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1. Introduction. The inequality of Erdős–Turán–Koksma gives an up-
per bound for the discrepancy of a finite sequence ω in [0, 1[s in terms
of certain exponential sums; see the monographs Drmota and Tichy [1]
and Kuipers and Niederreiter [7] for its general form, and Niederreiter [10]
for versions adapted to certain sequences ω of rationals as they appear in
applications. These inequalities are an important tool to assess the uni-
form distribution of low-discrepancy point sets or correlation properties of
pseudo-random numbers; see the surveys of Niederreiter [11], Niederreiter
and Shparlinski [13] and Hellekalek [4].

The classical inequality of Erdős–Turán–Koksma is based on the trigono-
metric function system. Variants have been established for Walsh and Haar
function systems in an arbitrary integer base b ≥ 2 in Hellekalek [2, 3].

What is the importance of these variants? Different types of sequences ω
require different types of exponential sums to study their equidistribution
properties, by means of discrepancy and other figures of merit. Hence, by
varying the function system, one is able to “synchronize” the exponential
sums with the type of sequence under study.

In this paper, we will introduce a function system closely related to the
dual group of p-adic integers Zp, p a prime, and we will prove a new vari-
ant of the inequality of Erdős–Turán–Koksma. This leads to general upper
bounds for discrepancy (see Theorem 3.6 and Corollary 3.7). In addition,
we will prove a variant of the Weyl criterion for the p-adic function system
under consideration (see Theorem 3.8). The uniform distribution of the van
der Corput sequence in base p then follows as a simple consequence (see
Corollary 3.9).
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2. Prerequisites. Throughout this paper, p denotes a prime and N
stands for the positive integers. We put N0 = N ∪ {0}.

2.1. The p-adic representation of real numbers. For a nonnegative inte-
ger a, let

a =
∑
j≥0

ajp
j , aj ∈ {0, 1, . . . , p− 1},

be the unique p-adic representation of a in base p. With the exception of at
most finitely many indices j, the digits aj are zero.

Every real number x ∈ [0, 1[ has a unique p-adic representation

x =
∑
j≥0

xjp
−j−1, xj ∈ {0, 1, . . . , p− 1},

under the condition that xj 6= p− 1 for infinitely many j. In the following,
this uniqueness condition will be assumed without further notice. We will
also write the p-adic representation of x ∈ [0, 1[ in the form x = 0.x0x1 . . . .

For g ∈ N, we denote the initial part of the p-adic representation of
x ∈ [0, 1[ by x(g) = 0.x0x1 . . . xg−1, and the initial part of the representation
of a rational integer (or p-adic integer) a by a(g) =

∑g−1
j=0 ajp

j . Then x(g) ∈
{bp−g : 0 ≤ b < pg} and a(g) ∈ {0, 1, . . . , pg−1}. Further, we define x(0) = 0
and k(0) = 0.

An interval of the form [bp−g, (b + 1)p−g[, 0 ≤ b < pg, g ≥ 0, b and g
integers, is called a (half-open) elementary p-adic interval of length p−g.
Let a0, a1, . . . , ag−1 be arbitrary digits in {0, 1, . . . , p − 1}, g ∈ N. Let
I[a0, a1, . . . , ag−1] = {x = 0.x0x1 . . . ∈ [0, 1[ : xj = aj , 0 ≤ j ≤ g − 1} de-
note the so-called cylinder set defined by the digits a0, a1, . . . , ag−1, where,
as throughout this paper, we are assuming the uniqueness condition for the
p-adic representation of x. It is easily seen that, for any elementary p-adic
interval I = [bp−g, (b+1)p−g[ of length p−g, g ∈ N, there is a unique cylinder
set I[a0, a1, . . . , ag−1] such that I = I[a0, a1, . . . , ag−1], and vice versa.

2.2. The p-adic integers Zp. Let Zp denote the compact group of p-adic
integers. We refer the reader to the monograph Robert [14] for details. An
element z of Zp will be written as

z =
∑
j≥0

zjp
j ,

with digits zj ∈ {0, 1, . . . , p− 1}.
The dual group Ẑp of Zp is given by the functions

Ẑp = {χ0} ∪ {z 7→ e2πiap
−g(z0+z1p+···+zg−1pg−1) : 0 < a < pg, g ∈ N},

where χ0 denotes the trivial character χ0 : z 7→ 1 for all z ∈ Zp. In the
description of Ẑp above, for the fractions a/pg, we may assume the condition
(a, pg) = (a, p) = 1.
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Definition 2.1. We define the (p-adic) Monna map ϕ as follows:

ϕ : Zp → [0, 1], ϕ
(∑
j≥0

zjp
j
)

=
∑
j≥0

zjp
−j−1.

Remark 2.1. The Monna map ϕ is continuous and surjective, but not
injective. Further, ϕ gives a bijection between the subset N of Zp and the
set {a/pg : 0 < a < pg, g ∈ N, (a, pg) = (a, p) = 1} of all reduced p-adic
fractions.

The latter fact allows for the following notation. For a nonnegative inte-
ger k, let

χk : Zp → {c ∈ C : |c| = 1}, χk(z) = e2πiϕ(k)(z0+z1p+··· ).

Hence, we may write the dual group in the form Ẑp = {χk : k ∈ N0}.
We will now define a function system which will be the main tool in

our discrepancy estimates. Let x ∈ [0, 1[ have the p-adic representation
x = 0.x0x1 . . . , where infinitely many digits xj are different from p− 1. By
z(x) ∈ Zp we will denote the element z(x) = x0 + x1p + · · · defined by the
digits of x. We have ϕ(z(x)) = x for all x ∈ [0, 1[.

Definition 2.2. For a nonnegative integer k, let

γk : [0, 1[→ {c ∈ C : |c| = 1}, γk(x) = χk(z(x)).

Let Γp = {γk : k ∈ N0}. It is easy to show that
�

[0,1[

γk(x) dx = 0, ∀k ∈ N.

For an integrable function f on [0, 1[, and for k ∈ N0, let f̂(k) denote the
kth Fourier coefficient of f with respect to the function system Γp,

f̂(k) =
�

[0,1[

f(x)γk(x) dx.

There is an obvious generalization of the preceding notions to the higher-
dimensional case. In the following, let x = (x1, . . . , xs) ∈ [0, 1[s, let k =
(k1, . . . , ks) ∈ Ns

0, and let λs denote s-dimensional Lebesgue measure, where
we will write λ instead of λ1 in the case s = 1. We define

γk(x) =
s∏
i=1

γki
(xi), Γ (s)

p = {γk : k ∈ Ns
0},

and call Γ (s)
p the p-adic function system on [0, 1[s. We will write Γp instead

of Γ (1)
p in the case s = 1.
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For an integrable function f on [0, 1[s, the kth Fourier coefficient of f
with respect to the function system Γ

(s)
p is given by

f̂(k) =
�

[0,1[s

f(x)γk(x) dx.

Further, we define the weight functions

ρ(k) =

{ 1 if k = 0,
2

pt sin(πkt−1/p)
if pt−1 ≤ k < pt, t ∈ N,

ρ(k) =
s∏
i=1

ρ(ki), k = (k1, . . . , ks) ∈ Ns
0.

We also introduce the weights ρ∗: ρ∗(0) = 1, ρ∗(k) = ρ(k)/2 for k 6= 0, and,
for k ∈ Ns

0, ρ∗(k) =
∏s
i=1 ρ

∗(ki).
For g ∈ N, we define the finite summation domains

∆(g) = {k = (k1, . . . , ks) : 0 ≤ ki < pg, 1 ≤ i ≤ s},
∆∗(g) = ∆(g) \ {0}.

The extreme discrepancy and the star discrepancy of a sequence are
defined as follows (see Niederreiter [10]). Let J denote the class of all subin-
tervals of [0, 1[s of the form

∏s
i=1[ui, vi[, 0 ≤ ui < vi ≤ 1, 1 ≤ i ≤ s, and let

J ∗ denote the subclass of J of intervals of the type
∏s
i=1[0, vi[. For J ∈ J ,

let 1J denote the indicator function of J , 1J(x) = 1 if x ∈ J and 1J(x) = 0
otherwise.

For a function f on [0, 1[s and a sequence ω = (xn)n≥0 in [0, 1[s, let

SN (f, ω) =
1
N

N−1∑
n=0

f(xn).

Definition 2.3. Let ω = (xn)n≥0 be a sequence in [0, 1[s.

• The (extreme) discrepancy DN (ω) of the first N elements of ω is de-
fined as

DN (ω) = sup
J∈J
|SN (1J − λs(J), ω)|.

• The star discrepancy D∗N (ω) of the first N elements of ω is defined as

D∗N (ω) = sup
J∈J ∗

|SN (1J − λs(J), ω)|.

3. The results

Lemma 3.1. Let g ∈ N, let a0, . . . , ag−1 be arbitrary digits, and let
I[a0, . . . , ag−1] be the elementary p-adic interval of length 1/pg defined by
these digits.
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(i) If pt−1 ≤ k < pt, 1 ≤ t ≤ g, then the function γk is constant on
I[a0, . . . , ag−1], with value γk(0.a0 . . . at−1), and

1̂I[a0,...,ag−1](k) =
1
pg
e−2πiϕ(k)(a0+···+at−1pt−1).

(ii) For all k ≥ pg,
1̂I[a0,...,ag−1](k) = 0.

Proof. For any k such that pt−1 ≤ k < pt, t ∈ N, we have ϕ(k) = c/pt,
with 1 ≤ c < pt, (c, pt) = (c, p) = 1.

Since k < pg, the function γk is constant on the elementary p-adic interval
I[a0, . . . , ag−1], with value γk(0.a0 . . . at−1) = χk(a0+· · ·+at−1p

t−1). Clearly,

1̂I[a0,...,ag−1](k) =
�

I[a0,...,ag−1]

γk(x) dx.

In order to prove (ii), let pt−1 ≤ k < pt, where t ≥ g + 1. Then we have
the following partition into disjoint cylinder sets:

I[a0, . . . , ag−1] =
p−1⋃
bg=0

. . .

p−1⋃
bt−1=0

I[a0, . . . , ag−1, bg, . . . , bt−1].

This implies

1̂I[a0,...,ag−1](k) =
1
pt
χk(a0 + · · ·+ ag−1pg−1)

·
p−1∑
bg=0

(e−2πiϕ(k)pg
)bg · . . . ·

p−1∑
bt−1=0

(e−2πiϕ(k)pt−1
)bt−1

︸ ︷︷ ︸
=0

.

Lemma 3.2. Let g ∈ N, let a0, . . . , ag−1 be arbitrary digits, and let I =
I[a0, . . . , ag−1]. Then

(1) 1I(x)− λ(I) =
∑

1≤k<pg

1̂I(k)γk(x), ∀x ∈ [0, 1[.

Proof. We note that, for f(x) = 1I(x)− λ(I), f̂(0) = 0. Further, for all
k 6= 0, f̂(k) = 1̂I(k). Let

S(x) =
∑

1≤k<pg

1̂I(k)γk(x), x ∈ [0, 1[.

Then

S(x) =
g∑
t=1

p−1∑
b=1

(b+1)pt−1−1∑
k=bpt−1

1̂I(k)γk(x).
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Lemma 3.1(i) implies that, for pt−1 ≤ k < pt,

1̂I(k)γk(x) =
1
pg
e2πiϕ(k)(x0+···+xt−1pt−1−(a0+···+at−1pt−1)).

For t with 1 ≤ t ≤ g, let a(t) = a0 + · · · + at−1p
t−1. By a slight abuse

of notation, we will write x(t) = x0+· · ·+xt−1p
t−1. If bpt−1 ≤ k ≤ (b+1)pt−1

− 1, then ϕ(k) = (b+ kt−2p+ · · ·+ k0p
t−1)/pt. Then

S(x) =
1
pg

( p−1∑
b=1

(e2πi(x0−a0)/p)b

+
g∑
t=2

( p−1∑
b=1

(e2πi(x(t)−a(t))/p
t
)b ·

p−1∑
kt−2=0

(e2πi(x(t)−a(t))/p
t
)kt−2p

· . . . ·
p−1∑
k0=0

(e2πi(x(t)−a(t))/p
t
)k0p

t−1
))
.

Suppose that x ∈ I = I[a0, . . . , ag−1]. Then x(t) = a(t) for 1 ≤ t ≤ g. As a
consequence,

S(x) =
1
pg

(
p− 1 +

g∑
t=2

(p− 1)pt−1
)

= 1− 1
pg
.

Trivially, 1I(x)− λ(I) = 1− 1/pg in this case. Hence, if x ∈ I, identity (1)
holds.

If x 6∈ I = I[a0, . . . , ag−1], define t0 = min{t, 1 ≤ t ≤ g : xt−1 6= at−1}.
If t0 = 1, then x0 − a0 6≡ 0 (mod p). This implies

p−1∑
b=1

(e2πi(x0−a0)/p)b = −1,

and, for all other t,

p−1∑
k0=0

(e2πi(x(t)−a(t))/p
t
)k0p

t−1
= 0.

Hence, identity (1) also holds in this case.
Now, let 2 ≤ t0 ≤ g. From the definition of t0, it follows that

x(t)− a(t)

=
{

0, 1 ≤ t < t0,
(xt0−1 − at0−1)pt0−1 + · · ·+ (xt−1 − at−1)pt−1, t0 ≤ t ≤ g.
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Hence,

(2) S(x) =
1
pg

(
p− 1 +

t0−1∑
t=2

(p− 1)pt−1 +
g∑

t=t0

( p−1∑
b=1

(e2πi(x(t)−a(t))/p
t
)b

·
p−1∑

kt−2=0

(e2πi(x(t)−a(t))/p
t
)kt−2p · . . . ·

p−1∑
k0=0

(e2πi(x(t)−a(t))/p
t
)k0p

t−1
))
,

with the convention that
∑t0−1

t=2 (p − 1)pt−1 = 0 in the case t0 = 2. The
nontrivial exponents in the sums above contain a factor of the form (x(t)−
a(t))p−tpt−1−v, where 0 ≤ v ≤ t−2, 2 ≤ t0 ≤ t. This factor will be an integer
if and only if 0 ≤ v ≤ t0−2. This is due to the fact that x(t)−a(t) ∈ pt0−1Z
for every t such that t0 ≤ t ≤ g.

Let ζt = e2πi(x(t)−a(t))/p
t
, and put

St,v =
p−1∑
kv=0

ζkvpt−1−v

t , 0 ≤ v ≤ t− 2.

If t ≥ t0 + 1, then the product
∏t−2
v=0 St,v will contain the factor St,t0−1. It

is easily seen that St,t0−1 = 0. As a consequence, the above product will be
zero. Hence, in (2), the sum

∑g
t=t0

has only one nonzero term, namely for
t = t0. This term has the value −pt0−1. As a consequence, S(x) = p−g(−1 +
pt0−1 − pt0−1) = −1/pg. This proves identity (1) in the case 2 ≤ t0 ≤ g and
completes the proof of this lemma.

Lemma 3.3. Let 0 < β < 1 and let I=[0, β[. Suppose that pt−1 ≤ k < pt,
t ∈ N. Then:

(i) The Fourier coefficient 1̂I(k) has the following value:

1̂I(k) =
1
pt
χk(β0 + · · ·+ βt−2pt−2)

·
(
e−2πikt−1βt−1/p − 1
e−2πikt−1/p − 1

+ e−2πikt−1βt−1/ppt(β − β(t))
)
.

(ii) The following estimate holds:

|1̂I(k)| ≤ 1
pt sin(πkt−1/p)

.

Proof. To show (i), we note that, because of k ≥ pt−1, it follows from
Lemma 3.1(ii) that

β(t−1)�

0

γk(x) dx = 0.
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Hence

1̂I(k) =
β�

β(t−1)

γk(x) dx =
�

I[β0,...,βt−2]

1[β(t−1),β[(x) γk(x) dx

= γk(β(t− 1))
β�

β(t−1)

e−2πiϕ(k)xt−1pt−1
dx

= γk(β(t− 1))
β�

β(t−1)

e−2πikt−1xt−1/p dx.

The digit xt−1 may take different values on the interval [β(t− 1), β[. Hence,
in the case where βt−1 6= 0, we have

β�

β(t−1)

e−2πikt−1xt−1/p dx =
β(t)�

β(t−1)

e−2πikt−1xt−1/p dx+
β�

β(t)

e−2πikt−1xt−1/p dx

=
βt−1−1∑
b=0

�

I[β0,...,βt−2,b]

e−2πikt−1xt−1/p dx

+
�

I[β0,...,βt−2,βt−1]

1[β(t),β[(x)e−2πikt−1xt−1/p dx

=
1
pt
e−2πikt−1βt−1/p − 1
e−2πikt−1/p − 1

+ e−2πikt−1βt−1/p(β − β(t)).

If βt−1 = 0, then β(t− 1) = β(t) and, as a consequence,

β(t)�

β(t−1)

e−2πikt−1xt−1/p dx = 0,

which implies

β�

β(t−1)

e−2πikt−1xt−1/p dx =
β�

β(t)

e−2πikt−1xt−1/p dx = e−2πikt−1βt−1/p(β − β(t))

= β − β(t).

This ends the proof of (i).
In order to prove (ii), we put c = e−2πikt−1/p and d = pt(β − β(t)). Due

to the condition pt−1 ≤ k < pt, the digit kt−1 is different from zero and
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kt−1/p 6∈ Z, which implies c 6= 1. From (i), we deduce the identity

|1̂I(k)| = 1
pt

∣∣∣∣cβt−1 − 1
c− 1

+ cβt−1d

∣∣∣∣.
It is 0 ≤ d < 1. Hence

|1̂(k)| ≤ 1
pt

(∣∣∣∣ 1
c− 1

+ d

∣∣∣∣+
1

|c− 1|

)
.

Now, for every real number δ with 0 ≤ δ ≤ 1, we have the inequality∣∣∣∣ 1
c− 1

+ δ

∣∣∣∣ ≤ 1
|c− 1|

.

The result follows.

Corollary 3.4. Let f(x) = 1I(x) − λ(I), where I = [ap−g, bp−g[, 0 ≤
a < b ≤ pg, with a, b, and g integers, g ≥ 1. Then f̂(0) = 0, f̂(k) = 1̂I(k)
for all k ≥ 1, and :

(i) If k ≥ pg, then f̂(k) = 0.
(ii) If pt−1 ≤ k < pt, 1 ≤ t ≤ g, then

|f̂(k)| ≤ 2
pt sin(πkt−1/p)

(= ρ(k)).

Proof. The first statement follows from Lemma 3.1(ii). The second state-
ment is a consequence of the identity f̂(k) = 1̂[0,bp−g [(k) − 1̂[0,ap−g [(k).
Lemma 3.3(ii) gives the result.

Lemma 3.5. Let f(x) = 1I(x) − λs(I), where I =
∏s
i=1[aip−g, bip−g[,

0 ≤ ai < bi ≤ pg, g ≥ 1. Then:

(i) For all k ∈ Ns
0 \∆∗(g),

f̂(k) = 0.

(ii) For all k ∈ ∆∗(g),
|f̂(k)| ≤ ρ(k).

(iii) The following identity holds:

(3) f(x) =
∑

k∈∆∗(g)

1̂I(k)γk(x), ∀x ∈ [0, 1[s.

Proof. Clearly, f̂(0) = 0. For all k 6= 0 we have the identity f̂(k) =
1̂I(k). Further, 1̂I(k) =

∏s
i=1 1̂Ii(ki), where Ii = [aip−g, bip−g[, and k =

(k1, . . . , ks).
If k ∈ Ns

0 \∆∗(g), then either k = 0, hence f̂(k) = f̂(0) = 0, or k 6= 0
and there exists an i such that ki ≥ pg. Corollary 3.4(i) implies 1̂Ii(ki) = 0.
As a consequence, f̂(k) = 1̂I(k) = 0. This proves (i).
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(ii) is a direct consequence of the second part of Corollary 3.4 and the
definition of the function ρ.

(iii) follows from 1I(x) =
∏s
i=1 1Ii(xi) for x ∈ [0, 1[s, and Lemma 3.2.

Theorem 3.6. Let p be a prime number , let ω be an arbitrary sequence
in [0, 1[s, and let g be a positive integer. Then

DN (ω) ≤ 1− (1− 2/pg)s +
∑

k∈∆∗(g)

ρ(k)|SN (γk, ω)|,(4)

D∗N (ω) ≤ 1− (1− 1/pg)s +
∑

k∈∆∗(g)

ρ∗(k)|SN (γk, ω)|.(5)

Proof. For a given positive integer g, consider the tiling of [0, 1[s by
elementary p-adic cubes C =

∏s
i=1[aip−g, (ai + 1)p−g[, 0 ≤ ai < pg, 1 ≤ i

≤ s, of side length 1/pg.
Let J be an arbitrary subinterval of [0, 1[s and define J as the union of

those cubes C that are contained in J , that is, J =
⋃
C⊆J C. Further, let

J =
⋃
C∩J 6=∅C. Then J ⊆ J ⊆ J , where J may be void. It is elementary to

see that

|SN (1J − λs(J), ω)| ≤ λs(J)− λs(J)

+ max{|SN (1J − λs(J), ω)|, |SN (1J − λs(J), ω)|}.

In every coordinate i, the side lengths of J and J differ at most by 2/pg.
Hence, by an application of Niederreiter [10, Lemma 3.9],

λs(J)− λs(J) ≤ 1− (1− 2/pg)s.

This implies

DN (ω) ≤ 1− (1− 2/pg)s + max
I
{|SN (1I − λs(I), ω)|},

with the maximum taken over all intervals I =
∏s
i=1[aip−g, bip−g[, 0 ≤ ai <

bi ≤ pg, 1 ≤ i ≤ s, g ≥ 1. We then apply Lemma 3.5, which gives

(6) DN (ω) ≤ 1− (1− 2/pg)s +
∑

k∈∆∗(g)

ρ(k)|SN (γk, ω)|.

In the case of the star discrepancy, because of the special form of the
intervals, the side lengths differ at most by 1/pg. Therefore, the bound for
the approximation error λs(J)− λs(J) reduces to 1− (1− 1/pg)s. Further,
Lemma 3.3(ii) and its application to the s-dimensional case yield the follow-
ing estimate for the Fourier coefficients of the function f(x) = 1I(x)−λs(I),
where I =

∏s
i=1[0, bip−g[, 0 < bi ≤ pg, 1 ≤ i ≤ s, g ≥ 1:

|f̂(k)| ≤ ρ∗(k), ∀k ∈ ∆∗(g).

The estimate of the star discrepancy follows.
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Corollary 3.7. Let ω and g be as in Theorem 3.6. Suppose that B
is a global bound for the exponential sums SN (γk, ω) for all k in the finite
domain ∆∗(g),

|SN (γk, ω)| ≤ B, ∀k ∈ ∆∗(g).

Then

DN (ω) ≤ 1− (1− 2/pg)s +B(2.43g ln p+ 1)s,
D∗N (ω) ≤ 1− (1− 1/pg)s +B(1.22g ln p+ 1)s.

Proof. This is easily seen. We first discuss the estimate for the extreme
discrepancy DN (ω). The discrepancy bound (6) implies that we only have
to estimate ∑

k∈∆∗(g)

ρ(k) =
∑

k∈∆(g)

ρ(k)− 1.

Because of the identities ∑
k∈∆(g)

ρ(k) =
(pg−1∑
k=0

ρ(k)
)s

and
pg−1∑
k=0

ρ(k) = 1 +
g∑
t=1

p−1∑
b=1

(b+1)pt−1−1∑
k=bpt−1

ρ(k),

we obtain ∑
k∈∆(g)

ρ(k) = (1 + 2gC(p))s,

where C(p) = (1/p)
∑p−1

b=1 1/sin(πb/p). From Niederreiter [9, p. 574, inequal-
ity (5)] it follows that C(p) < (2/π) ln p + 2/5. An elementary calculation
gives the result.

The case of D∗N (ω) is completely analogous, one only has to replace the
weight function ρ by ρ∗.

Theorem 3.8 (Weyl Criterion for Γ (s)
p ). Let ω be a sequence in [0, 1[s.

Then ω is uniformly distributed modulo one if and only if

(7) lim
N→∞

SN (γk, ω) = 0, ∀k 6= 0.

Proof. Let ω be uniformly distributed modulo one. Then

lim
N→∞

SN (1J − λs(J), ω) = 0

for any subinterval J of [0, 1[s. The function γk is constant on appropriately
chosen elementary p-adic intervals I (see Lemma 3.1). Hence, γk is a finite
linear combination of the indicator functions 1I of such intervals I. This
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implies that SN (γk, ω) is a finite linear combination of terms of the form
SN (1I − λs(I), ω) and, hence, converges to zero if N goes to infinity.

If we assume relation (7), then inequality (6) implies limN→∞DN (ω)
= 0, from which the uniform distribution of ω follows.

Remark 3.1. The weight function ρ of the present paper is equal to
the weight function ρWalsh of Hellekalek [2], although the p-adic functions
γk are different from the Walsh functions in base p. When we compare the
system Γ

(s)
p to the Walsh system in base p, there is one important arithmetic

aspect to note. The Walsh functions are the appropriate tool for the analysis
of those digital sequences and nets where the construction rule involves inner
products of digit vectors, and hence is related to the theory of linear codes;
see Niederreiter [10, Sec. 4.3], Larcher [8, Sec. 2], Niederreiter and Pirsic
[12], Skriganov [15], and Hellekalek [5] for details. In marked contrast to
the Walsh system, the system Γ

(s)
p will be well-suited to study the uniform

distribution of sequences ω that stem from elementary arithmetic operations
with integers, hence, elements of Zp, like the van der Corput sequence in
base p. The following corollary will illustrate this point of view.

Corollary 3.9. Let ω = (xn)n≥0, xn = ϕ(n), be the van der Corput
sequence in prime base p. Then ω is uniformly distributed modulo one.

Proof. This is easily seen by the Weyl Criterion for Γp: We have γk(xn) =
e2πiϕ(k)n. Hence, for every k 6= 0,

|SN (γk, ω)| = 1
N

∣∣∣∣e2πiϕ(k)N − 1
e2πiϕ(k) − 1

∣∣∣∣ ≤ 1
N

1
|sinπϕ(k)|

.

This implies limN→∞ SN (γk, ω) = 0.
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