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1. Introduction. In the last two decades several different proofs have
been published of Rukhadze’s result [Ru] that the transcendental number
log 2 has the irrationality measure 3.89139978: see [H1], [HMV], [V], [Br]
and the very recent paper [Sa]. Similar results are also given in [A] and
[Rh]. Rukhadze’s record essentially depends on a method of eliminating
common prime factors from all the coefficients of certain polynomials. In his
review of the paper [Ru], Bertrand [Be] suggests that it would be interesting
to combine this method with the one introduced independently by [Rh]
and [DV]. We say that an irrational number α has an irrationality measure
µ if for all ε > 0 there exists a constant v0 = v0(ε) for which∣∣∣∣α− u

v

∣∣∣∣ > v−µ−ε

for all integers u and v with v ≥ v0. We denote by µ(α) the least of such µ.
One of the aims of this paper is to improve Rukhadze’s result as follows:

Theorem 1.1.

(1) µ(log 2) < 3.57455391.

The best previously known non-quadraticity measure of log 2 is 25.0463,
and was proved by Hata [H3], after [C], [Re] and [So]. See also [AV] for
a related approximation measure. We say that a non-quadratic number β
has a non-quadraticity measure µ2 if for all ε > 0 there exists a constant
H0 = H0(ε) for which

|β − U | > H(U)−µ2−ε

for all quadratic numbers U with H(U) ≥ H0. Here, H(U) denotes the
height of U , i.e. the maximum of the absolute values of the coefficients of its
minimal polynomial. We denote by µ2(β) the least non-quadraticity measure
of β. In the present paper we prove
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Theorem 1.2.

(2) µ2(log 2) < 15.65142025.

The powerful arithmetic method introduced by Rhin and Viola [RV1]
in the diophantine study of the constant ζ(2), and extended by the same
authors to ζ(3) [RV2] and to dilogarithms of some rational numbers [RV3],
is also applied by Viola [V] to logarithms of some rational numbers, and
by Amoroso and Viola [AV] to logarithms of some algebraic numbers. For
example, Amoroso and Viola prove that |log 2−U | > H(U)−6.2144 when U ∈
Q(
√

2) and H(U) is sufficiently large. Our method can be viewed as a two-
dimensional variant of that of [V], and presents some analogies with [RV2].
It can be described in three steps.

The first step is to introduce a family of double integrals. Let h, j, k, l,m,
q be six non-negative integers satisfying

(3) h+ j + q = k + l +m,

and such that

(4)
l + k − j = q + h−m ≥ 0,
h+ j − k = m+ l − q ≥ 0,
k +m− h = j + q − l ≥ 0.

This idea of introducing six instead of five independent parameters is similar
to what is done for the group structure of ζ(3) in [RV2]. Let x be a real
number, and suppose 0 < x < 1. We introduce the following family of
double complex integrals:

(5) I = I(h, j, k, l,m, q;x) := xmax{0,q−l,m−h}(1− x)k+l+m+1

×
i∞�

s=0

−i∞�

t=0

shtj dt ds

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1
.

In Section 2 we prove that the real and imaginary parts of the integral I
take the form

<(I) = P (x)
1
2

log2(1/x)−Q(x) log(1/x) +R(x),

=(I)
π

= P (x) log(1/x)−Q(x)

for some explicitly given polynomials with rational coefficients

P (x) = P (h, j, k, l,m, q;x),
Q(x) = Q(h, j, k, l,m, q;x),
R(x) = R(h, j, k, l,m, q;x).

By specializing x = 1/2, we see that =(I)/π is a linear form with rational
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coefficients in 1 and log 2 which is employed to get the bound (1). Moreover,

=(I)
π

log(1/x)−<(I) = P (x)
1
2

log2(1/x)−R(x),

thus giving simultaneous approximations to log(1/x) and 1
2 log2(1/x). These

are used to get the bound (2). We can also obtain non-quadraticity measures
of logarithms of other rational numbers by taking different values of x.

In [H3] Hata introduced another double complex integral having real and
imaginary parts of the same type as I. However, in his arithmetic analysis
of the polynomials P (x), Q(x) and R(x), the p-adic valuation of binomial
coefficients is used, instead of the permutation group method due to Rhin
and Viola.

An important feature of our treatment is that we give explicit expressions
for the polynomials P (x), Q(x) and R(x). We can do this by combining
Sorokin’s approach [So] with an idea introduced and developed by Rhin and
Viola, which consists in finding a permutation group acting on the set of
exponents appearing in the integral. Such a permutation group arises from
suitable birational transformations which change an integral into another
integral of the same type. Using the changes of variables

S =
t

s
, T = t and S = s, T =

xs

t

we show the invariance of the integral I(h, j, k, l,m, q;x) under the action
on the set {h, j, k, l,m, q} of a suitable permutation group G of order 6.
One of the essential points of this step is to find good upper bounds for the
degrees of P (x), Q(x) and R(x). This is obtained by elementary computation
of the derivatives of some rational functions. We shall also prove that the
polynomial P (x) = P (h, j, k, l,m, q;x) equals the double contour integral
defined by

J = J(h, j, k, l,m, q;x) := xmax{0,q−l,m−h}(1− x)k+l+m+1(6)

× 1
(2πi)2

�

|s|=R

�

|t|=r

shtj dt ds

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1

for any r and R such that x < r < R < 1. This extends a formula of [So].
Again using the above changes of variables we see that J(h, j, k, l,m, q;x) is
also invariant under the action of the permutation group G.

The second step is to apply another idea introduced by Rhin and Viola
in order to get further arithmetic information on the coefficients of P (x),
Q(x) and R(x). We use the Euler integral representation of the Gauss hy-
pergeometric function to show the invariance of

I(h, j, k, l,m, q;x)
h!j!k!l!m!q!

and
J(h, j, k, l,m, q;x)

h!j!k!l!m!q!
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under the action of a group Φ of 36 permutations on

h, j, k, l,m, q, l + k − j, h+ j − k, k +m− h.
Of course, the group G is a subgroup of Φ, and has six left cosets in Φ. So in
Section 3 we find 6−1 = 5 non-trivial relations between integrals of the type
I(h1, j1, k1, l1,m1, q1;x), . . . , I(h6, j6, k6, l6,m6, q6;x), where hi, . . . , qi are
six suitably chosen integers among h, j, k, l,m, q, l+k−j, h+j−k, k+m−h.
Such relations provide new information on the polynomials P (x), Q(x) and
R(x).

We replace, in each of these integrals, the six integers h, j, k, l,m, q with
hn, jn, kn, ln,mn, qn respectively. Putting In = I(hn, jn, kn, ln,mn, qn;x),
we define Pn, Qn and Rn accordingly. The third step consists in computing
the limit

lim
n→∞

1
n

logPn

and finding an upper bound of

lim sup
n→∞

1
n

log |In|.

Then we can apply Hata’s Lemma 2.1 of [H2] for our Theorem 1.1, and
Lemma 2.3 of [H3] for our Theorem 1.2. At this point, it is natural to employ
Hata’s C2-saddle method [H3] in order to find the asymptotic behaviours of
In and Pn, related to the three stationary points of the function appearing
in the integrals I and J . However, in our arithmetic applications, only an
upper bound of |In| is needed, and this requires the C2-saddle method only
in a weak version. As for Pn, its asymptotic behaviour can be obtained by
the method introduced in the second proof of Lemma 3 of [BR]. Indeed,
apart from controlled factors given by powers of x and 1−x, we can express
Pn by a power series with positive coefficients.

Our Theorems 1.1 and 1.2 are obtained by taking the value x = 1/2. In
Theorem 1.1 the best choice for the parameters is h = l = 5, j = m = 6,
k = q = 4, and gives the bound (1). The same choice also gives µ2(log 2) <
18.4166.

The simplest choice h = j = k = l = m = q = 1 yields Cohen’s [C] result
µ2(log 2) < 287.8189, and also gives the bound µ(log 2) < 5.9382, worse
than Cohen’s [C] estimate µ(log 2) < 4.623.

The choice h = j = l = 11, k = m = 10, q = 9 gives Hata’s [H3] bound
µ2(log 2) < 25.0463.

The choice h = l = 8, j = m = 9, k = q = 7 gives µ2(log 2) < 15.6695,
and also µ(log 2) < 3.76981. Our Theorem 1.2 is proved with the choice
h = l = 65, j = m = 73 and k = q = 57.

We now consider further examples, taking x = a/(a+ 1), where a is a
positive integer. We recover all the results in Table 1 on p. 4582, and in
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Remark 4 on p. 4583 of [H3], by taking h = j = l = µ−1 + 1, k = m = µ−1,
q = µ−1 − 1, where µ is Hata’s parameter in [H3]. Improvements on the
results of [H3, p. 4582], are given in the following table. All our new irra-
tionality and non-quadraticity measures are obtained when the parameters
satisfy

(7) 0 < k = q < h = l < j = m and 2h = j + k,

so that the non-quadraticity measure obtained for log(1 + 1/a) actually de-
pends only on a rational parameter 0 < h/j < 1. The value of this parameter
yielding the best non-quadraticity measure seems to be an increasing func-
tion of a. Our method does not seem to give new irrationality measures of
the logarithms of rational numbers different from 2.

a h j h/j µ2(log(1 + 1/a)) <

1 65 73 0.89041. . . 15.651421

2 11 12 0.91666. . . 9.460812

3 29 31 0.93548. . . 7.902787

4 17 18 0.94444. . . 7.149533

5 98 103 0.95145. . . 6.695612

6 23 24 0.95833. . . 6.385084

7 25 26 0.96153. . . 6.156797

8 53 55 0.96363. . . 5.980276

9 29 30 0.96666. . . 5.838418

10 31 32 0.96875 5.721614

11 65 67 0.97014. . . 5.623186

2. Double complex integrals. Let h, j, k, l,m be any non-negative
integers such that q = k+ l+m−h− j ≥ 0, and let 0 < x < 1. We consider
the double complex integral

(8)
ζ∞�

s=0

ζ∞�

t=0

shtj

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1
dt ds,

where
ζ = e2πi/3 = −1

2
+ i

√
3

2
,

and the notation for the limits of integration means that the integration
paths in s and t are the half-lines going from zero to infinity through the
points ζ and ζ, respectively.

We claim that the integral (8) converges absolutely and uniformly for
x in a neighbourhood of any fixed x0 with 0 < x0 < 1. By the change
of variables s = ζX, t = ζY , this is equivalent to proving that for any
0 < x < 1,
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+∞�

0

+∞�

0

Xh

√
X2 +X + 1

l+k−j+1√
X2 +XY + Y 2 h+j−k+1

× Y j

√
Y 2 + xY + x2 k+m−h+1

dX dY

is finite. This is seen by splitting this integral into the sum of the integrals
over the regions:

(i) 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1;
(ii) X ≥ 1, 0 ≤ Y ≤ 1;

(iii) 0 ≤ X ≤ 1, Y ≥ 1;
(iv) X ≥ 1, Y ≥ 1.

Over the square (i) the integral is finite since h ≥ 0, j ≥ 0 and k ≥ 0, as is
clear by changing to polar coordinates X = % cosϑ, Y = % sinϑ and taking
0 ≤ ϑ ≤ π/2, 0 ≤ % ≤ R for any fixed R > 0. Over the strip (ii) we write
the integral as

1�

0

Y j dY
√
Y 2 + xY + x2 k+m−h+1

×
+∞�

1

X−l−2 dX√
1 + 1/X + 1/X2 l+k−j+1√

1 + Y/X + Y 2/X2 h+j−k+1
,

and we see that this is finite since j ≥ 0 and l ≥ 0. Similarly, over (iii) we
use h ≥ 0 and m ≥ 0. For (iv) we put X = 1/X1, Y = 1/Y1 and again we
change to polar coordinates X1 = % cosϑ, Y1 = % sinϑ, so that the integral
is finite over (iv) since l ≥ 0, m ≥ 0 and q = k + l +m− h− j ≥ 0.

The absolute convergence of (8) implies that we may interchange the
integrations in s and t, and by the uniform convergence the derivative of (8)
with respect to x equals

(9) (k +m− h+ 1)

×
ζ∞�

s=0

ζ∞�

t=0

shtj

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+(m+1)−h+1
dt ds,

this being an integral of the same type as (8), with m and q changed to
m+ 1 and q + 1, respectively.

We remark that the value of (8) is unchanged if we rotate the integration
path (0, ζ∞) for s by moving it to the half-line (0, η∞) for any η ∈ C
satisfying |η| = 1, ε ≤ arg η ≤ 4π/3 − ε, with ε > 0 fixed. Indeed, for any
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fixed t ∈ (0, ζ∞) the function

ϕ(s) =
sh

(1− s)l+k−j+1(s− t)h+j−k+1

has no poles for ε ≤ arg s ≤ 4π/3− ε. Thus, by the residue theorem, for any
% > 0 we get

%ζ�

0

ϕ(s) ds =
%η�

0

ϕ(s) ds+
�

γ%

ϕ(s) ds,

where γ% is the arc {|s| = % | arg s from arg η to arg ζ = 2π/3}. As %→ +∞
we have

(10)
∣∣∣ �
γ%

ϕ(s) ds
∣∣∣ ≤ 2π%h+1

(%− 1)l+k−j+1(%− |t|)h+j−k+1
= O(%−l−1)→ 0,

whence

(11)
ζ∞�

0

ϕ(s) ds =
η∞�

0

ϕ(s) ds.

Similarly, if the integration path (0, ζ∞) for s in (8) is fixed, we may move
the integration path (0, ζ∞) for t to the half-line (0, η∞), again for any η
satisfying |η| = 1, ε ≤ arg η ≤ 4π/3 − ε. We conclude that the integral (8)
equals

η1∞�

s=0

η2∞�

t=0

shtj

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1
dt ds

for any η1, η2 ∈ C satisfying |η1| = |η2| = 1, 0 < arg η1 < arg η2 < 2π. In
particular, (8) equals

i∞�

s=0

−i∞�

t=0

shtj

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1
dt ds.

Hence, by (5),

(12) I = I(h, j, k, l,m, q;x) = xmax{0,q−l,m−h}(1− x)k+l+m+1

×
ζ∞�

s=0

ζ∞�

t=0

shtj dt ds

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1
.

Similarly, in (6) we may take any r, R such that x < r < R < 1, in particular



154 R. Marcovecchio

r = x2/3, R = x1/3. Therefore,

(13) J = J(h, j, k, l,m, q;x) = xmax{0,q−l,m−h}(1− x)k+l+m+1

× 1
(2πi)2

�

|s|=x1/3

�

|t|=x2/3

shtj dt ds

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1
.

Using (12) and (13) we shall prove that the integrals I and J are invariant
under the action of a permutation group of order 6 acting on the parameters
h, j, k, l,m, q. For any fixed t ∈ (0, ζ∞), the involution s 7→ S defined by
S = t/s maps the half-line (0, ζ∞) onto itself, and for any fixed t such that
|t| = x2/3 it maps the circle |s| = x1/3 onto itself. Thus, if we make in (12)
and (13) the substitution

s = T/S, t = T,

which preserves both the integration domains (up to the orientation) and
the measure (up to the sign) in the integrals (12) and (13), i.e. satisfies

(14)
dt ds

(1− s)(s− t)(t− x)
= − dT dS

(1− S)(S − T )(T − x)
,

we get

I(h, j, k, l,m, q;x) = I(l, k, j, h, q,m;x),
J(h, j, k, l,m, q;x) = J(l, k, j, h, q,m;x).

Similarly, for any fixed s ∈ (0, ζ∞) and 0 < x < 1 the involution t 7→ T
defined by T = xs/t maps (0, ζ∞) onto itself, and for any fixed s such that
|s| = x1/3 it maps the circle |t| = x2/3 onto itself. Thus with the substitution

s = S, t = xS/T,

which also satisfies (14), we get

I(h, j, k, l,m, q;x) = I(k,m, h, q, j, l;x),
J(h, j, k, l,m, q;x) = J(k,m, h, q, j, l;x).

This shows that the integrals I(h, j, k, l,m, q;x) and J(h, j, k, l,m, q;x) are
invariant under all the permutations belonging to the group

G = 〈σ, τ 〉,
generated by σ = (h l)(j k)(m q) and τ = (h k)(j m)(l q). The group G
has six elements:

G = {ι,σ, τ ,στσ, τσ,στ},
where ι denotes the identity, and στσ = (h m)(j l)(k q), τσ = (h q j)
(k m l), στ = (h j q)(k l m) (according to Rhin and Viola’s notation, for
permutations α and β we denote by βα the product obtained by applying
first α and then β). Since στσ = τστ , we see that G is isomorphic to
the symmetric group S3. We remark that the relation (3) is preserved by
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the group G. In other words, for any η ∈ G we have η(h) + η(j) + η(q) =
η(k) + η(l) + η(m).

Let a1 ≥ a2 ≥ · · · ≥ an be a finite sequence of integers, and let b1, . . . , bn
be any reordering of a1, . . . , an. We then put max{b1, . . . , bn} = a1 and
max′{b1, . . . , bn} = a2.

We define four integers H, K, γ and δ as follows:

(15)

H = max{k + l − j, h+ j − k,m+ k − h},
K = max{[H/2] ,max′{k + l − j, h+ j − k,m+ k − h}},
γ = max{max′{h+ j, h+ l, k + l},max′{k +m, k + q, h+ q},

max′{j +m, j + q, l +m}},
δ = max{h+ j, h+ l, k + l, k +m, k + q, h+ q, j +m, j + q, l +m}.

We remark thatH,K, γ and δ are invariant under the action of G. Moreover,
0 ≤ γ ≤ δ. In what follows, we assume that (4) holds, so that H and K are
also non-negative.

For any n ∈ N, let dn = lcm{1, . . . , n} if n > 0, and d0 = 1. We will
prove the following

Proposition 2.1. Let 0 < x < 1, and let h, j, k, l,m, q be non-negative
integers satisfying (3). Suppose that the integers k + l − j, h + j − k and
m+k−h are also non-negative. Let H, K, γ and δ be defined by (15). Then
the integral I(h, j, k, l,m, q;x) defined by (5) satisfies

I(h, j, k, l,m, q;x) = P (x)
1
2

log2(1/x)−Q(x) log(1/x) +R(x)

+ πi(P (x) log(1/x)−Q(x))

for polynomials P (x), Q(x), R(x) such that

degP,degQ ≤ γ, degR ≤ δ and P (x), dHQ(x), dHdKR(x) ∈ Z[x].

Moreover , the polynomial P (x) equals the integral J(h, j, k, l,m, q;x) defined
by (6).

We need some lemmas.

Lemma 2.1. Up to applying a suitable permutation in the group G, we
may suppose

(16) m ≥ q and j ≥ l.
Proof. We claim that at least one of the following conditions holds:

(i) m ≥ q and j ≥ l;
(ii) k ≥ h and q ≥ m;
(iii) l ≥ j and h ≥ k.

Suppose, on the contrary, that (i), (ii) and (iii) are all false. Since (i) is false,
we distinguish two cases:
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First case. If m < q, then k < h, because (ii) is false. It follows that
m+ k < q + h. Using (3) we have j < l. Then (iii) is true.

Second case. If j < l, then h < k, because (iii) is false. It follows that
j + h < l + k, that is, m < q. Then (ii) is true.

The lemma follows, because σ interchanges (i) and (ii), and τ inter-
changes (ii) and (iii).

Owing to (3) and (16),

h+ j ≥ h+ l, h+ j ≥ k + l, k +m ≥ k + q, k +m ≥ h+ q,

j +m ≥ j + q, j +m ≥ l +m.

So in this case we have

(17)
γ = max{h+ l, k + l, k + q, h+ q, j + q, l +m},
δ = max{h+ j, k +m, j +m}.

We define

(18) E1 = k + l − j, E2 = h, E3 = h+ j − k, E4 = j, E5 = m+ k − h.

With this notation we have E1, . . . , E5 ≥ 0, and

H = max{E1, E3, E5}, K = max{[H/2],max′{E1, E3, E5}}.

The four non-negative integers k, l,m, q are equal to the integers

E2 +E4 −E3, E1 +E3 −E2, E3 +E5 −E4, E1 +E3 +E5 −E2 −E4,

respectively, which therefore are all non-negative. Moreover, the inequalities
m ≥ q and j ≥ l in (16) are equivalent to

(19) E1 ≤ E2 and E1 + E3 ≤ E2 + E4,

respectively.
We shall use the notation

(f(x))[n] :=
1
n!

dn

dxn
(f(x)).

We also denote by
ord f(x)

the order of vanishing of f(x) at x = 0.
In Lemmas 2.2–2.5 we extend Sorokin’s method [So].

Lemma 2.2. Let F be a non-negative integer ; let g(x)=A(x)/(1− x)F+1

for a polynomial A(x) ∈ Z[x]. Then for any n ∈ N we have (g(x))[n] =
A1(x)/(1− x)F+n+1 with a suitable polynomial A1(x) ∈ Z[x] satisfying
degA1 ≤ degA and ordA1 ≥ max{0, ordA− n}.
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Proof. We consider a function h(x) = xm/(1− x)F+1, with m1 := ordA
≤ m ≤ m2 := degA. Then, by Leibniz’s formula,

(h(x))[n] =
min{m,n}∑

r=0

(
m

r

)
xm−r

(
F + n− r

F

)
1

(1− x)F+n−r+1

=
Bm(x)

(1− x)F+n+1
,

where

Bm(x) =
min{m,n}∑

r=0

(
m

r

)(
F + n− r

F

)
xm−r(1− x)r,

so that Bm(x) ∈ Z[x], degBm ≤ m ≤ degA and ordBm ≥ m−min{m,n} =
max{0,m− n} ≥ ordA− n.

If A(x) = cm1x
m1 +cm1+1x

m1+1 + · · ·+cm2x
m2 , with cm1 , cm1+1, . . . , cm2

∈ Z, the lemma follows with A1(x) = cm1Bm1(x) + cm1+1Bm1+1(x) + · · ·+
cm2Bm2(x).

Lemma 2.3. Let h, j, k, l,m, q be non-negative integers satisfying (3)
and (4), but not necessarily (16). Let E1, . . . , E5 be defined by (18). Then

P ∗(x) := (1− x)E1+E3+E5+1

(
xE4

(
xE2

(
1

1− x

)[E1])[E3])[E5]

∈ Z[x],

and degP ∗ ≤ min{E1 + E3, E1 + E4}.

Proof. Dividing the polynomial xE2 by (1−x)E1+1, we find two polyno-
mials A0, B0 ∈ Z[x] satisfying degA0 ≤ E1 and degB0 < E2−E1 (here and
in what follows, we use the convention deg 0 = −∞) such that

xE2

(
1

1− x

)[E1]

=
xE2

(1− x)E1+1
=

A0(x)
(1− x)E1+1

+B0(x).

Since E1 + E3 ≥ E2, we have (B0(x))[E3] = 0. Hence, by Lemma 2.2 with
A(x) = A0(x), F = E1 and n = E3,

(20)
(

xE2

(1− x)E1+1

)[E3]

=
A1(x)

(1− x)E1+E3+1
,

where A1 ∈ Z[x] and degA1 ≤ E1. Dividing xE4A1(x) by (1−x)E1+E3+1 we
get

xE4

(
xE2

(1− x)E1+1

)[E3]

=
A2(x)

(1− x)E1+E3+1
+B1(x)

for some A2, B1 ∈ Z[x] with degA2 ≤ min{E1 + E3, E1 + E4} and degB1

< (E1 + E4) − (E1 + E3) = E4 − E3. As above, since E3 + E5 ≥ E4
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we have (B1(x))[E5] = 0. Then, by Lemma 2.2,

(21)
(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5]

=
P ∗(x)

(1− x)E1+E3+E5+1

with P ∗ ∈ Z[x] and degP ∗ ≤ min{E1 + E3, E1 + E4}.

Lemma 2.4. Let h, j, k, l,m, q be non-negative integers satisfying (3), (4)
and (16). Let E1, . . . , E5 be defined by (18). Then

xmax{0,E5−E4,E3+E5−E2−E4}(1− x)E1+E3+E5+1

×
(
xE4

(
xE2

(
log(1/x)

1− x

)[E1])[E3])[E5]

= P (x) log(1/x)−Q(x)

with

(22) P (x) = xmax{0,E5−E4,E3+E5−E2−E4}P ∗(x) ∈ Z[x],

where P ∗ is the polynomial in Lemma 2.3, and Q(x) satisfies

dHQ(x) ∈ Z[x].

Moreover ,

degP ≤ min{E1 + E3, E1 + E4}+ max{0, E5 − E4, E3 + E5 − E2 − E4},
degQ ≤ max{E1 + E3, E1 + E4}+ max{0, E5 − E4, E3 + E5 − E2 − E4},

whence degP,degQ ≤ γ.

Remark 2.1. Owing to (3), E1 +E3 +E5 = h+ j+ q = k+ l+m. Since
max{a1, a2}+ max{b1, b2, b3} = maxi=1,2, j=1,2,3 ai + bj , by (17) we have

max{E1 + E3, E1 + E4}+ max{0, E5 − E4, E3 + E5 − E2 − E4}
= max{h+ l, k + l, k + q, h+ q, j + q, l +m} = γ.

Proof of Lemma 2.4. By Leibniz’s formula we obtain, for any f(x) and
for any integer E ≥ 0,

(f(x) log(1/x))(E) = (f(x))(E) log(1/x) +
E∑
r=1

(
E

r

)
(log(1/x))(r)(f(x))(E−r),

whence, dividing by E!, we obtain

(23) (f(x) log(1/x))[E] = (f(x))[E] log(1/x) +
E∑
r=1

(−1)r

rxr
(f(x))[E−r].

We apply the last formula with f(x) = 1/(1− x) and E = E1:(
log(1/x)

1− x

)[E1]

=
log(1/x)

(1− x)E1+1
+

E1∑
r=1

(−1)r

r

x−r

(1− x)E1−r+1
.
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We now multiply by xE2 , and apply (23) again, with f(x) = xE2/(1− x)E1+1

and E = E3:(
xE2

(
log(1/x)

1− x

)[E1])[E3]

=
(

xE2

(1− x)E1+1

)[E3]

log(1/x)

+
E1∑
r=1

(−1)r

r

(
xE2−r

(1− x)E1−r+1

)[E3]

+
E3∑
r=1

(−1)r

r
x−r

(
xE2

(1− x)E1+1

)[E3−r]
.

We multiply by xE4 , and once again apply (23) with E = E5 and

f(x) = xE4

(
xE2

(1− x)E1+1

)[E3]

to obtain

(24)
(
xE4

(
xE2

(
log(1/x)

1− x

)[E1])[E3])[E5]

=
(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5]

log(1/x)

+
E1∑
r=1

(−1)r

r

(
xE4

(
xE2−r

(1− x)E1−r+1

)[E3])[E5]

+
E3∑
r=1

(−1)r

r

(
xE4−r

(
xE2

(1− x)E1+1

)[E3−r])[E5]

+
E5∑
r=1

(−1)r

rxr

(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5−r]

=
P ∗(x) log(1/x)

(1− x)E1+E3+E5+1
+ S1 + S3 + S5,

say. Here P ∗ is exactly the polynomial in Lemma 2.3. Note that Si = 0 if
Ei = 0. The rest of the proof is similar to the proof of Lemma 2.3.

Since E2 ≥ E1 by (19), in the sum S1, for all r = 1, . . . , E1, the expo-
nent E2 − r is non-negative. We repeat the argument given in the proof of
Lemma 2.3, with E1 and E2 replaced by E1 − r and E2 − r, respectively.
Therefore, similarly to (21),(

xE4

(
xE2−r

(1− x)E1−r+1

)[E3])[E5]

=
A3(x)

(1− x)E1+E3+E5−r+1

with A3 ∈ Z[x] and degA3 ≤ min{E1 + E3, E1 + E4} − r. Hence
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dH(1 − x)E1+E3+E5+1S1 is a polynomial with integer coefficients, and de-
gree ≤ min{E1 + E3, E1 + E4}.

In the sum S3, for each r = 1, . . . , E3 we apply Lemma 2.2 with
A(x) = xE2 , F = E1 and n = E3 − r. Thus

(25)
(

xE2

(1− x)E1+1

)[E3−r]
=

A4(x)
(1− x)E1+E3−r+1

with A4 ∈ Z[x], degA4 ≤ E2 and ord A4 ≥ E2 − E3 + r. Even if E4 − r
may be negative, we see that xE4−rA4(x) is a polynomial, since (E4 − r) +
(E2 − E3 + r) = E2 + E4 − E3 = k ≥ 0. Then, dividing xE4−rA4(x) by
(1− x)E1+E3−r+1, we get

xE4−r
(

xE2

(1− x)E1+1

)[E3−r]
=

A5(x)
(1− x)E1+E3−r+1

+B2(x),

with degA5 ≤ E1 +E3 − r, and degB2 < (E2 +E4 − r)− (E1 +E3 − r) =
E2 +E4−E1−E3. Since E1 +E3 +E5 ≥ E2 +E4, again by Lemma 2.2 we
have (

xE4−r
(

xE2

(1− x)E1+1

)[E3−r])[E5]

=
A6(x)

(1− x)E1+E3−r+E5+1

with A6 ∈ Z[x] and degA6 ≤ E1 +E3 − r. Thus, dH(1− x)E1+E3+E5+1S3 is
a polynomial with integer coefficients, and degree ≤ E1 + E3.

For S5, if we apply Lemma 2.2 with A(x) = xE2 , F = E1 and n = E3,
we see that the polynomial A1(x) in (20) satisfies ordA1 ≥ max{0, E2−E3}.
But in the proof of Lemma 2.3 we found that degA1 ≤ E1. Hence, multi-
plying (20) by xE4 and then applying Lemma 2.2 with A(x) = xE4A1(x),
F = E1 + E3 and n = E5 − r for each r = 1, . . . , E5, we obtain(

xE4

(
xE2

(1− x)E1+1

)[E3])[E5−r]
=

A7(x)
(1− x)E1+E3+E5−r+1

with degA7 ≤ E1 + E4, and ord A7 ≥ max{0, E4 − E5 + r, E2 + E4 −
E3 − E5 + r} ≥ r − min{E5 − E4, E3 + E5 − E2 − E4}. It follows that
dHx

max{0,E5−E4,E3+E5−E2−E4}(1− x)E1+E3+E5+1S5 is a polynomial with in-
teger coefficients and degree ≤ E1+E4+max{0, E5−E4, E3+E5−E2−E4}.
This concludes the proof of the lemma, with

Q(x) = −xmax{0,E5−E4,E3+E5−E2−E4}(26)
× (1− x)E1+E3+E5+1(S1 + S3 + S5).

Lemma 2.5. Let h, j, k, l,m, q be non-negative integers satisfying (3), (4)
and (16). Let E1, . . . , E5 be defined by (18). Then



The Rhin–Viola method for log 2 161

xmax{0,E5−E4,E3+E5−E2−E4}(1− x)E1+E3+E5+1

×
(
xE4

(
xE2

( 1
2 log2(1/x)

1− x

)[E1])[E3])[E5]

= P (x)
1
2

log2(1/x)−Q(x) log(1/x) +R(x),

where P (x) and Q(x) are the polynomials in Lemma 2.4, and the polynomial
R(x) satisfies dHdKR(x) ∈ Z[x] and

degR ≤ E2 + E4 + max{0, E5 − E4, E3 + E5 − E2 − E4} = δ.

Remark 2.2. By (17) we have

E2 + E4 + max{0, E5 − E4, E3 + E5 − E2 − E4}
= max{E2 + E4, E2 + E5, E3 + E5} = max{h+ j, k +m, j +m} = δ.

Proof of Lemma 2.5. As in the proof of Lemma 2.4, we successively apply
formula (23) with

f(x) =
1
2 log(1/x)

1− x
, xE2

( 1
2 log(1/x)

1− x

)[E1]

, xE4

(
xE2

( 1
2 log(1/x)

1− x

)[E1])[E3]

and E = E1, E3, E5 respectively. We obtain(
xE4

(
xE2

( 1
2 log2(1/x)

1− x

)[E1])[E3])[E5]

=
(
xE4

(
xE2

( 1
2 log(1/x)

1− x

)[E1])[E3])[E5]

log(1/x)

+
E1∑
r=1

(−1)r

r

(
xE4

(
xE2−r

( 1
2 log(1/x)

1− x

)[E1−r])[E3])[E5]

+
E3∑
r=1

(−1)r

r

(
xE4−r

(
xE2

( 1
2 log(1/x)

1− x

)[E1])[E3−r])[E5]

+
E5∑
r=1

(−1)r

rxr

(
xE4

(
xE2

( 1
2 log(1/x)

1− x

)[E1])[E3])[E5−r]
.

By (24), the first term is

P ∗(x)1
2 log2(1/x)

(1− x)E1+E3+E5+1
+

1
2

(S1 + S3 + S5) log(1/x).

We apply the same process to each of the three remaining sums. For
each r = 1, . . . , E1 we may apply (24) with E1, E2 replaced by E1−r, E2−r
respectively. Thus we get
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E1∑
r=1

(−1)r

r

(
xE4

(
xE2−r

( 1
2 log(1/x)

1− x

)[E1−r])[E3])[E5]

=
1
2

E1∑
r=1

(−1)r

r

(
xE4

(
xE2−r

(1− x)E1−r+1

)[E3])[E5]

log(1/x)

+
1
2

E1−1∑
r=1

(−1)r

r

E1−r∑
s=1

(−1)s

s

(
xE4

(
xE2−r−s

(1− x)E1−r−s+1

)[E3])[E5]

+
1
2

E1∑
r=1

(−1)r

r

E3∑
s=1

(−1)s

s

(
xE4−s

(
xE2−r

(1− x)E1−r+1

)[E3−s])[E5]

+
1
2

E1∑
r=1

(−1)r

r

E5∑
s=1

(−1)s

sxs

(
xE4

(
xE2−r

(1− x)E1−r+1

)[E3])[E5−s]

=
1
2
S1 log(1/x) + T1 + T13 + T15,

say. Similarly

E3∑
r=1

(−1)r

r

(
xE4−r

(
xE2

( 1
2 log(1/x)

1− x

)[E1])[E3−r])[E5]

=
1
2

E3∑
r=1

(−1)r

r

(
xE4−r

(
xE2

(1− x)E1+1

)[E3−r])[E5]

log(1/x)

+
1
2

E3∑
r=1

(−1)r

r

E1∑
s=1

(−1)s

s

(
xE4−r

(
xE2−s

(1− x)E1−s+1

)[E3−r])[E5]

+
1
2

E3−1∑
r=1

(−1)r

r

E3−r∑
s=1

(−1)s

s

(
xE4−r−s

(
xE2

(1− x)E1+1

)[E3−r−s])[E5]

+
1
2

E3∑
r=1

(−1)r

r

E5∑
s=1

(−1)s

sxs

(
xE4−r

(
xE2

(1− x)E1+1

)[E3−r])[E5−s]

=
1
2
S3 log(1/x) + T13 + T3 + T35,

say, and

E5∑
r=1

(−1)r

rxr

(
xE4

(
xE2

( 1
2 log(1/x)

1− x

)[E1])[E3])[E5−r]

=
1
2

E5∑
r=1

(−1)r

rxr

(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5−r]
log(1/x)
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+
1
2

E5∑
r=1

(−1)r

rxr

E1∑
s=1

(−1)s

s

(
xE4

(
xE2−s

(1− x)E1−s+1

)[E3])[E5−r]

+
1
2

E5∑
r=1

(−1)r

rxr

E3∑
s=1

(−1)s

s

(
xE4−s

(
xE2

(1− x)E1+1

)[E3−s])[E5−r]

+
1
2

E5−1∑
r=1

(−1)r

rxr

E5−r∑
s=1

(−1)s

sxs

(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5−r−s]

=
1
2
S5 log(1/x) + T15 + T35 + T5,

say. Note that Ti = 0 if Ei = 0 or Ei = 1, and Tij = 0 if Ei = 0 or Ej = 0.
In the double sum T1 we set r + s = t. We obtain

T1 =
1
2

E1∑
t=2

(−1)t
(
xE4

(
xE2−t

(1− x)E1−t+1

)[E3])[E5] t−1∑
s=1

1
s(t− s)

.

Moreover, for all t = 2, . . . , E1, we see that

1
2

t−1∑
s=1

1
s(t− s)

=
1
2t

t−1∑
s=1

(
1
s

+
1

t− s

)
=

1
2t

t−1∑
s=1

1
s

+
1
2t

t−1∑
s=1

1
t− s

=
1
t

t−1∑
s=1

1
s
.

A similar treatment can be made for the sums T3 and T5. In conclusion,

(27)
(
xE4

(
xE2

( 1
2 log2(1/x)

1− x

)[E1])[E3])[E5]

=
P ∗(x)1

2 log2(1/x)
(1− x)E1+E3+E5+1

+ (S1 + S3 + S5) log(1/x)

+ T1 + T3 + T5 + 2(T13 + T15 + T35),

where

T1 =
E1∑
r=2

r−1∑
s=1

(−1)r

rs

(
xE4

(
xE2−r

(1− x)E1−r+1

)[E3])[E5]

,

T3 =
E3∑
r=2

r−1∑
s=1

(−1)r

rs

(
xE4−r

(
xE2

(1− x)E1+1

)[E3−r])[E5]

,

T5 =
E5∑
r=2

r−1∑
s=1

(−1)r

rsxr

(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5−r]
,

2T13 =
E1∑
r=1

E3∑
s=1

(−1)r+s

rs

(
xE4−s

(
xE2−r

(1− x)E1−r+1

)[E3−s])[E5]

,
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2T15 =
E1∑
r=1

E5∑
s=1

(−1)r+s

rsxs

(
xE4

(
xE2−r

(1− x)E1−r+1

)[E3])[E5−s]
,

2T35 =
E3∑
r=1

E5∑
s=1

(−1)r+s

rsxs

(
xE4−r

(
xE2

(1− x)E1+1

)[E3−r])[E5−s]
.

The sums T1, T3 and T5 can be treated as the sums S1, S3 and S5 in the
proof of Lemma 2.4. Note that for all 1 ≤ s < r ≤ Ei with i = 1, 3, 5, we
have

1
rs
dEid[Ei/2] ∈ N.

Indeed, let λ = gcd(r, s). Since λ ≤ s and λ ≤ r−s, we have 2λ ≤ s+(r−s) =
r ≤ Ei, whence λ−1d[Ei/2] ∈ N. If µ, ν ∈ Z satisfy λ = µr + νs then

1
rs

=
1
λ

(
µ

s
+
ν

r

)
.

Therefore
1
rs
dEid[Ei/2] =

1
λ
d[Ei/2]

(
µ

s
dEi +

ν

r
dEi

)
∈ Z.

Since H = max{E1, E3, E5}, by the same argument used for S1, S3, S5 in
Lemma 2.4 and by Remark 2.1 we see that

dHd[H/2]x
max{0,E5−E4,E3+E5−E2−E4}(1− x)E1+E3+E5+1(T1 + T3 + T5)

is a polynomial with integer coefficients and degree ≤ γ ≤ δ.
As for 2T13, owing to (19), we may repeat the argument given for S3 in

the proof of Lemma 2.4, with E1 and E2 replaced by E1 − r and E2 − r,
respectively. We get(

xE4−s
(

xE2−r

(1− x)E1−r+1

)[E3−s])[E5]

=
A8(x)

(1− x)E1+E3+E5−r−s+1

with degA8 ≤ E1 +E3 − r− s. Therefore dHdK(1− x)E1+E3+E5+12T13 is a
polynomial with integer coefficients and degree ≤ E1 +E3 ≤ E2 +E4, again
by (19).

Concerning 2T15, we may apply the argument given for S5, with E1

and E2 replaced by E1 − r and E2 − r, respectively. We have(
xE4

(
xE2−r

(1− x)E1−r+1

)[E3])[E5−s]
=

A9(x)
(1− x)E1+E3+E5−r−s+1

with degA9 ≤ E1 + E4 − r and ordA9 ≥ s − (E5 − E4). Hence, by (19)
and by Remark 2.2, dHdKxmax{0,E5−E4,E3+E5−E2−E4}(1−x)E1+E3+E5+12T15

is a polynomial with integer coefficients and degree ≤ E1 + E4 + max{0,
E5 − E4, E3 + E5 − E2 − E4} ≤ γ ≤ δ.
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On the other hand, for 2T35, we multiply (25) by xE4−r and then we
apply Lemma 2.2. Thus, for all r = 1, . . . , E3 and s = 1, . . . , E5,(

xE4−r
(

xE2

(1− x)E1+1

)[E3−r])[E5−s]
=

A10(x)
(1− x)E1+E3+E5−r−s+1

with degA10 ≤ E2 + E4 − r and ordA10 ≥ (E2 + E4 − E3) − (E5 − s) =
s− (E3 +E5−E2−E4). We conclude that dHdKxmax{0,E5−E4,E3+E5−E2−E4}

× (1− x)E1+E3+E5+12T35 is a polynomial with integer coefficients and with
degree ≤ δ.

The lemma follows from (26) and (27).

In the following lemma we find the values of I and J in the simplest
case.

Lemma 2.6. For all 0 < x < 1 we have

I(0, 0, 0, 0, 0, 0;x) =
1
2

log2(1/x) + iπ log(1/x),

and J(0, 0, 0, 0, 0, 0;x) = 1, so that the conclusion of Proposition 2.1 holds
for h = j = k = l = m = q = 0.

Proof. For brevity we write

K(x) =
I(0, 0, 0, 0, 0, 0;x)

1− x
.

By (11), we have

K(x) =
i∞�

s=0

−i∞�

t=0

dt ds

(1− s)(s− t)(t− x)
=
−∞�

s=0

−i∞�

t=0

dt ds

(1− s)(s− t)(t− x)
.

Hence

K(x) =
−i∞�

s=0

i∞�

t=0

dt ds

(1− s)(s− t)(t− x)
=
−∞�

s=0

i∞�

t=0

dt ds

(1− s)(s− t)(t− x)
.

Using the inequality similar to (10), for the integral over a large half-circle
{|t| = ρ, −π/2 ≤ arg t ≤ π/2}, and applying the residue theorem, we see
that for any fixed s ∈ (0,−∞) we may rotate the t-half-line (0,−i∞) to
(0, i∞) in the positive direction. We get

−i∞�

0

dt

(s− t)(t− x)
−
i∞�

0

dt

(s− t)(t− x)
= 2πi Res

t=x

1
(s− t)(t− x)

=
2πi
s− x

.
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Therefore

K(x) =
−∞�

s=0

i∞�

t=0

dt ds

(1− s)(s− t)(t− x)
+ 2πi

−∞�

0

ds

(1− s)(s− x)

= K(x) + 2πi
log(1/x)

1− x
.

Hence

=(K(x)) =
K(x)−K(x)

2i
= π

log(1/x)
1− x

.

On the other hand, writing 1
(1−s)(s−t) = 1

1−t
(

1
1−s + 1

s−t
)

and integrating with
respect to s from 0 to −∞, we see that

K(x) =
−i∞�

0

log(1/t)
(1− t)(t− x)

dt,

where log(1/t) = log(1/|t|) + iπ/2. Similarly, writing 1
(s−t)(t−x) = 1

s−x
(

1
s−t +

1
t−x
)

and integrating with respect to t from 0 to i∞, we see that

K(x) =
−i∞�

0

log(s/x)
(1− s)(s− x)

ds,

where log(s/x) = log(|s|/x)− iπ/2. It follows that

<(K(x)) =
K(x) +K(x)

2
=

1
2

−i∞�

0

log(1/s) + log(s/x)
(1− s)(s− x)

ds

=
1
2

log(1/x)
−i∞�

0

ds

(1− s)(s− x)
=

1
2 log2(1/x)

1− x
.

By (6) we have

J(0, 0, 0, 0, 0, 0;x) =
1− x
(2πi)2

�

|s|=R

�

|t|=r

dt ds

(1− s)(s− t)(t− x)

for x < r < R < 1. By the residue theorem applied twice we get

1
2πi

�

|s|=R

(
1

2πi

�

|t|=r

dt

(s− t)(t− x)

)
ds

1− s

=
1

2πi

�

|s|=R

ds

(s− x)(1− s)
=

1
1− x

.

Remark 2.3. For all integers 0 ≤ L ≤M ,

1
M !

dM

dxM

(
xL

t− x

)
=

tL

(t− x)M+1
.
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To see this, we first decompose xL

t−x = tL

t−x − (xL−1 + txL−2 + · · ·+ tL−1), and
then we differentiate M times. This remark is useful in the following proof.

Proof of Proposition 2.1. Lemma 2.1 allows us to suppose that (19)
holds. By repeated application of (9) we have

xE2(K(x))[E1] = xE2

(ζ∞�
s=0

ζ∞�

t=0

dt ds

(1− s)(s− t)(t− x)

)[E1]

=
ζ∞�

s=0

ζ∞�

t=0

xE2 dt ds

(1− s)(s− t)(t− x)E1+1
.

Using the change of variable t = xs/T this integral becomes

ζ∞�

s=0

ζ∞�

t=0

xE2−E1tE1dt ds

(1− s)(s− t)E1+1(t− x)
.

By Remark 2.3 and recalling that E3 ≥ E2 − E1, we get

(xE2(K(x))[E1])[E3] =
ζ∞�

s=0

ζ∞�

t=0

tE2 dt ds

(1− s)(s− t)E1+1(t− x)E3+1
.

After the change of variable s = t/S we can rewrite the last integral in the
following way:

ζ∞�

s=0

ζ∞�

t=0

sE1tE2−E1 dt ds

(1− s)E1+1(s− t)(t− x)E3+1
.

Now the change of variable t = xs/T transforms the last integral into

ζ∞�

s=0

ζ∞�

t=0

xE2−E1−E3sE2tE1+E3−E2 dt ds

(1− s)E1+1(s− t)E3+1(t− x)
.

Hence

xE4(xE2(K(x))[E1])[E3] =
ζ∞�

s=0

ζ∞�

t=0

xE2+E4−E1−E3sE2tE1+E3−E2 dt ds

(1− s)E1+1(s− t)E3+1(t− x)
.

Since E5 ≥ E2 + E4 − E1 − E3, by Remark 2.3 we get

(xE4(xE2(K(x))[E1])[E3])[E5] =
ζ∞�

s=0

ζ∞�

t=0

sE2tE4 dt ds

(1− s)E1+1(s− t)E3+1(t− x)E5+1
.
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Hence, by Lemma 2.6, the last integral equals(
xE4

(
xE2

( 1
2 log2(1/x)

1− x

)[E1])[E3])[E5]

+ iπ

(
xE4

(
xE2

(
log(1/x)

1− x

)[E1])[E3])[E5]

.

By (5) and Lemmas 2.4 and 2.5 we obtain

I(h, j, k, l,m, q;x) = xmax{0,E5−E4,E3+E5−E2−E4}(1− x)E1+E3+E5+1

×
ζ∞�

s=0

ζ∞�

t=0

sE2tE4 dt ds

(1− s)E1+1(s− t)E3+1(t− x)E5+1

= P (x)
1
2

log2(1/x)−Q(x) log(1/x) +R(x) + πi(P (x) log(1/x)−Q(x)).

By Cauchy’s integral formula applied twice we get, for x < r < R < 1,(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5]

=
1

2πi

�

|t|=r

(
tE2

(1− t)E1+1

)[E3] tE4 dt

(t− x)E5+1

=
1

(2πi)2
�

|t|=r

tE4

(t− x)E5+1

�

|s|=R

sE2

(1− s)E1+1(s− t)E3+1
ds dt,

whence, by (6),

J(h, j, k, l,m, q;x) = xmax{0,E5−E4,E3+E5−E2−E4}(1− x)E1+E3+E5+1

×
(
xE4

(
xE2

(1− x)E1+1

)[E3])[E5]

.

By (22) and Lemma 2.3 we conclude that J(h, j, k, l,m, q;x) = P (x), and
Proposition 2.1 is proved.

3. Hypergeometric identities. We now construct a larger permuta-
tion group, acting on the set of nine integers

S = {h, j, k, l,m, q, l + k − j, h+ j − k, k +m− h},

and we derive useful transformation formulae for the integrals I(h, j, k, l,m,
q;x) and J(h, j, k, l,m, q;x). As in [RV1]–[RV3], we first extend the actions
of σ and τ to the set S by linearity. Taking account of (4), we have

σ = (h l)(j k)(m q)(h+ j − k l + k − j),
τ = (h k)(j m)(l q)(h+ j − k k +m− h).
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Let t ∈ (0,−i∞). By the change of variable s = u/(u− 1) we have
−∞�

0

sh

(1− s)l+k−j+1(s− t)h+j−k+1
ds = (−1)j+k

1�

0

uh(1− u)l

(t+ (1− t)u)h+j−k+1
du.

Using the Euler integral representation of the classical hypergeometric func-
tion (see e.g. [RV1, formula (3.2)]), we get

1�

0

uh(1− u)l

(t+ (1− t)u)h+j−k+1
du

=
h!l!

(h+ j − k)!(l + k − j)!

1�

0

uh+j−k(1− u)l+k−jtk−j

(t+ (1− t)u)h+1
du.

We now come back to the variable s, writing u = s/(s− 1). We have
1�

0

uh+j−k(1− u)l+k−j

(t+ (1− t)u)h+1
du = (−1)j+k

−∞�

0

sh+j−k

(1− s)l+1(s− t)h+1
ds.

Therefore
−∞�

0

sh

(1− s)l+k−j+1(s− t)h+j−k+1
ds

=
h!l!

(h+ j − k)!(l + k − j)!

−∞�

0

sh+j−ktk−j

(1− s)l+1(s− t)h+1
ds.

Multiplying by xmax{0,q−l,m−h}(1 − x)k+l+m+1tj/(t − x)k+m−h+1 and inte-
grating over the half-line (0,−i∞) with respect to t we obtain, by (3),

I(h, j, k, l,m, q;x) =
h!l!

(h+ j − k)!(l + k − j)!
I(h+j−k, k, j, l+k−j,m, q;x).

We infer that

(28)
I(h, j, k, l,m, q;x)

h!j!k!l!m!q!
is invariant under the action of the group

Φ = 〈σ, τ ,χ〉,
where

χ = (h h+ j − k)(l l + k − j)(j k).

For s ∈ (0, i∞) we can also apply the change of variable t = xv/(v − 1) to
the integral

−∞�

0

tj

(s− t)h+j−k+1(t− x)k+m−h+1
dt.
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By repeating the previous argument, we see that (28) is also invariant under
the action of the permutation (h k)(j h+j−k)(m k+m−h), which however
belongs to Φ, being equal to τστχτσ.

The group Φ has 36 elements. In order to prove this, we consider two
partitions A and B of S, precisely A = {U1, U2, U3} and B = {V1, V2, V3},
where

U1 = {h, j, q}, U2 = {k, l,m}, U3 = {l + k − j, h+ j − k, k +m− h},
V1 = {k, q, h+ j − k}, V2 = {j,m, l + k − j}, V3 = {h, l, k +m− h}.

The permutations σ and τ carry the set U3 onto itself and interchange U1

and U2, σ carries V3 onto itself and interchanges V1 and V2, τ carries V2 onto
itself and interchanges V1 and V3, and χ interchanges U1 and V1, U2 and
V2, U3 and V3. In other words, the permutations σ∗, τ ∗ and χ∗ of the set
A ∪B = {U1, U2, U3, V1, V2, V3} defined by

(29)
σ∗ = (U1 U2)(V1 V2),
τ ∗ = (U1 U2)(V1 V3),
χ∗ = (U1 V1)(U2 V2)(U3 V3)

are induced by σ, τ and χ, respectively, so that there exists a unique ho-
momorphism g : Φ → S6 of the group Φ into the symmetric group S6 of
the permutations of A∪B satisfying g(σ) = σ∗, g(τ ) = τ ∗ and g(χ) = χ∗.
The table

U1 U2 U3

V1 q k h+ j − k
V2 j m l + k − j
V3 h l k +m− h

shows that each intersection Ur ∩ Vs (r, s = 1, 2, 3) contains one and only
one element of S. Therefore, if ϕ ∈ Φ and g(ϕ) = ι∗ is the identity of S6,
then, for all r, s = 1, 2, 3, ϕ must map Ur ∩Vs onto itself, so that ϕ must be
the identity ι ∈ Φ. This shows that g is injective. Thus the group

Φ∗ := 〈σ∗, τ ∗,χ∗〉 ⊂ S6

is isomorphic to Φ, and in particular |Φ| = |Φ∗|. From (29) we get χ∗τ ∗χ∗σ∗

= (U1 U2 U3) and τ ∗σ∗ = (V1 V2 V3), whence |〈χ∗τ ∗χ∗σ∗, τ ∗σ∗〉| =
|A3 × A3| = 3 · 3 = 9. In addition, σ∗ /∈ 〈χ∗τ ∗χ∗σ∗, τ ∗σ∗〉, since each
element of this group is a product of 3-cycles, whereas σ∗ is not. Thus
〈χ∗τ ∗χ∗σ∗, τ ∗σ∗〉 is a proper subgroup of 〈χ∗τ ∗χ∗σ∗, τ ∗σ∗,σ∗〉 =
〈χ∗τ ∗χ∗, τ ∗,σ∗〉. Similarly, χ∗ /∈ 〈χ∗τ ∗χ∗, τ ∗,σ∗〉, since χ∗ interchanges
A and B, and is an odd permutation, whereas τ ∗ and σ∗, and hence also
χ∗τ ∗χ∗, map A onto itself and B onto itself, and are even permutations.
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Therefore

|Φ∗| = |〈χ∗τ ∗χ∗, τ ∗,σ∗,χ∗〉| ≥ 2|〈χ∗τ ∗χ∗, τ ∗,σ∗〉|
≥ 2 · 2|〈χ∗τ ∗χ∗σ∗, τ ∗σ∗〉| = 36.

On the other hand, let Φ̂ ⊂ S6 be the subgroup of the permutations ϕ̂ of
A ∪B satisfying {

ϕ̂(A) = A, ϕ̂(B) = B if ϕ̂ is even,
ϕ̂(A) = B, ϕ̂(B) = A if ϕ̂ is odd.

We claim that Φ∗ = Φ̂ and that |Φ̂| = 36. Since σ∗, τ ∗,χ∗ ∈ Φ̂, we have
Φ∗ ⊂ Φ̂ and |Φ̂| ≥ 36. Moreover, since the symmetric group S3 of all
permutations of A (or of B) contains three even permutations and three
odd permutations, Φ̂ contains 3 · 3 + 3 · 3 = 18 even permutations, hence
|〈χ∗τ ∗χ∗, τ ∗,σ∗〉| = Φ̂ ∩ A6 = 18. Note that ϕ̂ ∈ Φ̂ is odd if and only if
χ∗ϕ̂ is even. In conclusion, |Φ̂| = 36, whence Φ∗ = Φ̂ and |Φ| = |Φ∗| = 36.

In the rest of this section we follow Rhin and Viola’s notation and ter-
minology ([RV2, Sections 4 and 5] and [RV3, Sections 3 and 4]). With any
permutation ϕ ∈ Φ we associate the quotient of factorials

(30)
h!j!k!l!m!q!

ϕ(h)!ϕ(j)!ϕ(k)!ϕ(l)!ϕ(m)!ϕ(q)!
.

Obviously, if the permutations ϕ,ϕ′ ∈ Φ lie in the same left coset of the
subgroup G in Φ, the quotient (30) equals the similar quotient with ϕ′

in place of ϕ. Thus with each left coset of G in Φ we may associate the
corresponding quotient (30), where ϕ is any of the six permutations lying
in the coset considered.

We say that a permutation ϕ ∈ Φ has level v if the quotient (30) has
v factorials in the numerator and v in the denominator, after removing the
common factorials. For example, any element of G has level 0, and χ has
level 2. Since |G| = 6 and |Φ| = 36, there are 36 : 6 = 6 left cosets. If we
choose one permutation in each of the five left cosets of G different from G
itself, we get five transformation formulae for I(h, j, k, l,m, q;x). The three
permutations of level 2,

χ = (h h+ j − k)(l l + k − j)(j k),
τχτ = (h m)(k k +m− h)(q q + h−m),

στσχστσ = (j j + q − l)(l q)(m m+ l − q),

yield the identities
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I(h, j, k, l,m, q;x)

=
h!l!

(h+ j − k)!(l + k − j)!
I(h+ j − k, k, j, l + k − j,m, q;x)

=
k!q!

(k +m− h)!(q + h−m)!
I(m, j, k +m− h, l, h, q + h−m;x)

=
j!m!

(j + q − l)!(m+ l − q)!
I(h, j + q − l, k, q,m+ l − q, l;x),

and the two permutations of level 3,

χτχ = (h k +m− h)(j h+ j − k)(q q + h−m)(k m),
χστσχ = (k l + k − j)(l j + q − l)(m m+ l − q)(j q),

yield

I(h, j, k, l,m, q;x) =
h!j!q!

(k +m− h)!(h+ j − k)!(q + h−m)!
× I(k +m− h, h+ j − k,m, l, k, q + h−m;x)

=
k!l!m!

(l + k − j)!(j + q − l)!(m+ l − q)!
× I(h, q, l + k − j, j + q − l,m+ l − q, j;x).

We can separate the real and imaginary parts in all the previous identi-
ties, and to do this we apply Proposition 2.1. Moreover, if x ∈ (0, 1) is ra-
tional, then P (h, j, k, l,m, q;x), Q(h, j, k, l,m, q;x) and R(h, j, k, l,m, q;x)
are also rational, and log(1/x) is transcendental. Hence P (h, j, k, l,m, q;x),
Q(h, j, k, l,m, q;x) and R(h, j, k, l,m, q;x) are invariant under the action
of G. In addition,

P (h, j, k, l,m, q;x)

=
h!l!

(h+ j − k)!(l + k − j)!
P (h+ j − k, k, j, l + k − j,m, q;x)

=
k!q!

(k +m− h)!(q + h−m)!
P (m, j, k +m− h, l, h, q + h−m;x)

=
j!m!

(j + q − l)!(m+ l − q)!
P (h, j + q − l, k, q,m+ l − q, l;x)

=
h!j!q!

(k +m− h)!(h+ j − k)!(q + h−m)!
× P (k +m− h, h+ j − k,m, l, k, q + h−m;x)

=
k!l!m!

(l + k − j)!(j + q − l)!(m+ l − q)!
× P (h, q, l + k − j, j + q − l,m+ l − q, j;x),
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and similarly forQ(h, j, k, l,m, q;x) and R(h, j, k, l,m, q;x). This means that
the quotients similar to (28), with I replaced by P (i.e. by J), Q or R, are
also invariant under the action of the permutation group Φ.

We remark that the integers γ and δ defined by (15) are invariant under
the action of Φ, whereas H and K are not. We need to define two new inte-
gers M and N , not less than H and K, respectively, that are also invariant
under the action of Φ. Let

M = max{h, j, k, l,m, q, h+ j − k, l + k − j, k +m− h},
N = max{[M/2],max ′{h, j, k, l,m, q, h+ j − k, l + k − j, k +m− h}}.

We have M ≥ H and N ≥ K. In practice we can disregard [M/2] in the
definition of N since in all our numerical examples we choose the parameters
h, j, k, l,m, q satisfying (7), which implies M = h+ j−k and N = j. In fact,
by (7) we have l+ k − j < k, k +m− h = k + j − h = h and h+ j − k > j.
Hence M = h+j−k, h < 2h = j+k, M = h+j−k < 2j and M/2 < j = N .

For any natural number n Proposition 2.1 implies that P (hn, jn, kn, ln,
mn, qn;x) and P ((h+j−k)n, kn, jn, (l+k−j)n,mn, qn;x) are polynomials
with integer coefficients, and we have just proved that

((h+ j − k)n)!((l + k − j)n)!P (hn, jn, kn, ln,mn, qn;x)
= (hn)!(ln)!P ((h+ j − k)n, kn, jn, (l + k − j)n,mn, qn;x).

Thus, following the arguments given in [RV1, pp. 44–47], we see that each
prime p >

√
Mn for which [(l+k− j)ω] + [(h+ j−k)ω] < [hω] + [lω], where

ω = {n/p} = n/p − [n/p] denotes the fractional part of n/p, must divide
all the coefficients of the polynomial P (hn, jn, kn, ln,mn, qn;x). The same
argument applies to all the five identities written above, and also to all the
coefficients of dMnQ(hn, jn, kn, ln,mn, qn;x) and dMndNnR(hn, jn, kn, ln,
mn, qn;x). Therefore, each prime p >

√
Mn satisfying at least one of

(31)

[(h+j−k)ω]+[(l+k−j)ω] < [hω]+[lω],
[(k+m−h)ω]+[(q+h−m)ω] < [kω]+[qω],
[(j+q− l)ω]+[(m+ l−q)ω] < [jω]+[mω],
[(k+m−h)ω]+[(h+j−k)ω]+[(q+h−m)ω] < [hω]+[jω]+[qω],
[(l+k−j)ω]+[(j+q− l)ω]+[(m+ l−q)ω] < [kω]+[lω]+[mω]

divides all the coefficients of the polynomials P (hn, jn, kn, ln,mn, qn;x),
dMnQ(hn, jn, kn, ln,mn, qn;x) and dMndNnR(hn, jn, kn, ln,mn, qn;x).

Let ∆n denote the product of all prime numbers p >
√
Mn satisfying at

least one of the inequalities (31), and let Dn = dMn/∆n. We have proved
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Proposition 3.1. With the notation stated above,

(∆n)−1P (hn, jn, kn, ln,mn, qn;x),
DnQ(hn, jn, kn, ln,mn, qn;x),
DndNnR(hn, jn, kn, ln,mn, qn;x)

are polynomials in x with integer coefficients.

Remark 3.1. The identities corresponding to permutations of level 3
actually allow one to eliminate divisors of the above polynomials of the types
p and p2. However, the best irrationality and non-quadraticity measures we
can prove are all obtained when h, j, k, l,m, q satisfy (7). In this special case,
the two quotients of three factorials corresponding to two permutations of
level 3 lying in distinct left cosets of G in Φ, e.g. χτχ and χστσχ, coincide
with one quotient of two factorials only. A substitution indeed shows that,
under the assumption (7), the inequalities (31) become

[(h+ k − j)ω] + [(h+ j − k)ω] < [jω] + [kω],
[(h+ k − j)ω] + [(h+ j − k)ω] < 2[hω],

[(h+ k − j)ω] + [hω] < 2[kω],
[(h+ j − k)ω] + [hω] < 2[jω].

Again by the arguments in [RV1], these inequalities yield divisors of the
above polynomials only of the type p.

4. Asymptotic behaviour of Pn(x). Here and in the rest of this pa-
per we assume that all the nine integers h, j, k, l,m, q, l + k − j, h + j − k,
k + m − h are strictly positive and satisfy (7). We shall keep h, j, k, l,m, q
fixed, and make n→∞. Accordingly, we abbreviate Pn(x) = P (hn, jn, kn,
ln,mn, qn;x), Qn(x) = Q(hn, jn, kn, ln,mn, qn;x), Rn(x) = R(hn, jn, kn,
ln,mn, qn;x), and we define

Sn(x) :=
(
xE4n

(
xE2n

(
1

1− x

)[E1n])[E3n])[E5n]

,

where E1, . . . , E5 are given by (18). By (22) and Lemma 2.3 we have

(32) Pn(x) = xmax{0,E5−E4,E3+E5−E2−E4}n(1− x)(E1+E3+E5)n+1Sn(x).

We recall that 0 < x < 1. We write the function Sn(x) as a power series
in x. Since the coefficients of this power series are positive, we may apply
the method of [BR, pp. 201–202]. The condition (7) implies that E3−E2 =
(h + j − k) − h = j − k > 0, E5 − E4 = (m + k − h) − j = q − l < 0, and
E3 +E5 −E2 −E4 = j − k + q − l = m− h > 0. So 0 < E3 +E5 −E2 −E4
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< E3 − E2. Thus

((1− x)−1)[E1n] = (1− x)−E1n−1 =
∑
r≥0

(
r + E1n

E1n

)
xr,

so, using E3 − E2 > 0,

(xE2n((1− x)−1)[E1n])[E3n] =
∑

r≥(E3−E2)n

(
r + E1n

E1n

)(
r + E2n

E3n

)
xr+(E2−E3)n,

and finally, using E3 + E5 − E2 − E4 < E3 − E2,

Sn(x) =
(
xE4n

(
xE2n

(
1

1− x

)[E1n])[E3n])[E5n]

=
∑

r≥(E3−E2)n

(
r + E1n

E1n

)(
r + E2n

E3n

)(
r + (E2 + E4 − E3)n

E5n

)
× xr+(E2+E4−E3−E5)n.

We want to prove that

(33) lim
n→∞

1
n

logSn(x) = log max
y>E3−E2

F (y;x) = logF (ymax;x),

where

F (y;x) =
(y + E1)y+E1(y + E2)y+E2(y + E2 + E4 − E3)y+E2+E4−E3

yy(y + E2 − E3)y+E2−E3(y + E2 + E4 − E3 − E5)y+E2+E4−E3−E5

× xy+E2+E4−E3−E5

EE1
1 EE3

3 EE5
5

.

By computing d
dy logF (y;x), we see that dF

dy has the sign of x−H(y), where

(34) H(y) :=
(

1− E1

y + E1

)(
1− E3

y + E2

)(
1− E5

y + E2 + E4 − E3

)
.

Note that H(E3−E2) = 0, limy→+∞H(y) = 1 and that H(y) is the product
of three positive increasing functions for y > E3 − E2. Therefore dF

dy = 0
has one solution ymax = ymax(x) > E3−E2 satisfying H(ymax) = x, F (y;x)
is increasing for y < ymax and decreasing for y > ymax, and ymax(x) is a
continuous increasing function of x.

Let x1 be such that x < x1 <
√
x < 1. In the series Sn(x1) we consider

the general term

(35) ar :=
(
r + E1n

E1n

)(
r + E2n

E3n

)(
r + (E2 + E4 − E3)n

E5n

)
× xr+(E2+E4−E3−E5)n

1
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and we see that ar−1 < ar if and only if r(r+(E2−E3)n)(r+(E2+E4−E3−
E5)n) < (r + E1n)(r + E2n)(r + (E2 + E4 − E3)n)x1, which is equivalent
to r < ymax(x1)n. Similarly, ar−1 > ar if and only if r > ymax(x1)n. We
define rmax = rmax(x1) := [ymax(x1)n] (we omit, for brevity, the dependence
on n). We have rmax ≥ (E3 − E2)n, and the previous argument shows that
armax = maxr≥(E3−E2)n ar.

Moreover, r′ := [ymax(x)n] ≤ rmax(x1) ≤ r′′ := [ymax(
√
x)n]. Both r′

and r′′ are independent of x1. In what follows we put

Mn(x1) := max
r≥(E3−E2)n

ar = max
r′≤r≤r′′

ar.

Thus we have logMn(x1) = log armax . Taking the logarithm of (35) for r =
rmax(x1), and using Stirling’s formula in the simple form logn! = n log n−
n+O(log n), a straightforward computation yields

(36) lim
n→∞

(Mn(x1))1/n = F (ymax(x1);x1).

Let x2 := x/x1. Since 0 < x2 < 1, we have

Sn(x) =
∑

r≥(E3−E2)n

arx
r+(E2+E4−E3−E5)n
2

≤Mn(x1)
∑

r≥(E3−E2)n

x
r+(E2+E4−E3−E5)n
2 = Mn(x1)

x
(E4−E5)n
2

1− x2
.

Hence lim supn→∞(Sn(x))1/n ≤ F (ymax(x1);x1)xE4−E5
2 . Since x2 → 1 for

x1 → x, and limx1→x F (ymax(x1);x1) = F (ymax(x);x), it follows that we
have lim supn→∞(Sn(x))1/n ≤ F (ymax(x);x).

On the other hand, Sn(x) ≥ Mn(x1)xr
′′+(E2+E4−E3−E5)n

2 . From (36)
we deduce lim infn→∞(Sn(x))1/n ≥ F (ymax(x1);x1)xymax(

√
x)+E2+E4−E3−E5

2 ,
and then, for x1 → x we have lim infn→∞(Sn(x))1/n ≥ F (ymax(x);x). There-
fore limn→∞(Sn(x))1/n = F (ymax(x);x), as we claimed in (33).

We now prove that

(37) F (ymax(x);x) = min
x<t<s<1

f(s, t) = f(s1, t1),

where

f(s, t) =
sE2tE4

(1− s)E1(s− t)E3(t− x)E5

is the function appearing in the integrals (5) and (6), and x < t1 < s1 < 1.
We have f(s, t) > 0 inside the triangle {(s, t) ∈ R2 | x < t < s < 1}, and
f(s, t) = ∞ on the boundary. Hence the minimum in (37) exists. By (32)
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and by Proposition 2.1, for all r and R such that x < r < R < 1, we have

Sn(x) =
1

(2πi)2
�

|s|=R

�

|t|=r

(f(s, t))n
dt ds

(1− s)(s− t)(t− x)
.

Thus, by (33),

(38) logF (ymax;x) = lim
n→∞

1
n

logSn(x) ≤ log max
|s|=R
|t|=r

|f(s, t)|.

For all (s, t) ∈ C2 with |s| = R and |t| = r, we have |1 − s| ≥ 1 − R,
|s− t| ≥ R− r and |t− x| ≥ r − x, whence

(39) |f(s, t)| ≤ f(R, r).

On the other hand, the equation H(ymax) = x, with H(y) defined by (34),
implies F (ymax;x) = f(s∗, t∗), where

s∗ :=
ymax

ymax + E1

and

t∗ :=
(ymax + E2 + E4 − E3)x
ymax + E2 + E4 − E3 − E5

=
ymax(ymax + E2 − E3)

(ymax + E1)(ymax + E2)
.

Hence, by (38) and (39),

f(s∗, t∗) = F (ymax;x) ≤ max
|s|=R
|t|=r

|f(s, t)| = f(R, r)

for all r and R such that x < r < R < 1. Moreover, x < t∗ < s∗ < 1, whence
minx<r<R<1 f(R, r) = f(s∗, t∗) = F (ymax;x) is the minimum in (37). By
(32), (33), (37) and (7),

(40) lim
n→∞

1
n

logPn(x) = log f(s1, t1) + (j − h) log x+ 3h log(1− x).

5. C2 saddle point method. In order to compute the irrationality and
non-quadraticity measures of log(1/x) for suitable rational x, we require a
good upper bound for |In(x)|, and this is obtained by a weak version of the
C2 saddle point method given in [H3]. Such an upper bound depends on the
values of the function

f(s, t) =
shtj

(1− s)l+k−j(s− t)h+j−k(t− x)k+m−h

at its complex stationary points satisfying st 6= 0, i.e. at the complex so-
lutions of ∂f

∂s = ∂f
∂t = 0, f(s, t) 6= 0. Writing ∂

∂s log f = ∂
∂t log f = 0 and

using (7), we are led to the system

(41)
{
hs2 − (j − k)s+ (j − k)st− ht = 0,
jt2 − (h− k)xt+ (h− k)st− jxs = 0.
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If for some solution (s, t) of (41) we had s = h/(j − k), from the first equa-
tion in (41) we should get s = h/(j − k) = (j − k)/h, whence h2 = (j− k)2,
i.e. (h+ j − k)(h+ k − j) = 0, which is impossible since h+ j − k > 0 and
h+ k − j = l + k − j > 0. Hence the first equation of (41) yields

(42) t = s
hs− (j − k)
h− (j − k)s

.

Substituting this in the second equation of (41) and dividing by (h+j−k)s,
we obtain the cubic equation

hks3− (j− h)((j− k)x+ h+ 2k)s2 + (j− h)(j− k+ (h+ 2k)x)s− hkx = 0.

For all numerical values we choose in Section 6, this equation has only one
real root s1 > 0, and two complex conjugate roots s2 and s3 with negative
real part, which we number so that =(s2) > 0. Let ti be given by (42) for
s = si, so that (si, ti), for i = 1, 2, 3, are the stationary points of f(s, t)
satisfying f(s, t) 6= 0, with s1, t1 ∈ R+, and s2 = s3, t2 = t3. From (37) we
know that x < t1 < s1 < 1.

Let In(x) = I(hn, jn, kn, ln,mn, qn;x). We claim that

(43) lim sup
n→∞

1
n

log |In(x)| ≤ log |f(s2, t2)|+ (j − h) log x+ 3h log(1− x).

For a given t, the equation (42) has two distinct solutions in s, unless the
discriminant

(j − k)2t2 + 2(2h2 − (j − k)2)t+ (j − k)2

vanishes. This occurs for two distinct negative values of t, say τ1 < τ2 < 0,
corresponding to the solutions σ1 and σ2 of dt

ds = 0. Thus by (42) we have
σi 7→ τi (i = 1, 2), where

σ1 =
h+

√
h2 − (j − k)2

j − k
, σ2 =

h−
√
h2 − (j − k)2

j − k
,

whence σ1 > σ2 > 0. In other words, the inverse of (42) is a two-valued
function with branch points at τ1 and τ2.

The function (42) maps the upper half-circumference having diameter
[σ1, σ2] onto the real interval [τ1, τ2]. Let

C =
{
=(s) > 0 and

∣∣∣∣s− h

j − k

∣∣∣∣ >
√
h2 − (j − k)2

j − k

}
, D = {=(t) < 0},

whence s2 ∈ C and t2 ∈ D. We denote by t = T (s) the function (42), and by
s = S(t) the inverse function restricted to t ∈ D with values in C. Clearly,

T : C → D and S : D → C
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are one-to-one holomorphic functions. Let

Γ = R+s2 = {λs2 | λ > 0}, ∆ = T (Γ ) =
{
λs2

hλs2 − (j − k)
h− (j − k)λs2

∣∣∣∣λ > 0
}
,

so that Γ ⊂ C and ∆ ⊂ D. By (11), in the integral In(x) we may rotate
the integration path for s from (0, i∞) to Γ . Moreover, the curve ∆ ⊂ D
goes from 0 to infinity through t2 with an oblique asymptote. Hence, by the
same discussion yielding (10) and (11), for any fixed s ∈ Γ we may move
the integration path for t from (0,−i∞) to ∆. Therefore

In(x) = x(j−h)n(1− x)3hn+1
�

s∈Γ

�

t∈∆
(f(s, t))n

dt ds

(1− s)(s− t)(t− x)
,

whence, by the absolute convergence of
	
s∈Γ

	
t∈∆

dt ds
(1−s)(s−t)(t−x) , we get

lim sup
n→∞

1
n

log |In(x)| ≤ log max
s∈Γ, t∈∆

|f(s, t)|+ (j − h) log x+ 3h log(1− x).

This implies (43), since for all (s, t) ∈ Γ×∆ we have |f(s, t)| ≤ |f(S(t), t)| ≤
|f(s2, t2)|, as can be proved for all the numerical choices made in Section 6,
as follows.

For any fixed µ > 0, the real function

g(λ) := log |f(λµs2, T (µs2))| (0 < λ < +∞)

satisfies
lim
λ→0

g(λ) = lim
λ→+∞

g(λ) = −∞

and has only one stationary point λ ∈ (0,+∞), namely λ = 1. Indeed,
for any s we have ∂f

∂s = 0 at (s, T (s)), and in particular at the points
(µsi, T (µsi)) (i = 2, 3). Since

g(λ) =
1
2

log f(λµs2, T (µs2)) +
1
2

log f(λµs3, T (µs3))

we have dg
dλ = 0 at λ = 1. Moreover, for i = 2, 3,

log f(λµsi, T (µsi)) = h log λ− (h+ k − j) log(1− λµsi)
− (h+ j − k) log(h(λ− µsi) + (j − k)(1− λµsi)) + Li,

where Li is independent of λ. Thus the equation dg
dλ = 0 leads to a polynomial

equation with real coefficients, having degree 4 in λ and the root λ = 1
independent of µ. Dividing by λ−1, we are left with a polynomial of degree
3 in λ whose coefficients are polynomials in µ of degree not exceeding 4.
The discriminant of this polynomial in λ is a polynomial in µ of degree 14
and vanishing of order 2 at µ = 0, with negative leading coefficient and
no real roots apart from µ = 0. In particular this discriminant is negative
for all real values of µ 6= 0, so the polynomial of degree 3 in λ has only
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one real root, which must be negative for all positive µ since the leading
coefficient and the constant term are both negative for µ > 0. We conclude
that maxλ>0 g(λ) = g(1), i.e. for any t ∈ ∆ we have

max
s∈Γ
|f(s, t)| = |f(S(t), t)|.

The real function

G(λ) := log |f(λs2, T (λs2))| (0 < λ < +∞)

satisfies

lim
λ→0

G(λ) = lim
λ→+∞

G(λ) = −∞,

as is easily seen using the identity

(44) λs− T (λs) =
(h+ j − k)(1− λs)λs

h− (j − k)λs
.

Moreover, G(λ) has only one stationary point in (0,+∞), namely λ = 1.
Indeed, we have ∂f

∂s = ∂f
∂t = 0 at (si, ti) (i = 2, 3), and

G(λ) =
1
2

log f(λs2, T (λs2)) +
1
2

log f(λs3, T (λs3)),

whence dG
dλ = 0 at λ = 1. By (44) and (7) we have

log f(λsi, T (λsi)) = k log λ+ j log(hλsi − (j − k)) + j log(h− (j − k)λsi)

− 2h log(1− λsi)− h log(h(λ2s2i − x)− (j − k)(1− x)λsi) + L′i,

where L′i is independent of λ. Thus the equation dG
dλ = 0 leads to a poly-

nomial equation in λ with real coefficients, having degree 10 and only two
real roots, i.e. λ = 1 and a negative root. Therefore maxλ>0G(λ) = G(1),
whence maxt∈∆ |f(S(t), t)| = |f(s2, t2)|, and (43) follows.

6. The irrationality and non-quadraticity measures. Let 0 < x =
a/b < 1 be a rational number. By our Propositions 2.1 and 3.1 we have

bnγDnPn(a/b), bnγDnQn(a/b) ∈ Z.

Let Ω be the set of real numbers ω ∈ [0, 1) satisfying at least one of (31).
As a consequence of the Prime Number Theorem one can prove (see [RV1,
p. 51]) that

(45) lim
n→∞

1
n

logDn = M −
�

Ω

dψ(z),
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where ψ(z) = Γ ′(z)/Γ (z) is the logarithmic derivative of Euler’s gamma-
function. Let

c0 = − log |f(s2, t2)| − (j − h) log x− 3h log(1− x),
c1 = log f(s1, t1) + (j − h) log x+ 3h log(1− x),

c2 = M + γ log b−
�

Ω

dψ(z),

c3 = M +N + δ log b−
�

Ω

dψ(z).

Note that the condition (7) implies γ = h+j, δ = 2j, M = h+j−k, N = j.
By Proposition 2.1 we have

1
π
=(In(x)) = Pn(x) log(1/x)−Qn(x),

whence

(46) |Pn(x) log(1/x)−Qn(x)| ≤ |In(x)|.
We set x = a/b, we multiply by bnγDn and we apply (40), (43) and (45).
Since log(b/a) is transcendental, by Lemma 2.1 and Remark 2.1 of [H2,
pp. 337–339], if c0 > c2 then

µ(log(b/a)) ≤ c1 + c2
c0 − c2

+ 1 =
c0 + c1
c0 − c2

.

With the choice a = 1, b = 2 (and then x = a/b = 1/2), h = l = 5,
j = m = 6, k = q = 4, we have

γ = 11, M = 7, log 2 = 0.69314718 . . . ,

Ω = [1/6, 3/7) ∪ [1/2, 5/7) ∪ [3/4, 6/7),
�

Ω

dψ(z) = 4.99510233 . . . ,

s1 = 0.871065730 . . . , t1 = 0.62975103 . . . , ymax = 20.26766967 . . . ,
log f(s1, t1) = logF (ymax;x) = 22.84284685 . . . ,
s2 = −0.08553286 . . .+ i · 0.75279055 . . . ,
t2 = −0.35654218 . . .− i · 0.51948046 . . . ,
− log |f(s2, t2)| = 6.84429322 . . . ,
c0 = 17.93464811 . . . , c1 = 11.75249197 . . . , c2 = 9.62951665 . . . ,

hence µ(log 2) < 3.57455390 . . . .
Moreover, again by our Propositions 2.1 and 3.1,

bnδDndNnPn(a/b), bnδDndNnQn(a/b), bnδDndNnRn(a/b) ∈ Z.
By Proposition 2.1 we get

2
π
=(In(x)) log(1/x)− 2<(In(x)) = Pn(x) log2(1/x)− 2Rn(x),
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whence

(47) |Pn(x) log2(1/x)− 2Rn(x)| ≤ (log(1/x) + 2)|In(x)|.
If c0 > c3, we may apply Lemma 2.3 and Remark 1 of [H3, p. 4567]. Setting
x = a/b and multiplying (46) and (47) by bnδDndNn, we get

µ2(log(b/a)) ≤ c1 + c3
c0 − c3

+ 1 =
c0 + c1
c0 − c3

.

Taking again a = 1, b = 2 and x = 1/2, and for h = l = 65, j = m = 73,
k = q = 57, we have

δ = 146, M = 81, N = 73.

Now, Ω is the union of the following intervals:

[1/73, 1/49), [2/73, 2/49), [3/73, 4/81), [1/19, 5/81), [5/73, 4/49),
[6/73, 7/81), [5/57, 8/81), [2/19, 1/9), [7/57, 10/81), [10/73, 1/7),
[11/73, 8/49), [12/73, 14/81), [10/57, 5/27), [14/73, 10/49), [15/73, 17/81),
[4/19, 2/9), [13/57, 19/81), [14/57, 20/81), [19/73, 13/49), [20/73, 2/7),
[21/73, 8/27), [17/57, 25/81), [23/73, 16/49), [24/73, 28/81), [20/57, 29/81),
[7/19, 10/27), [28/73, 19/49), [29/73, 20/49), [30/73, 34/81), [8/19, 35/81),
[32/73, 22/49), [33/73, 38/81), [9/19, 13/27), [28/57, 40/81), [37/73, 25/49),
[38/73, 26/49), [39/73, 44/81), [31/57, 5/9), [32/57, 4/7), [42/73, 16/27),
[34/57, 49/81), [35/57, 50/81), [46/73, 31/49), [47/73, 32/49), [48/73, 55/81),
[13/19, 34/49), [51/73, 58/81), [41/57, 59/81), [14/19, 20/27), [55/73, 37/49),
[56/73, 38/49), [57/73, 65/81), [46/57, 40/49), [60/73, 68/81), [16/19, 23/27),
[49/57, 70/81), [64/73, 43/49), [65/73, 44/49), [66/73, 25/27), [53/57, 46/49),
[69/73, 26/27), [55/57, 79/81), [56/57, 80/81),

whence�

Ω

dψ(z) = 52.18485975 . . . ,

s1 = 0.84050980 . . . , t1 = 0.62988107 . . . , ymax = 258.22891116 . . . ,
log f(s1, t1) = logF (ymax, x) = 303.76112912 . . . ,
s2 = −0.21836556 . . .+ i · 0.73972531 . . . ,
t2 = −0.33032145 . . .− i · 0.53645881 . . . ,
− log |f(s2, t2)| = 87.29082912 . . . ,
c0 = 227.99970677 . . . , c1 = 163.05225147 . . . , c3 = 203.01462861 . . . ,

hence µ2(log 2) < 15.65142024 . . . .
Taking further values of a and b with b = a+ 1, and for h, j, k, l, m, q

satisfying (7), we get the results in the table at the end of Section 1.
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