Z3 —uwZ — u? is irreducible over Fy[T.
(iii) One of the following conditions holds:
(1) 3 deg(uw) > deg(u?).
(2) 2 deg(uw) = deg(u?) and z*—ax+p has three distinct roots in Fy.
(3) 3 deg(uw) < deg(u?), 3| deg(u?), and one of the following:

(a) 3t(¢ - 1),
(b) 3| (¢ —1) and —p is a cube in Fy.

Let 6 be any root of g(Z). Then the normal closure L of Fq(T)(0) is a
cyclic, cubic, unramified extension of Fy(T)(v/d) in which the prime at in-
finity splits completely; in particular, then, k = Fq(T)(\/g) has class number
divisible by 3. Conversely, every quadratic function field k with class num-
ber divisible by 3 and every unramified cyclic cubic extension of k in which
infinity splits is given by a suitable choice of polynomials u and w.

Let p, p1, and ps be as in the statement of Theorem 1; Lemma 1 below
shows that such polynomials must exist. Given polynomials ¢ and w, we
define polynomials u, x, and y so that the two pairs, u,w and z,y, each
satisfy the conditions of Theorem 2 and the cubic fields have discriminants
with the same square-free part as

d = 8c(w? + 18cw + 108¢%)[4w? (p? — 1) — 216¢(w? + 18cw + 108¢2)].

By Theorem 2, then, F,(T)(v/d) has two cyclic, cubic, unramified extensions
L1 and Lo in which the prime at infinity splits completely. We show that Lq
and Lo are distinct by showing that the prime p splits differently in each. It
then follows that F,(7)(v/d) has 3-rank at least 2.

LEMMA 1. There exist irreducible polynomials p,p1,p2 € Fy[T] such that
2(p% —1) is not a cube modulo p1 and 2p(p* — 1) is not a cube modulo ps.

Proof. Consider the elliptic curves given by
By: 202 —-1)=2a3 Ey: 2y(y? —1)=2>.

To see that F» is, in fact, an elliptic curve, it is enough to show that it is
nonsingular, since then the genus is given by (d — 1)(d — 2)/2; since d = 3
here, the genus is 1. In homogeneous coordinates, F» is given by

f(m,y,z) = 2(y3 - yzz) — $3.
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The derivatives are:

of of 2 2

e a—y—Gy — 227, g——élyz.
It is not hard to see that there are no nonzero values for z,y, z with the
partial derivatives simultaneously zero, so Fs is nonsingular.

We just need to show for ¢ = 1,2, that there exists 3; € Fy[T'] for which
there is no «o; € Fy[T] with (o, 5;) € E; (mod p;); choosing an irreducible
polynomial p € F,[T] with p = ; (mod p;) gives the desired result. Notice
that Fq and Fy are both constant elliptic curves since the coefficients are
in F, rather than F,[T]. Let P; be an irreducible polynomial in [F,[T] of
degree d;. Then the zeta function for E; is

(1 —mqg*)(1 —miqg™®)
(1=g=)(1—gq'7)
where |m;| = /q and 7; denotes the complex conjugate of ;. The number
of points on E; over F, is given by
Ni=q+1-—m —ﬁi =q+1—2\/qcos(b;),

where 6; is defined by m;/7; = €%. For E; (mod p;), there exists w4, with
I7a.| = ¢%/? and zeta function

= —3z? of

Cr(E;) =

)= (=m0 = rag )
B = w1 = 09

The number of points on F; modulo p; then is given by

Na, = q% + 1= 7mq, = Ta, = ¢ + 1 - 29"/ cos(6%),

where ©; is defined by mg, /T4, = ¢'®. We claim that we can choose p; so
that cos(©;) is sufficiently large to guarantee that Ny < ¢%. The result
follows; if for all & € E; (mod p;), there exists at least one § € E; (mod p;)
for which (o, 8) is a point on the curve, then Ny, > q%, a contradiction.
Since E; is a constant curve, we have my, = 77? i, Thus ©; = d;0;. It
remains to show that we can choose d; so that cos(6;) is sufficiently large.
If not, then 0;/7 is a rational number, say m/n for some integers m and n.
Then 6; = mm/n, so e is a 2nth root of unity. We claim this is impossible.
Write 7, = \/?] €'©i. Raising both sides to the 2nth power, we get
=q", so q\ﬂd” Notice that £ and F, both have complex multipli-
catlon by Q((3), where (3 is a complex cube root of unity. Since ¢ = 1
(mod 3), it follows that E; is supersingular modulo ¢, and so there is a point
of order q on E; over F,, and hence a point of order ¢ on E; over Fys for
some positive integer s. Then the number of points on E; over [Fjons is

_ 2ns 2ns —2ns
Nq2ns =q +1—7le _ﬂ-di .

2
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This implies that ¢{ N2ns since ¢{1, so E; does not have a point of order ¢
over [F 2ns, a contradiction since E(Fgs) C E(IF j2ns ).

Thus, € is not a root of unity, so #; is commensurable with 27. We
can therefore choose irreducible primes pi,ps of degrees d; and do with
Ny, < q%, as desired. =

LEMMA 2. Choose c,w € Fy[T| such that

0 (mod p),

w =< 0 (mod py),

—18¢ (mod p2),
c=0 (mod p? — 1), ¢ # 0 (mod p1p2), and deg(w) > deg(c). If
" 8c

=21
then the pairs u, w and x,y each satisfy the hypotheses of Theorem 2; that is,

Fo(T)(VAuw3 — 27u?) and Fy(T)(\/4zy? — 2722) each admit cyclic, cubic,

unramified extensions in which the prime at infinity splits completely.

(w? + 18cw 4 108¢%), z =p*u, y=w+ 18,

Proof. First we show that v and w are relatively prime. If any prime
q divides both u and w, then we must have q|8643, contradicting the fact
that ¢ and w are relatively prime. If a prime q divides both = and y, then
first notice that q # p. Otherwise, since p|w and p |y, it would follow that
p| ¢, again contradicting the fact that ¢ and w are relatively prime. Now

8pc |, , 5. SpPcw(w +18¢c)  864p?c?
T =— (w* 4 18cw + 108¢”) = 5 5
p—1 p?—1 p*—1
_ 864p*c?
=51 (mod y).

Since q # p, it follows that q|c. But then since q|y, we infer that q|w, a
contradiction. Thus x and y must also be relatively prime.

Next we show that g1(Z) = 22 —uwZ —u? and go(2) = Z3 — xyZ — x*
are irreducible over F,[T]. Write ¢ = ¢(p?>—1). Notice that u = 864¢3(p* —1)?
(mod p1). Then

91(2) = 7% - (864c°)*(p* — 1)* = Z° — 2(p* — 1)[72¢*(p* — 1)]° (mod p1).

Since 2(p? — 1) is not a cube modulo py, g1(Z) is irreducible modulo p1,
and so g1(Z) is irreducible over Fy[T]. To see that go(Z) is also irreducible,
notice that y = w + 18¢ = 0 (mod p3). We also have

8c
p?—1

(w(w + 18¢) 4 108¢?) = 864¢° (p® — 1)? (mod p3),
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so x = p*u = 864p*c3(p? — 1)? (mod ps). Then
92(2) = 23 —xyZ — 2% = 73 — 864%p* (p? — 1)4
= 2p(p”* — 1)[72pc* (p* — 1)]° (mod po).
Since 2p(p? — 1) is not a cube modulo po, it follows that go(Z) is irreducible
modulo py, and therefore irreducible over F,[T7].
For condition (iii), we will show that 2 deg(uw) > deg(u?) and 3 deg(zy)
> deg(z?). Since deg(w) > deg(c), we see that

gdeg(uw) = % (deg(c) + 3deg(w) — 2deg(p))
> 2deg(c) + 4 deg(w) — 4deg(p) = deg(u?).

Similarly,

;deg(my) = g (2deg(p) + deg(u) + deg(w)) = g (deg(c) + 3deg(w))
> 2deg(c) + 4 deg(w) = 4 deg(p) + 2deg(u) = deg(z?).

Finally, we show that condition (i) is also satisfied, namely, that 4uw® —
27u? and 4xy> — 2722 are not squares in F,[T]. This follows from the other
conditions. Let 6 and 03 be roots of g1(Z) and go(Z), respectively, and let
L and Ly be the normal closures of F,(T)(61) and F,(T)(62) respectively.
It suffices to show that the Galois groups of L and Lo over F,(T) are
S3 since cubic fields with square discriminants are normal. So for ¢ = 1,2
suppose, for contradiction, that the Galois group of L; over Fy(T) is Z/37Z.
Let g be a prime in [Fy[7T7] that is totally ramified in L;. If vq(a) denotes the
exact power of p dividing a, then a function field analogue of Llorente and
Nart’s characterization of prime decomposition in cubic fields [13] implies
that q|uw, q|u?, and 1 < vg(b;) < vg(a;), where gf(Z) = Z3 + a;Z + b; is
obtained from g¢;(Z) by substituting Z/h for Z with appropriate h € Fy[T]]
so that vp(a;) < 1 or vp(b;) < 2 for all primes p € Fy[T]. Now v and w
are relatively prime, so q|u and qfw. This contradicts the condition that
vq(bi) < vq(a;). Thus, no prime is totally ramified in L;, contradicting the
assumption that the splitting field of g1(Z) is a Z/3Z-extension of Fy(T).
The argument for Lo is similar. The pairs u,w and x,y must therefore
each generate cubic, cyclic, unramified extensions of the quadratic fields

Fo(T)(VAuw3 — 27u?) and Fy(T)(\/4zy? — 2722), respectively, in which the

infinite prime splits completely. =

The following lemma is part of a function field analogue of Llorente and
Nart’s [13] determination of prime decomposition in cubic fields. We include
the statement and proof of only the cases we require. A complete statement
and proof can be found in [5].
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LEMMA 3. Let p be an irreducible polynomial in Fy[T], and g(Z) =
73 — AZ + B € Fy(T)[Z]. Let 0 be a root of g.

() If p| A, ptB, deg(p) even, and (—B)PI=D/3 £ 1 (mod p), then p
is inert in Fy(T)(6).
(ii) If ptA, p| B, and A is a square modulo p, then p splits completely in
F,(T)(0).
(iii) If ptA, p| B, and A is not a square modulo p, then p splits into
two distinct primes in Fq(T)(0), both unramified.

Proof. (i) If p| A and p1 B, then
9(Z)=27%~AZ + B= 7%+ B (mod p).

It suffices to show that Z + B is irreducible modulo p if deg(p) is even and
(=B)IPI=1)/3 £ 1 (mod p). Since deg(p) is even and (—B)(PI=1/3 £ 1 it
follows that —B is not a cube modulo p, so the polynomial is irreducible as
claimed.

(ii) If pt A and p| B, then
9g(2)=2°-AZ+B=2%-AZ = Z(Z*> - A) (mod p).

Since A is a square modulo p, then g factors into three distinct factors
modulo p, so p splits completely in Fy(T")(0).
(iii) As in case (ii), we have

9(Z2) =2~ AZ+B=2°-AZ=Z(Z% — A) (mod p).

But since A is not a square modulo p, the two polynomials on the right are
both irreducible. Thus p splits into two primes in F,(7")(6), both unramified,
one of relative degree 1 and one of relative degree 2. m

We are now ready to prove the main theorem.

Proof of Theorem 1. Given c,w € Fy(T), set

8¢

ORI (w? +18cw 4 108¢%), = =p’u, y=w+ 18c
p p—

u =
Let 6; be a root of g1(Z) = Z% — uwZ — u® and 6 a root of g2(Z) =
Z3—xyZ—a*. Let Ly and Ly denote the normal closures of F,(61) and Fy(62),
respectively. By Lemma 2, the pairs u,w and x,y satisfy the hypotheses of
Theorem 2, so that L; and Lo are unramified, cyclic, cubic extensions of
F,(01) and F,(62), respectively. Notice, however, that the cubic fields [F,(6;)
and F,(62) have discriminants which differ by a square factor:
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Az — 272% = 4(p*u)(w + 18¢)3 — 27(p?u)?
= p?[du(w® + 5de(w? + 18we + 108¢?)) — 27p*u?]
= p?[duw® + 27u?(p* — 1) — 27p*u?]
= p? (duw® — 27u?).

Thus Ly and Lo are both Ss-extensions of F,(7") with the same quadratic
subfield

Fo(T) (v 4uw?® — 27u?)

= F,(T) <\/p s T (w? + 18cw + 108¢2) (4w? — 27u)>

1
z fcl (w? + 18cw + 108c2)D

=T (T) <\/p280 1 (w? + 18cw + 108¢?) {411)3 -

=TF,(T) (\/(1)28_01)2 (w2 4 18cw + 108¢?)[4w3(p? — 1) — 216¢(w? + 18cw + 10802)})

= Fy(T)(Vd).

Finally, we claim that L, and Ly are not isomorphic. We will show that
the prime p € Fy[T] decomposes differently in the two fields. For Lo, notice
that vp(z) = 2 and p{y. To apply Lemma 3, we first substitute Z/p for Z.
The new “A” is then xy/p?, and we have

4-18c4

P2
Since p has even degree, —3 is a square modulo p, so by parts (ii) and (iii) of
the lemma, we see that p splits completely in Ky = F,(T)(62) and therefore
p splits completely in the normal closure Ls. Now for Lj, notice that p|w
and pfu. Furthermore,

(pl-1)/3 _ [ ((64c (Ip=073 1046..61(p|-1)/3
(u?)P [( 1>(108 )} = (—=2"73°c")\P # 1 (mod p).

—2035¢ = —3(2332¢%)? (mod p).

By Lemma 3(i) then, p is inert in Ky = F4(T")(61), so clearly p does not split
completely in L. Thus p splits differently in L1 and Lo, so the two fields are
not isomorphic. Thus F,(T)(v/d) has two distinct cubic, cyclic, unramified
extensions in which the prime at infinity splits completely, and therefore has
3-rank at least 2. m

We conclude this section by showing that Theorem 1 yields infinitely
many real and infinitely many imaginary quadratic function fields with 3-
rank at least 2. The following lemma can be found in [19].

LEMMA 4. Let d be any square-free polynomial in Fy[T|. The prime at in-
finity in F,(T) decomposes in the quadratic extension Fy(T)(Vd) as follows.
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(i) If deg(d) is odd, then infinity is totally ramified.
(ii) If deg(d) is even and sgn(d) is a square in Fq, then infinity splits
completely.
(iii) If deg(d) is even and sgn(d) is not a square in Fq, then infinity is
inert.

We say that F(T)(v/d) is real in case (ii) and imaginary otherwise. Note
that since deg(w) > deg(c), we have

deg(d) = deg(c) + 5 deg(w) + 2deg(p).

If deg(c) and deg(w) have opposite parities, then deg(d) is odd, and so the
prime at infinity is totally ramified in F,(T)(v/d). If, however, deg(c) and
deg(w) have the same parity, then deg(d) is even. We also have

sgn(c) = 32sgn(c) sgn(w)® sgn(p?),
so infinity splits completely in F,(T)(v/d) if 2sgn(c) sgn(w) is a square in F,,
and is inert otherwise. We can easily choose ¢ and w whose leading terms

have the desired properties; therefore Theorem 1 produces infinitely many
quadratic function fields of any desired signature with 3-rank at least 2.
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