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Adelic equidistribution, characterization of equidistribution,
and a general equidistribution theorem

in non-archimedean dynamics

by

Yûsuke Okuyama (Kyoto)

1. Introduction. Let K be an algebraically closed field of any char-
acteristic and complete with respect to a non-trivial and possibly non-
archimedean absolute value | · |, and let f ∈ K(z) be a rational function
of degree d > 1 on the projective line P1 = P1(K) over K. The Berkovich
projective line P1 = P1(K) over K provides a compactification of the clas-
sical P1, containing P1 as a dense subset. Under the assumption that K
is algebraically closed, K is archimedean if and only if K ∼= C, and then
P1(C) ∼= P1(C). The action of f on P1 canonically extends to a continuous,
open, surjective and fiber-discrete endomorphism on P1, preserving P1 and
P1 \ P1. The exceptional set of (the extended) f is

E(f) :=
{
a ∈ P1 : #

⋃
n∈N

f−n(a) <∞
}
,

which agrees with the set of all superattracting periodic points a ∈ P1 of f
such that degfj(a) f = d for any j ∈ N. The Berkovich Julia set of f is

J(f) :=
{
S ∈ P1 :

⋂
U : open inP1,S∈U

⋃
n∈N

fn(U) = P1 \ E(f)
}

(cf. [9, Definition 2.8]). Let δS be the Dirac measure on P1 at a point S ∈ P1.
For each rational function a ∈ K(z), which we will call a possibly moving
target, on P1 and each n ∈ N, let us consider the probability Radon measure

νan = νafn :=
1

dn + deg a

∑
w∈P1: fn(w)=a(w)

δw(1.1)
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on P1. Here the sum takes into account the (algebraic) multiplicity of each
root of the equation fn(·) = a(·) in P1. In Section 2, among other generali-
ties, we recall a variational characterization of the equilibrium (or canonical)
measure µf of f on P1 as a unique solution of a Gauss variational problem.

Our principal result determines the conditions on f and a under which
the equidistribution property

lim
n→∞

νan = µf weakly on P1(1.2)

holds. Let us denote the normalized chordal distance on P1 by [z, w].

Theorem 1. Let K be an algebraically closed field of any characteristic
and complete with respect to a non-trivial absolute value. Let f ∈ K(z) be a
rational function on P1 of degree d > 1, and let a ∈ K(z) be a rational func-
tion on P1. Then for every sequence (nj) ⊂ N tending to ∞, the following
three conditions are equivalent:

(i) The equidistribution property

lim
j→∞

νanj = µf on P1(1.3)

holds. Equivalently, for each weak limit ν of a subsequence of (νanj ),

ν = µf ;(1.3′)

(ii) each weak limit ν of a subsequence of (νanj ) satisfies

supp ν ⊂ J(f);(1.4)

(iii) under the additional assumption that K is non-archimedean, on
P1 \ P1 we have

lim
j→∞

1

dnj
log [fnj , a]can(·) = 0.(1.5)

Under these three conditions, we have

lim
j→∞

1

dnj

�

P1

log [fnj , a]can(·) dµf = 0.(1.6)

Moreover, if a is constant, then (1.6) holds without assuming (1.3), (1.4)
or (1.5).

Here, the proximity function S 7→ [fn, a]can(S) of fn (n ∈ N) and a on
P1 is the unique continuous extension of z 7→ [fn(z), a(z)] on P1 to P1. For
its construction, see Proposition 2.9.

In Section 3, we prove Theorem 1 based on the above variational charac-
terization of µf . Theorem 1 is partly motivated by the following dynamical
Diophantine approximation result. For a number field k with a non-trivial
absolute value (or place) v, set K = Cv with the extended v (e.g., K = Cp
for k = Q with p-adic norm v) and assume that f ∈ k(z), i.e., f has its
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coefficients in k. Then the dynamical Diophantine approximation theorem
due to Silverman [19, Theorem E] and Szpiro–Tucker [21, Proposition 5.3
(in the preprint version, Proposition 4.3)] asserts that for every constant

a ∈ P1(k) \ E(f) and every z ∈ P1(k) which is wandering under f , i.e.,
#{fn(z) : n ∈ N} =∞, we have

lim
n→∞

1

dn
log [fn(z), a]v = 0.(1.7)

Here k denotes the algebraic closure of k, and the notation [z, w]v emphasizes
the dependence of [z, w] on v. Theorem 1 gives a partial generalization of
(1.7) to general K for possibly non-constant a.

In Section 4, based on a variational argument and (1.7), we give a purely
local proof of the following adelic equidistribution theorem for possibly
moving targets, which is a special case of Favre and Rivera-Letelier’s [9,
Théorèmes A et B] (Theorems 1.1 and 1.2 below) for non-archimedean K
of characteristic 0.

Theorem A. Let k be a number field with a non-trivial absolute value
v, and let f ∈ k(z) be a rational function on P1(Cv) of degree d > 1 whose
coefficients are in k. Then for every rational function a ∈ k(z) on P1(Cv)
which is not identically equal to a value in E(f) and whose coefficients are
in k, limn→∞ ν

a
n = µf,v weakly on P1(Cv). Here the notation µf,v emphasizes

the dependence of µf on v.

For another application (quantitative equidistribution for non-exceptio-
nal algebraic constants) of the dynamical Diophantine approximation (1.7)
to adelic dynamics, see [16].

For general K, the equidistribution theorem for constant a ∈ P1 \ E(f)
is due to Brolin [6], Lyubich [12], Freire, Lopes and Mañé [10] for archime-
dean K, and to Favre and Rivera-Letelier [9, Théorème A] for non-archime-
dean K.

Theorem 1.1. Let K be an algebraically closed field of any characteristic
and complete with respect to a non-trivial absolute value. Let f ∈ K(z) be
a rational function on P1 of degree d > 1, and a ∈ K(z) be a constant
function. Then limn→∞ ν

a
n = µf weakly on P1 if and only if

a ∈ P1(K) \ E(f).(1.8)

In Section 4, we give a proof of Theorem 1.1, the fundamental equivalence
between (1.2) and (1.8) for constant a, based on a variational argument
and on the classification of cyclic Berkovich Fatou components of f (see
Theorem 2.17).

For generalK of characteristic 0, the equidistribution theorem for moving
targets is due to Lyubich [12, Theorem 3] (see also Tortrat [23, §IV]) for
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archimedean K, and to Favre and Rivera-Letelier [9, Théorème B] for non-
archimedean K of characteristic 0.

Theorem 1.2. Let K be an algebraically closed field of characteristic 0
and complete with respect to a non-trivial absolute value. Let f ∈ K(z) be a
rational function on P1of degree d > 1. Then for every non-constant rational
function a ∈ K(z) on P1, limn→∞ ν

a
n = µf weakly on P1.

In Section 4, we also describe how a variational argument together with
the dynamical uniformization on the quasiperiodicity domain Ef (see Theo-
rem 4.5) yields Theorem 1.2. This is foundational in our study of the problem
of density of the classical repelling periodic points in the classical Julia set
in non-archimedean dynamics [15]. Our proof of Theorem 1.2 complements
the original one given in [9, §3.4] (see also Remark 2.10).

In Section 5, we discuss the case where f and a are polynomials, and
compute a concrete example.

We conclude this section with an open problem.

Problem. Let K be an algebraically closed field of positive characteris-
tic and complete with respect to a non-trivial absolute value. Let f ∈ K(z)
be a rational function on P1 of degree d > 1. Determine concretely all ra-
tional functions a ∈ K(z) on P1 which are exceptional for f in that the
equidistribution (1.2) does not hold.

We hope condition (1.5) will be helpful for studying this problem.

2. Background. For the foundations of potential theory on P1, see [1, §5
and §8], [8, §7], [11, §1–§4], [24, Chapter III]. For a potential-theoretic study
of dynamics on P1, see [1, §10], [9, §3], [11, §5], [4, Chapitre VIII]. See also
[2, 17] including non-archimedean dynamics.

Let K be an algebraically closed field of any characteristic and complete
with respect to a non-trivial absolute value |·|. Under the assumption that K
is algebraically closed, |K| := {|z| : z ∈ K} is dense in R≥0. We will say that
K is non-archimedean if the strong triangle inequality |z−w| ≤ max{|z|, |w|}
holds for all z, w ∈ K. This in particular implies that the equality |z−w| =
max{|z|, |w|} holds if |z| 6= |w|. When K is non-archimedean, for every
a, b ∈ K and every r ≥ 0, {z ∈ K : |z − a| ≤ r} = {z ∈ K : |z − b| ≤ r}
if |b − a| ≤ r, and the diameters of these sets with respect to | · | equal r.
If K is not non-archimedean, then K is said to be archimedean. Under the
assumption that K is algebraically closed, K is archimedean if and only if
K ∼= C as valued fields.

Let ‖ · ‖ be the maximum norm on K2 if K is non-archimedean, and the
Euclidean norm on C2 if K is archimedean (∼= C). Put p∧q := p0q1−p1q0 for



Equidistribution in non-archimedean dynamics 105

p= (p0, p1), q= (q0, q1)∈K2; let π be the canonical projection K2\{0} → P1

= P1(K), and put ∞ := π(0, 1). The normalized chordal distance on P1 is

[z, w] :=
|p ∧ q|
‖p‖ · ‖q‖

∈ [0, 1],

where p ∈ π−1(z), q ∈ π−1(w). We usually identify K with P1 \ {∞} by the
injection z 7→ π(1, z) on K.

For non-archimedean K, the Berkovich projective line P1 = P1(K) is de-
fined as an analytic space in the sense of Berkovich; see Berkovich’s original
monograph [3], as well as [1, §1, §2] for P1. For archimedean K, we have
P1 = P1.

Fact 2.1 (Berkovich’s classification of points in P1). Suppose that K is
non-archimedean. A subset B = {z ∈ K : |z − a| ≤ r} in K for some a ∈ K
and some r := diam(B) ≥ 0 is called a (K-closed) disk. Any two intersecting
disks B,B′ satisfy either B ⊂ B′ or B ⊃ B′.

A point S in the Berkovich projective line P1 is either ∞ or a cofinal
class (or tail) of non-increasing and nested sequences (Bj) of disks. Here,
two non-increasing and nested sequences (Bj), (B′k) of disks are cofinally
equivalent either if (i)

⋂
j Bj =

⋂
k B′k 6= ∅ or if (ii)

⋂
j Bj =

⋂
k B′k = ∅,

for any j ∈ N, Bj contains B′N for some N ∈ N, and for any k ∈ N, B′k
contains BN ′ for some N ′ ∈ N. The cofinal class of a non-increasing and
nested sequence of disks (Bj) is identified with the disk B =

⋂
j∈N Bj if it is

non-empty. The projective line P1 is regarded as the set of all disks B with
diam(B) = 0 and the point ∞ (cf. [1, §1], [2, §6.1], [9, §2]).

Let Ωcan be the Fubini–Study area element on P1 ∼= P1 normalized as
Ωcan(P1) = 1 for archimedean K ∼= C, and the Dirac measure δScan on
P1 at the Gauss (or canonical) point Scan ∈ P1 determined by the disk
{z ∈ K : |z| ≤ 1} for non-archimedean K.

Definition 2.2 (the generalized Hsia kernel). Suppose that K is non-
archimedean. For the cofinal class S of a non-increasing and nested sequence
(Bj) of disks, set diam(S) := limj→∞ diam(Bj). Then the function diam(·)
is continuous on P1 \ {∞}.

For the cofinal classes S,S ′ of non-increasing and nested sequences of
disks (Bj), (B′k), respectively, let S ∧ S ′ ∈ P1 be the smallest cofinal class
of a non-increasing and nested sequence (B′′` ) of disks such that for every
` ∈ N, B′′` contains BN ∪ B′N ′ for some N,N ′ ∈ N. Here the cofinal class of
(B′′` ) is said to be smaller than that of (B′′′m) if for every m ∈ N, B′′′m contains
B′′N ′′ for some N ′′ ∈ N.

For each w ∈ P1 \ {∞}, the function | · −w| := diam(· ∧w) on P1 \ {∞}
is a unique continuous extension of | · −w| on P1 \ {∞}. We denote | · −0|
by | · | in the case w = 0.
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The generalized Hsia kernel [S,S ′]can on P1 with respect to the Gauss
point Scan is defined as

[S,S ′]can :=
diam(S ∧ S ′)

max{1, |S|}max{1, |S ′|}
∈ [0, 1]

for S,S ′ ∈ P1 \ {∞}, [S,∞]can := 1/max{1, |S|} for S ∈ P1 \ {∞}, and
[∞,∞]can := [∞,∞] = 0 (see [1, §4], [9, §2.4]).

By convention, for archimedean K, [z, w]can is defined to be [z, w].

Fact 2.3. The extension [S,S ′]can is upper semicontinuous on P1 × P1,
continuous nowhere in the diagonal of (P1 \P1)× (P1 \P1) (indeed, [S,S]can
is continuous nowhere on P1 \ P1), but continuous elsewhere on P1 × P1.
On the other hand, [S,S ′]can is separately continuous in each variable, and
vanishes if and only if S = S ′ ∈ P1 (see [1, Proposition 4.10]).

We normalize the Laplacian ∆ on P1 so that for every S ∈ P1,

∆ log [·,S]can = δS −Ωcan(2.1)

on P1 (for the construction of ∆ on P1 for non-archimedean K, see [1, §5],
[8, §7.7], [22, §3]; in [1] the opposite sign convention on ∆ is adopted).

Since we are interested in dynamics of rational functions, we introduce
only Berkovich (open or closed) connected affinoids in P1.

Fact 2.4. Suppose that K is non-archimedean. A Berkovich closed disk
D is either {S ∈ P1\{∞} : |S−w| ≤ r} or {S ∈ P1\{∞} : |S−w| ≥ r}∪{∞}
for some w ∈ P1\{∞} and some r ≥ 0, and is said to be strict (or rational) if
r∈ |K|. Similarly, a Berkovich open disk is either {S ∈P1 \ {∞} : |S −w|<r}
or {S ∈ P1 \ {∞} : |S − w| > r} ∪ {∞} for some w ∈ P1 \ {∞} and some
r ≥ 0, and is said to be strict (or rational) if r ∈ |K|.

A Berkovich open (resp. closed) connected affinoid U in P1 is the inter-
section of finitely many Berkovich open (resp. closed) disks and P1, and is
said to be strict if in addition all the Berkovich open (resp. closed) disks
determining U are strict (or rational).

A Berkovich open connected affinoid is also called either a simple domain
or an open fundamental domain in P1. The set of all strict Berkovich open
connected affinoids generates the topology of P1 (cf. [1, § 2.6], [2, § 6],
[9, § 2.1]). For non-archimedean K, the relative topology of P1 in P1 agrees
with the metric topology on P1 induced by the chordal distance on P1. Both
P1 and P1 \ P1 are dense in P1.

From rigid analysis, we take the following.

Definition 2.5. For non-archimedean K, a closed (resp. open) con-
nected affinoid in P1 is the intersection of P1 and a Berkovich closed (resp.
open) connected affinoid U in P1, and is said to be strict if U is strict.
A (K-valued) holomorphic function T on a strict closed connected affinoid
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V in P1 is defined by a uniform limit on V (with respect to [·, ·]) of a sequence
of rational functions on P1 with no pole in V . By definition, a holomorphic
function T on an open subset D in P1 is a function on D which restricts to
a holomorphic function on any strict closed connected affinoid V in D.

Fact 2.6. For non-archimedean K, the modulus |T | of a holomorphic
function T on a strict closed connected affinoid V in P1 attains both its
maximum and minimum values on V (the maximum modulus principle, cf.
[5, §6.2.1, §7.3.4]). If in addition T is non-constant, then it has at most
finitely many zeros in V (this follows from the Weierstrass preparation the-
orem, cf. [2, Theorem 3.5]).

Let φ ∈ K(z) be a rational function on P1. For non-archimedean K, the
analytic structure on P1 induces the extended action of φ on P1. For non-
constant φ, the extended action of φ on P1 is continuous, open, surjective,
and fiber-discrete, and preserves P1 and P1\P1 (see [1, Corollaries 9.9, 9.10],
[9, §2.2]).

Fact 2.7. Suppose that K is non-archimedean and φ is non-constant.
Then φ maps a Berkovich disk (resp. Berkovich connected affinoid) onto
either P1 or a Berkovich disk (resp. Berkovich connected affinoid), preserving
their openness, closedness, and strictness. Each component U of φ−1(V )
for any Berkovich connected affinoid V is a Berkovich connected affinoid,
and the restriction φ : U → V is proper and surjective ([1, Corollary 9.11
and Lemma 9.12], [2, Proposition 6.13], [17, Proposition 2.6]). The local
(algebraic) degree degz0 φ ∈ N of φ at each z0 ∈ P1 also uniquely extends
to the function degS φ ∈ N for all S ∈ P1 so that for any Berkovich open
connected affinoid V and every component U of φ−1(V ), the function

V 3 S0 7→
∑

S∈φ−1(S0)∩U

degS φ ∈ N

is constant ([1, §2, §9] and [9, §2.1, Proposition-Définition 2.1]. See also
[2, §6.3], [11, §4]). We denote this constant by deg(φ : U → V ).

If deg φ > 0, then the extended φ : P1 → P1 and the local degree degS φ
of φ at each S ∈ P1 induce a push-forward φ∗ and pullback φ∗ on the space
of continuous functions on P1, on the space of δ-subharmonic functions on
P1 (functions on P1 which can locally be written as the difference of two
subharmonic functions), and on the space of Radon measures on P1 (see
[1, §9.4, §9.5], [9, §2.2]). When deg φ = 0, for a Radon measure µ on P1, we
set φ∗µ := 0 by convention. It is fundamental that for each non-constant φ,
the Laplacian ∆ behaves functorially under φ∗ in that for any δ-subharmonic
function h on P1,

∆φ∗h = φ∗∆h

on P1 (for non-archimedean K, see [1, §9.5], [9, §2.4]).
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Definition 2.8. A lift Fφ = ((Fφ)0, (Fφ)1) : K2 → K2 of φ is a homo-
geneous polynomial endomorphism of K2 such that

π ◦ Fφ = φ ◦ π

and that F−1φ (0) = {0} if deg φ > 0. Such an Fφ is unique up to scaling by

an element of K∗ = K \ {0}, and degFφ = deg φ. The function

log ‖Fφ‖ − (deg φ) log ‖ · ‖
on K2 \ {0} descends to one on P1, which in turn extends continuously to a
function TFφ : P1 → R satisfying

∆TFφ = φ∗Ωcan − (deg φ)Ωcan(2.2)

on P1; indeed, for each w ∈ P1\{∞}, since |·−w| = [·, w]can[·,∞]−1can[w,∞]−1

on P1, we have ∆ log | ·−w| = δw− δ∞ on P1. The homogeneous polynomial
(Fφ)0(p0, p1) ∈ K[p0, p1] factors into deg φ homogeneous linear factors in
K[p0, p1]. Hence the function log |(Fφ)0(p0, p1)|− (deg φ) log |p0| on K2 \{0}
descends to one on P1, which in turn extends to a δ-subharmonic function
SFφ on P1 satisfying ∆SFφ = φ∗δ∞−(deg φ)δ∞ on P1. This yields (2.2) since

TFφ = SFφ − log [φ(·),∞]can + (deg φ) log [·,∞]can on P1.

Let φi ∈ K(z), i ∈ {1, 2}, be rational functions on P1 of degree di. We call
the following extension [φ1, φ2]can to P1 of the function z 7→ [φ1(z), φ2(z)]
on P1 the proximity function of φ1 and φ2 on P1.

Proposition 2.9. For each n ∈ N, the function [φ1(·), φ2(·)] on P1 ex-
tends continuously to a function [φ1, φ2]can(·) on P1 which takes its values
in [0, 1] and, if φ1 6≡ φ2 and max{d1, d2} > 0, satisfies

∆ log [φ1, φ2]can(·) =
∑

w∈P1:φ1(w)=φ2(w)

δw − φ∗1Ωcan − φ∗2Ωcan.(2.3)

Here the sum
∑

w∈P1:φ1(w)=φ2(w)
δw takes into account the multiplicity of

each root of φ1 = φ2 in P1.

Proof. Let F1 and F2 be lifts of φ1 and φ2, respectively. Then there are

points qj = qF1,F2
j ∈ K2 \ {0} (j = 1, . . . , d1 + d2) such that

F1(p) ∧ F2(p) =

d1+d2∏
j=1

(p ∧ qj)

on K2. Here, π(qj) is a root of φ1 = φ2 in P1 for each j ∈ {1, . . . , d1 + d2}.
On P1,

log [φ1(·), φ2(·)] =

d1+d2∑
j=1

(log [·, π(qj)] + log ‖qj‖)− TF1 |P1 − TF2 |P1,(2.4)
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where TFi = log ‖Fi‖− di log ‖ · ‖ (extended continuously to P1), i ∈ {1, 2},
is the function introduced in Definition 2.8. The right hand side of (2.4)
extends [φ1(·), φ2(·)] on P1 to [φ1, φ2]can(·) on P1 continuously so that

log [φ1, φ2]can(·) =

d1+d2∑
j=1

(log [·, π(qj)]can + log ‖qj‖)− TF1 − TF2

on P1 (see Fact 2.3), and satisfies (2.3) in view of (2.1) and (2.2). The density
of P1 in P1 implies that [φ1, φ2]can(·) ∈ [0, 1] on P1.

Remark 2.10 (discontinuity of [φ1(·), φ2(·)]can). If φ2 ≡ a ∈ P1 on P1,
then [φ1(·), a]can coincides with [φ1, a]can(·) since they are continuous on
P1 and identical on the dense subset P1 in P1. We point out that if K is
non-archimedean and both φ1 and φ2 are non-constant, then [φ1(·), φ2(·)]can,
which is the evaluation of [S1,S2]can at S1 = φ1(·) and S2 = φ2(·) in P1, is
not always continuous on P1, so is not always identical with [φ1, φ2]can(·).
This discrepancy seems to have been overlooked in the proof of Theorem 1.2
in [9, §3.4].

An example is φ1 = φ2 = IdP1 ; see Fact 2.3. More generally, let φ1 and
φ2 be non-constant polynomials such that φ1(0) = φ2(0) = 0 and φ′1(0) =
φ′2(0) 6= 0. Fix r > 0 small enough that on {z ∈ K : |z| < 2r},

[φ1(z), φ2(z)]can = [φ1(z), φ2(z)] = |φ1(z)− φ2(z)| ≤ 1
2 |φ
′
1(0)|r,

and that for the point Sr ∈ P1\P1 determined by the disk {z ∈ K : |z| ≤ r},
[φ1(Sr), φ2(Sr)]can = diam(φ1(Sr) ∧ φ2(Sr)) = |φ1(Sr)| = |φ′1(0)|r > 0.

Since any open neighborhood of Sr in P1 intersects {z ∈ K : |z| < 2r}, we
have lim infS→Sr [φ1(S), φ2(S)]can ≤ |φ′1(0)|r/2 < [φ1(Sr), φ2(Sr)]can. Hence
the function [φ1(·), φ2(·)]can on P1 is not continuous at Sr.

Let f ∈ K(z) be a rational function on P1 of degree d > 1, and let F be
a lift of f .

Definition 2.11. The dynamical Green function of F on P1 is

gF :=

∞∑
n=0

1

dn
(fn)∗

(
1

d
TF

)
= lim

n→∞

1

dn
TFn ∈ R,(2.5)

which converges uniformly on P1 ([1, §10.1], [9, §3.1]).

The function gF is continuous on P1. For every n ∈ N, we have gFn = gF .
For an arbitrary lift of f , given by cF for some c ∈ K∗, we have gcF =
gF + (log |c|)/(d− 1).

Definition 2.12. The probability Radon measure

µf := ∆gF +Ωcan = lim
n→∞

1

dn
(fn)∗Ωcan(2.6)
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on P1 is called the equilibrium measure of f on P1. Here the last limit is a
weak one on P1.

Fact 2.13. By the continuity of gF , the measure µf has no atoms in P1.
Moreover, µf is both balanced and invariant under f in the sense that

f∗µf = (deg f)µf and f∗µf = µf ,(2.7)

respectively (see [1, §10], [7, §2], [9, §3.1] for non-archimedean K).

We define the F -kernel on P1 to be

ΦF (S,S ′) := log [S,S ′]can − gF (S)− gF (S ′)
for S,S ′ ∈ P1. The function ΦF is upper semicontinuous on P1×P1, and for
each S ∈ P1 \ P1, ΦF (S, ·) is continuous on P1 (see Fact 2.3). We have

sup
(S,S′)∈P1×P1

|ΦF (S,S ′)− log [S,S ′]can| ≤ 2 sup
P1

gF <∞,

and from (2.1) and (2.6), ∆ΦF (·,S) = δS −µf for each S ∈ P1. For a Radon
measure µ on P1, the F -potential on P1 and the F -energy of µ are

UF,µ(·) :=
�

P1

ΦF (·,S ′) dµ(S ′), IF (µ) :=
�

P1

UF,µ dµ,

respectively (see also [1, §8.10], [9, §2.4]). The function UF,µ is upper semi-
continuous on P1 and has the following continuity property: for every z0 ∈
P1 \ {∞} and every r ≥ 0, if Sr(z0) is the point in P1 corresponding to the
disk Br(z0) := {z ∈ K : |z − z0| ≤ r}, we have

lim
r→0

UF,µ(Sr(z0)) = UF,µ(z0)(2.8)

(see [1, Proposition 6.12]). By Fubini’s theorem,

∆UF,µ = µ− µ(P1)µf .

A probability Radon measure µ on P1 is called an F -equilibrium mass
distribution on P1 if the F -energy IF (µ) of this µ equals

VF := sup{IF (ν) : ν is a probability Radon measure on P1},
which is > −∞ since IF (Ωcan) > −∞.

We recall Baker and Rumely’s characterization of µf as the unique so-
lution of a Gauss variational problem; see [1, Theorem 8.67 and Proposi-
tion 8.70] for non-archimedean K. For a discussion of the Gauss variational
problem, see e.g. [18].

Lemma 2.14. There is a unique F -equilibrium mass distribution on P1,
which coincides with the equilibrium measure µf of f . Indeed, on P1,

UF,µf ≡ VF .(2.9)
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The functions ΦF , UF,µ and gF depend on the lift F of f . We will now
introduce more canonical functions Φf , Uµ, and gf , which do not depend on
the choice of the lift F . The f -kernel on P1 (the negative of the Arakelov
Green function for f in [1, §10.2]) is

Φf := ΦF − VF .
It is independent of the choice of F . For each Radon measure µ on P1, we
define the f -potential

Uµ :=
�

P1

Φf (·,S ′) dµ(S ′)

on P1. We still have ∆Uµ = µ− µ(P1)µf . From Lemma 2.14, we obtain

Lemma 2.15. For each Radon measure µ on P1, we have Uµ ≥ 0 on
suppµ if and only if µ = µf . Moreover, Uµf ≡ 0 on P1.

The dynamical Green function gf of f (a canonical version of gF ) is
defined as

gf (S) := gF (S) + 1
2VF = 1

2(log [S,S]can − Φf (S,S)),

which is independent of the choice of F and still satisfies

∆gf = µf −Ωcan.(2.10)

For every (S,S ′) ∈ P1 × P1,

Φf (S,S ′) = log [S,S ′]can − gf (S)− gf (S ′).
Our definition (2.6) of µf agrees with Favre and Rivera-Letelier’s [9,

Proposition-Définition 3.2]:

Lemma 2.16. For every S ∈ P1 \ P1, weakly on P1,

lim
k→∞

(fn)∗δS
dn

= µf .

Proof. For every S ∈ P1 and every n ∈ N, from the balanced property
f∗µf = d · µf ,

∆Φf (fn(·),S) = (fn)∗(δS − µf ) = (fn)∗δS − dnµf
on P1. Suppose that S ∈ P1 \ P1. Then since [S,S]can > 0,

sup
S′∈P1

|Φf (fn(S ′),S)| ≤ |log [S,S]can|+ 2 sup
P1

gf <∞,

so limn→∞ Φf (fn(·),S)/dn = 0 uniformly on P1. By the continuity of ∆
on uniformly convergent sequences of δ-subharmonic functions (for non-
archimedean K, see [1, Corollary 5.39], [9, Proposition 2.17]), as n→∞,

(fn)∗δS
dn

− µf = ∆
1

dn
Φf (fn(·),S)→ 0

weakly on P1.
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The Berkovich Fatou set F(f) of f is by definition P1 \ J(f), which is
open in P1. A Berkovich Fatou component W of f is a component of F(f).
Given such a W , f(W ) is also a Berkovich Fatou component of f , and so is
each component of f−1(W ). We call W a cyclic Berkovich Fatou component
of f if fp(W ) = W for some p ∈ N.

For archimedean K, the classification of cyclic Fatou components (im-
mediate (super)attractive basins of attracting cycles, immediate attractive
basins of parabolic cycles, Siegel disks, and Herman rings) of f is essentially
due to Fatou (cf. [14, Theorem 5.2]). The following is its non-archimedean
counterpart due to Rivera-Letelier; see [9, Proposition 2.16] and its esquisse
de démonstration, and also [2, Remark 7.10].

Theorem 2.17. Suppose that K is non-archimedean. Then for each
cyclic Berkovich Fatou component W of f , either W contains an attracting
periodic point of f in W ∩ P1 (attracting case), or deg(fp : W → W ) = 1
for some p ∈ N satisfying fp(W ) = W . Moreover, only one case occurs. In
the former case, W is called an immediate (super)attractive basin of f , and
in the latter case, W is called a singular domain of f .

All of E(f), J(f), F(f), and suppµf are completely invariant under f .
Here, a subset E in P1 is said to be completely invariant under f if f(E) ⊂ E
and f−1(E) ⊂ E. The following equality is fundamental.

Theorem 2.18. J(f) = suppµf . Moreover, for each a ∈ E(f), no weak
limit point of (νan) on P1 equals µf .

Proof. Since µf has no atoms in P1 and E(f) is a countable subset

in P1, suppµf 6⊂ E(f). Then J(f) ⊂
⋃
n∈N f

−n((suppµf ) \ E(f)), which is
contained in suppµf . Hence J(f) ⊂ suppµf .

For archimedean K, Ωcan is the normalized Fubini–Study metric on
P1 = P1. By Marty’s theorem [13, Théorème 5], which is an infinitesimal
version of Montel’s theorem, F(f) coincides with the maximal open subset
in P1 where the family of chordal derivatives of fn, n ∈ N,{

P1 3 z 7→

√
(fn)∗Ωcan

Ωcan
(z) = lim

w→z

[fn(z), fn(w)]

[z, w]
∈ [0,∞) : n ∈ N

}
is locally uniformly bounded. Hence by the definition (2.6) of µf , we have
F(f) ⊂ P1 \ suppµf , i.e., suppµf ⊂ J(f).

Suppose that K is non-archimedean. If J(f) ⊂ P1, then F(f) is itself
the unique Berkovich Fatou component of f , which is completely invariant
under f . Since deg(f : F (f) → F (f)) = deg f > 1, by Theorem 2.17, F(f)
is the immediate attractive basin of an attracting fixed point a ∈ P1. Since

Scan ∈ P1 \P1 ⊂ F(f)\{a}, we have
⋂
N∈N

⋃
n≥N f

−n(Scan) ⊂ ∂F(f) = J(f).
Moreover, since Ωcan = δScan in this case, by the definition (2.6) of µf ,
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suppµf ⊂
⋂
N∈N

⋃
n≥N f

−n(Scan). Hence suppµf ⊂ J(f). Finally, if

J(f) 6⊂ P1, then by Lemma 2.16, we have suppµf ⊂
⋃
n∈N f

−n(J(f) \ P1),
which is contained in J(f).

Hence we have suppµf ⊂ J(f) in both archimedean and non-archimedean
cases, and the proof of the former assertion is complete.

Recall that for any a ∈ E(f), the backward orbit
⋃
n∈N f

−n(a) is finite
and contained in F(f). Hence any weak limit point ν = limj→∞ ν

a
nj has its

support in F(f), so ν 6= µf by the former assertion.

Finally, for a rational function f ∈ K(z) on P1 of degree d > 1 and a
rational function a ∈ K(z) on P1, we introduce the (logarithmic) proximity
function log [fn, a]can(·) of fn(·) and a(·) weighted by gf :

Φ(fn, a)f (·) := log [fn, a]can(·)− gf ◦ fn − gf ◦ a.

The function Φ(fn, a)f (·) extends the function z 7→ Φf (fn(z), a(z)) on P1

continuously to P1 and plays a crucial role in the rest of the paper. It agrees
with Φf (fn(·), a) when a is constant. For each n ∈ N, we have

sup
P1

|Φ(fn, a)f (·)− log [fn, a]can(·)| ≤ sup
P1

|2gf | <∞.(2.11)

Lemma 2.19 (cf. [20, (1.4)]). For every n ∈ N,

1

dn
Φ(fn, a)f (·) = U(1+(deg a)/dn)νan

− 1

dn
Ua∗µf +

1

dn

�

P1

Φ(fn, a)f (·) dµf

(2.12)

on P1. Similarly, the function Ua∗µf = a∗gf + Ua∗Ωcan −
	
P1(a∗gf ) dµf is

continuous (hence bounded) on P1.

Proof. For each n ∈ N, from (2.3) and (2.10),

∆Φ(fn, a)f (·) = (dn + deg a)νan − (fn)∗µf − a∗µf ,

and using the balanced property f∗µf = d · µf , we have

∆Φ(fn, a)f (·) = ∆(U(dn+deg a)νan
− Ua∗µf ).

Hence the function

1

dn
Φ(fn, a)f (·)−

(
U(1+(deg a)/dn)νan

(·)− 1

dn
Ua∗µf (·)

)
is constant on P1 (for non-archimedean K, this holds on P1 \ P1 by a basic
property of ∆ (see [1, Lemma 5.24], [9, §2.4]) and indeed on P1 by continu-
ity (2.8)). We determine the constant by integrating this against dµf on P1:
by Fubini’s theorem and the fact that Uµf ≡ 0, the integrals of the second
and third terms in dµf vanish. Hence (2.12) holds.
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Similarly, from ∆Ua∗µf = a∗µf − (deg a)µf = ∆(a∗gf + Ua∗Ωcan), the

function Ua∗µf − (a∗gf + Ua∗Ωcan) is constant on P1. The constant is deter-

mined by integrating this function against dµf on P1.

3. Proof of Theorem 1. Let K be an algebraically closed field of
any characteristic and complete with respect to a non-trivial absolute value.
Let f ∈ K(z) be a rational function on P1 = P1(K) of degree d > 1, and
a ∈ K(z) a rational function on P1. Let (nj) be a sequence in N tending to∞,
and ν be any weak limit of a subsequence of (νanj ) on P1 = P1(K). This is

a probability Radon measure on P1, and the equidistribution property (1.3)
is equivalent to

ν = µf .(1.3′)

Taking a subsequence of (nj) if necessary, we can assume that ν = limj→∞ ν
a
nj

weakly on P1 and that the limit

lim
j→∞

1

dnj

�

P1

Φ(fnj , a)f dµf(3.1)

exists in [−∞, 0].

Lemma 3.1. On P1,

(3.2) lim sup
j→∞

1

dnj
log [fnj , a]can(·) = lim sup

j→∞

1

dnj
Φ(fnj , a)f (·)

≤ Uν + lim
j→∞

1

dnj

�

P1

Φ(fnj , a)f dµf ≤ min{Uν , 0}.

Moreover, on P1 \ P1,

lim
j→∞

1

dnj
log [fnj , a]can(·) = Uν + lim

j→∞

1

dnj

�

P1

Φ(fnj , a)f dµf .(3.3)

Proof. By a cut-off argument, on P1,

lim sup
j→∞

Uνanj
≤ Uν ;(3.4)

indeed, for every N ∈ N, Uνanj
≤

	
P1 max{−N,Φf (·,S ′)} dνanj (S

′) on P1, and

since for every S ∈ P1 the function S ′ 7→ max{−N,Φf (S,S ′)} is continuous
on P1, we have

lim sup
j→∞

Uνanj
≤

�

P1

max{−N,Φf (·,S ′)} dν(S ′)

on P1. Taking N →∞, we obtain (3.4) by the monotone convergence theo-
rem.
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On the other hand, for every S ∈ P1 \P1, the function S ′ 7→ Φf (S,S ′) is
continuous on P1, so we have limj→∞ Uνanj

= Uν on P1 \ P1.

By the comparison (2.11) and [fn, a]can ≤ 1,

lim sup
j→∞

1

dnj
Φ(fnj , a)f (·) = lim sup

j→∞

1

dnj
log [fnj , a]can(·) ≤ 0

on P1. Now taking lim supj→∞ of ((2.12) for n = nj), we have (3.2) on P1,

and also (3.3) on P1 \ P1.

If a is constant, then by convention, we identify a with its value in P1.

Lemma 3.2. If a is constant, then
	
P1 Φf (fn(·), a) dµf = 0 for every

n ∈ N, and Uν ≥ 0 on J(f).

Proof. Let a ∈ P1. Then for every n ∈ N, by the invariance f∗µf = µf
and the fact that Uµf ≡ 0 on P1, we have

�

P1

Φf (fn(·), a) dµf = U(fn)∗µf (a) = Uµf (a) = 0.

Hence by Fatou’s lemma and (3.2), this implies that

0 = lim
j→∞

1

dnj

�

P1

Φf (fnj (·), a) dµf

≤
�

P1

lim sup
j→∞

1

dnj
Φf (fnj (·), a) dµf ≤

�

{Uν<0}∩J(f)

Uν dµf .

Since J(f) ⊂ suppµf (by Theorem 2.18), {Uν < 0} ∩ J(f) = ∅.

We show the following counterpart of Lemma 3.2 for non-constant a.

Lemma 3.3. If a is non-constant, then Uν ≥ 0 on J(f).

Proof. Assume that {Uν < 0} ∩ J(f) 6= ∅. Then since {Uf < 0} is open,⋃
n∈N

fn({Uν < 0} ∩ P1) =
( ⋃
n∈N

fn({Uν < 0})
)
∩ P1 ⊃ P1 \ E(f).

If there exists z1 ∈ E(f), then
⋃
n∈N f

n({Uν < 0} ∩ P1) intersects the im-
mediate attractive basin of z1, so by (3.2), a ≡ z1. This contradicts that a
is non-constant, and so we have E(f) = ∅.

Let z0 be a fixed point of f in P1 = P1 \ E(f). Then by the assump-
tion {Uν < 0} ∩ J(f) 6= ∅ and the definition of J(f), J(f) ∩ {Uν < 0} ⊂(⋂

`∈N
⋃
j≥` f

−n(z0)
)
∩ {Uν < 0}. Hence if #(

⋃
n∈N f

−n(z0) ∩ {Uν < 0})
< ∞, then J(f) ∩ {Uν < 0} is a non-empty and finite subset in P1. Since
J(f) ⊂ suppµf (by Theorem 2.18), this contradicts that µf has no atoms
in P1.
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Hence there is an N ∈ N such that f−N (z0) ∩ {Uν < 0} 6⊂ a−1(z0)
since #(

⋃
n∈N f

−n(z0) ∩ {Uν < 0}) = ∞ and #a−1(z0) < ∞. Let z−N ∈
(f−N (z0) ∩ {Uν < 0}) \ a−1(z0). Then

lim sup
j→∞

1

dnj
log [fnj (z−N ), a(z−N )] = lim sup

j→∞

1

dnj
log [z0, a(z−N )] = 0,

which contradicts (3.2) at z−N since Uν(z−N ) < 0.

Hence {Uν < 0} ∩ J(f) = ∅, and the proof is complete.

Lemma 3.4. If (1.3′) holds, then

lim
j→∞

1

dnj

�

P1

Φ(fnj , a)f (·) dµf = 0.(3.5)

Indeed, (3.5) holds for every a ∈ P1 without assuming (1.3′).

Proof. If a is constant, then this follows from the former assertion in
Lemma 3.2 without assuming (1.3′).

Suppose that a is non-constant. If (1.3′) holds but (3.5) does not hold,
then by (3.2) and Uν = Uµf ≡ 0,

lim sup
j→∞

1

dnj
log [fnj , a]can(·) ≤ Uν + lim

j→∞

1

dnj

�

P1

Φ(fnj , a)f dµf < 0(3.6)

on P1. If there exists z1 ∈ E(f), then (3.6) holds on the immediate attractive
basin of z1, so a ≡ z1. This is a contradiction, and we have E(f) = ∅.

Let z0 ∈ P1 = P1 \ E(f) be a fixed point of f . Then ∞ > #a−1(z0) <
#
⋃
n∈N f

−n(z0) = ∞, so there is an N ∈ N such that f−N (z0) 6⊂ a−1(z0).
Let z−N ∈ f−N (z0) \ a−1(z0). Then

lim sup
j→∞

1

dnj
log [fnj (z−N ), a(z−N )] = lim sup

j→∞

1

dnj
log [z0, a(z−N )] = 0,

which contradicts (3.6) at z−N .

We can now complete the proof of Theorem 1. If (1.4) holds, then by
the latter assertion in Lemma 3.2, Lemma 3.3, and Lemma 2.15, the condi-
tion (1.3′) holds. The reverse implication follows by Theorem 2.18.

Suppose now that K is non-archimedean. If (1.3′) holds, then Uν =
Uµf ≡ 0 on P1, and by (3.3) and Lemma 3.4, we have

lim
j→∞

1

dnj
log [fnj , a]can(·) = Uν + lim

j→∞

1

dnj

�

P1

Φ(fnj , a)f dµf = 0,

i.e., (1.5), on P1 \P1. Conversely, if (1.5) holds on P1 \P1, then by (3.2), we
have {Uν < 0}\P1 = ∅, so {Uν < 0} = ∅. Hence by Lemma 2.15, (1.3′) holds.
If one (so ultimately all) of (1.3), (1.4) and (1.5) holds, then by Lemma 3.4
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and (2.11), the final (1.6) holds; indeed, (1.6) holds for every a ∈ P1 without
assuming (1.3), (1.4) or (1.5).

This completes the proof of Theorem 1.

4. Proof of Theorems A, 1.1 and 1.2. We give some addenda to our
argument in Section 3. Let K be an algebraically closed field of arbitrary
characteristic, and complete with respect to a non-trivial absolute value.
Let f ∈ K(z) be a rational function on P1 of degree d > 1, and a ∈ K(z) a
rational function on P1. If a is constant, we identify a with its value in P1.
Let ν = limj→∞ ν

a
nj be the weak limit of a subsequence (νanj ) of (νan) on

P1 = P1(K). Taking a subsequence of (nj) if necessary, we can assume that
the limit (3.1) exists in [−∞, 0].

We first give a purely local proof of Theorem A based on (1.7) and
Lemma 2.15.

Proof of Theorem A. Under the assumption in Theorem A, we set
K = Cv. The set of all points in P1(k) which are wandering under f and,
if in addition a is non-constant, do not belong to a−1(E(f)), is dense in
P1. Since Uν is upper semicontinuous, the inequality (3.2), combined with
the dynamical Diophantine approximation result (1.7), implies that Uν ≥ 0
on P1. Hence by Lemma 2.15, (1.3′) holds.

Next, we prove Theorem 1.1.

Proof of Theorem 1.1. We will show that (supp ν)∩ {Uν < 0} = ∅. This
means that, by Lemma 2.15, (1.3′) will hold.

Suppose first that a ∈ J(f) ∩ P1. Then as f−1(J(f)) = J(f), we have
supp ν ⊂ J(f). Hence by Lemma 3.2, (supp ν) ∩ {Uν < 0} = ∅.

Suppose that a ∈ (F(f)∩P1) \E(f). By the upper semicontinuity of Uν ,
{Uν < 0} is open. From (3.2),

lim sup
j→∞

1

dnj
log [fnj (·), a]can ≤ Uν(·) < 0(4.1)

on {Uν < 0}. This implies that limj→∞ f
nj = a on {Uν < 0} ∩ P1, so

{Uν < 0} ∩ P1 ⊂ F(f), and that the Berkovich Fatou component W of f
containing a is cyclic under f , i.e., fp(W ) = W for some p ∈ N. Then from
the classification of cyclic (Berkovich) Fatou components (see Theorem 2.17
for non-archimedeanK), it follows that either a is the unique attracting fixed
point of fp in W (attracting case), or deg(fp : W →W ) = 1 (singular case).
In the attracting case, by (4.1), a is the superattracting fixed point of fp in
W satisfying dega f

p = dp. This contradicts the assumption a ∈ P1 \ E(f).

Hence the singular case occurs. Let U be a component of {Uν < 0} and
put N := min{n ∈ N ∪ {0} : fn(U) ⊂ W}. Then for every n > N , there is
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at most one root of fn−N (·) = a in W , which is simple if it exists. Hence

0 ≤ ν(U) ≤ lim sup
j→∞

1 · dN

dnj
= 0.

This implies that (supp ν) ∩ {Uν < 0} = ∅.

Remark 4.1. For a purely potential-theoretical proof of Theorem 1.1
for non-archimedean K, see [11, §5].

An application of Theorem 1.1 is the following.

Lemma 4.2. The Berkovich Julia set J(f) of f coincides with{
S ∈ P1 :

⋂
(nj)⊂N: infinite

⋂
U : open inP1,S∈U

⋃
j∈N

fnj (U) = P1 \ E(f)
}
,(4.2)

which is a priori contained in J(f).

Proof. By Theorem 2.18, J(f) ⊂ suppµf . By Theorems 1.1 and 2.16,
suppµf is contained in (4.2). Clearly, (4.2) is contained in J(f).

Suppose now that a is non-constant.

Proof of Theorem 1.2 for archimedean K ∼= C. We will show that Uν ≥ 0
on supp ν. Then by Lemma 2.15, (1.3′) will hold.

By the upper semicontinuity of Uν , {Uν < 0} is open. Let U be a
component of {Uν < 0}. By Lemma 3.3, U ⊂ F(f). From (3.2), we have
limj→∞ f

nj = a on U . Since a is non-constant, this implies that there are
an N ∈ N and a cyclic Fatou component Y of f such that Y is a Siegel
disk or a Herman ring of f , and that for every j ≥ N , fnj (U) ⊂ Y . Then
a(U) ⊂ Y . For some k0 ∈ N, we have fk0(Y ) = Y , and for every j ≥ N , we
have k0|(nj − nN ).

Let h : Y → C be a holomorphic injection (a linearization map) such
that for some α ∈ R \ Q, setting λ = e2iπα, we have h ◦ fk0 = λ · h on Y .
Taking a subsequence of (nj) if necessary, λ0 := limj→∞ λ

(nj−nN )/k0 ∈ C
exists and

h ◦ a = lim
j→∞

h ◦ fnj = λ0 · (h ◦ fnN )

on U . Moreover, for every j ∈ N large enough, λ(nj−nN )/k0 6= λ0 and

h ◦ fnj − h ◦ a = (λ(nj−nN )/k0 − λ0) · (h ◦ fnN )

on U . Since h has at most one zero in Y , which is simple if it exists, we have

0 ≤ ν(U) ≤ lim sup
j→∞

1 · dnN
dnj + deg a

= 0.

This implies that {Uν < 0} ∩ (supp ν) = ∅.
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Suppose now that K is non-archimedean. In the following definition, Ef
is a Berkovich version of Rivera-Letelier’s quasiperiodicity domain of f .

Definition 4.3. Let Ef be the set of points in P1 having a neighborhood
U such that for some (nj) ⊂ N tending to ∞,

lim
j→∞

sup
U∩P1

[fnj , IdP1 ] = 0.(4.3)

Lemma 4.4. Ef is open, f(Ef ) ⊂ Ef , and Ef is covered by singular do-
mains of f . In particular, Ef ∩ P1 6= P1.

Proof. From the definition, Ef is open in P1. For every open subset U
in P1, [fnj , Id] ◦ f = [fnj+1, f ] ≤ L[fnj , Id] on U ∩ P1, where L > 0 is
a Lipschitz constant of f |P1 with respect to the chordal distance. Hence
if (4.3) holds on U , then limj→∞ supf(U)∩P1 [fnj , IdP1 ] = 0, so f(Ef ) ⊂ Ef .

By Lemma 4.2 and (4.3), Ef ∩ P1 ⊂ F(f). Moreover, by (4.3), Ef is
indeed covered by some cyclic Berkovich Fatou components W of f , and by
Theorem 2.17 and (4.3), each W is a singular domain.

Since Ef is covered by singular domains of f , f has no critical points in
Ef ∩ P1, so from deg f > 1, we have Ef ∩ P1 6= P1.

For non-archimedean K of characteristic 0, a non-archimedean counter-
part of the uniformization of a Siegel disk or a Herman ring of f is given by
Rivera-Letelier’s iterative logarithm of f on Ef .

Theorem 4.5 ([17, §3.2, §4.2]; see also [9, Théorème 2.15]). Suppose
that K has characteristic 0 and residual characteristic p. Let f ∈ K(z) be
a rational function on P1 of degree > 1 and suppose that Ef 6= ∅, which
implies p > 0 by [9, Lemme 2.14]. Then for every component Y of Ef not
containing ∞, there are a k0 ∈ N, a continuous action T : Zp × (Y ∩K) 3
(ω, y) 7→ Tω(y) ∈ Y ∩K and a non-constant K-valued holomorphic function
T∗ on Y ∩K such that for every m ∈ Z, (fk0)m = Tm on Y ∩K, that for
each ω ∈ Zp, Tω is a biholomorphism on Y ∩K and that for every ω0 ∈ Zp,

lim
Zp3ω→ω0

Tω − Tω0

ω − ω0
= T∗ ◦ Tω0(4.4)

locally uniformly in Y ∩K.

We also need the following.

Lemma 4.6. For every compact subset C in {Uν < 0},
lim
j→∞

sup
C

[fnj , a]can(·) = 0.

Proof. By a lemma of Hartogs (cf. [9, Proposition 2.18], [1, Proposi-
tion 8.57]) and (3.4), for every compact subset C in P1,

lim sup
j→∞

sup
C
Uνanj

≤ sup
C
Uν .(4.5)
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By Lemma 2.19,

sup
C

1

dnj
Φ(fnj , a)f (·)

= sup
C
U(1+(deg a)/dnj )νanj

+
1

dnj
sup
C
|Ua∗µf |+

1

dnj

�

P1

Φ(fnj , a)f dµf .

Let us take lim supj→∞ of both sides. Then by (2.11), the estimate (4.5),
and the boundedness of Ua∗µf , we have

lim sup
j→∞

1

dnj
log sup

C
[fnj , a]can(·) ≤ sup

C
Uν .

If C ⊂ {Uν < 0}, then by the upper semicontinuity of Uν , supC Uν < 0. This
completes the proof.

Suppose now that K is non-archimedean and of characteristic zero. By
Lemma 4.4, we can assume ∞ 6∈ Ef without loss of generality.

Proof of Theorem 1.2 for non-archimedean K of characteristic zero. We
will show that Uν ≥ 0 on supp ν. Then by Lemma 2.15, (1.3′) will hold.

By the upper semicontinuity of Uν , {Uν < 0} is open. Let U be a com-
ponent of {Uν < 0}. For every compact subset C in {Uν < 0}, supC Uν < 0.

Lemma 4.7. a(U) ⊂ Ef .

Proof. Fix z0 ∈ U ∩ P1. By Lemma 4.6, there is a Berkovich open disk
D relatively compact in U and containing z0 such that

lim
j→∞

sup
D

[fnj , a]can(·) = 0,(4.6)

and without loss of generality, we can assume that D is so small that a(D) is
a Berkovich open disc (see Fact 2.7). Fix a Berkovich open disk D′ relatively
compact in a(D) and containing a(z0). Then by (4.6), for every j ∈ N large
enough, fnj (D) is a Berkovich open disk intersecting a(D), and moreover
containing D′. Hence, since [fnj+1−nj , Id]◦fnj = [fnj+1 , fnj ] ≤ [fnj+1 , a](·)+
[fnj , a](·) on P1, we have

sup
D′∩P1

[fnj+1−nj , Id] ≤ sup
D∩P1

[fnj+1 , a](·) + sup
D∩P1

[fnj , a](·),

so by (4.6), lim supj→∞ supD′∩P1 [fnj+1−nj , Id] = 0. This implies a(U)⊂Ef .

Let Y be the component of Ef containing a(U). Let p > 0, k0 ∈ N, T ,
T∗ be as in Theorem 4.5 associated to this Y .

For any Berkovich closed connected affinoid V in U , by Lemma 4.6,
limj→∞ supV [fnj , a]can(·) = 0. Then there exists an N ∈ N such that for
every j ≥ N , the Berkovich closed connected affinoid fnj (V ) is contained
in Y , and k0 | (nj − nN ).
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For every j ≥ N , fnj = T (nj−nN )/k0 ◦ fnN on V ∩ P1. Taking a subse-
quence of (nj) if necessary, the limit

lim
j→∞

nj − nN
k0

=: ω0

exists in Zp, and a = limj→∞ f
nj = limj→∞ T

(nj−nN )/k0 ◦ fnN = Tω0 ◦ fnN
on V ∩ P1. For every j ≥ N ,

fnj − a = (T (nj−nN )/k0 − Tω0) ◦ fnN(4.7)

on V ∩ P1. Increasing N if necessary, we also have (nj − nN )/k0 6= ω0.

Let Z∗ be the set of all zeros in the closed connected affinoid fnN (V ) ∩K
of the non-constant holomorphic function T∗◦Tω0 on Y ∩K. Then #Z∗ <∞
(see Fact 2.6). Hence #f−nN (Z∗) <∞, and we can assume that f−nN (Z∗)
⊂ K without loss of generality.

Now we also assume that the Berkovich closed connected affinoid V is
strict.

Lemma 4.8. (supp ν) ∩ ((intV ) \ f−nN (Z∗)) = ∅.

Proof. For each ε > 0 in |K∗|, set

Vε := V \
⋃

w∈f−nN (Z∗)

{S ∈ P1 \ {∞} : |S − w| < ε},

which is a strict Berkovich closed connected affinoid. Then fnN (Vε) is a strict
Berkovich closed connected affinoid in Y . Hence by the maximum modulus
principle, the minimum

min{|T∗ ◦ Tω0(z)| : z ∈ fnN (Vε) ∩K} > 0

exists (see Fact 2.7) and is positive by the choice of Vε. Then from the
uniform convergence (4.4) on fnN (Vε) ∩K, for every j ∈ N large enough,

|T (nj−nN )/k0 − Tω0 | > 0

on fnN (Vε) ∩ K, which together with (4.7) implies that there is no root
of fnj = a in Vε ∩ P1. Hence (supp ν) ∩ intVε = ∅, which implies that
(supp ν) ∩ ((intV ) \ f−nN (Z∗)) = ∅.

Lemma 4.9. (supp ν) ∩ ((intV ) ∩ f−nN (Z∗)) = ∅.

Proof. Let z0 ∈ (intV ) ∩ f−nN (Z∗). If z0 is a root of fnj = a, then
by (4.7) and the uniform convergence (4.4) on V , the multiplicity of z0 as a
root of fnj = a is bounded from above by

(degfnN (z0)(T∗ ◦ T
ω0)) · dnN − 1.(4.8)

For any Berkovich open disk D in V containing z0 and satisfying the condi-
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tion D ∩ f−nN (Z∗) = {z0}, from the upper bound (4.8) and Lemma 4.8,

0 ≤ lim sup
j→∞

νanj (D) ≤ lim sup
j→∞

νanj ({z0}) + lim sup
j→∞

νanj (D \ {z0})

≤ lim sup
j→∞

(degfnN (z0)(T∗ ◦ T
ω0)) · dnN

dnj
+ ν((intV ) \ f−nN (Z∗)) = 0.

Hence ν(D) = 0 if D is small enough, so z0 6∈ supp ν.

From Lemmas 4.8 and 4.9, (intV ) ∩ (supp ν) = ∅. This implies that
U ∩ (supp ν) = ∅, so {Uν < 0} ∩ (supp ν) = ∅.

Now the proof of Theorem 1.2 is complete.

5. The case of polynomials. Let K be an algebraically closed field of
any characteristic and complete with respect to a non-trivial absolute value.

For every polynomial φ ∈ K[z] on P1, the factorization of φ extends
|φ| continuously to P1 \ {∞} using the extended | · −w| on P1 \ {∞} for
each w ∈ P1 \ {∞}. For polynomials φi ∈ K[z] (i ∈ {1, 2}), φ1− φ2 is also a
polynomial. Hence the continuous extension S 7→ |φ1−φ2|can(S) to P1\{∞}
of the function z 7→ |φ1(z)− φ2(z)| on P1 \ {∞} exists so that on P1 \ {∞},

|φ1 − φ2|can(·) = [φ1, φ2]can(·) max{1, |φ1(·)|}max{1, |φ2(·)|}.(5.1)

Let f ∈ K[z] be a polynomial on P1 of degree d > 1. The Berkovich
filled-in Julia set of f is

K(f) :=
{
S ∈ P1 : lim

n→∞
fn(S) 6=∞

}
.

Noting that f(∞) = ∞ ∈ E(f), let A∞ = A∞(f) be the fixed immedi-
ate attractive basin of f containing ∞. Then f−1(A∞) = A∞ since deg(f :
A∞ → A∞) = deg∞ f = d. Hence A∞ is completely invariant under f ,
and K(f) = P1 \ A∞. Moreover, ∂A∞ = ∂K(f) = J(f). Indeed, by The-
orem 2.18, J(f) ⊂ suppµf . Fix S ∈ A∞ ∩ P1. Then by Theorem 1.1,

suppµf ⊂
⋂
N∈N

⋃
n≥N f

−n(S), which is contained in ∂A∞ ⊂ J(f).

For each R > 0 in |K∗|, let D∗R := {S ∈ P1 \ {∞} : |S| > R} and DR :=
D∗R ∪ {∞}. If R > 0 is large enough, then since ∞ is a (super)attracting
fixed point of f , we have infz∈D∗R∩P1 |f(z)| > R. Hence by the continuity

of |f(·)|, infD∗R |f(·)| > R. This implies that DR b f−1(DR). Since A∞ =⋃
n∈N f

−n(DR), for every Berkovich closed disk D in A∞ \ {∞} we have
lim infn→∞ infD |fn(·)| > R. Hence

lim inf
n→∞

inf
D
|fn(·)| =∞.(5.2)

Lemma 5.1. Suppose that K is non-archimedean. For every polynomial
f ∈ K[z] on P1 of degree d > 1 and every polynomial a ∈ K[z] on P1, the
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condition (1.5) holds on A∞(f) \ {∞}, and on K(f),

sup
n∈N

∣∣log [fn, a]can(·)− log |fn − a|can(·)
∣∣ <∞.

In particular, (1.5) holds on P1 \ P1 if and only if the condition

lim
j→∞

1

dnj
log |fnj − a|can(·) = 0(1.5′)

holds on K(f) \ P1.

Proof. For every Berkovich closed disk D in A∞ \ {∞}, fix an R > 0
in |K∗| so large that R > max{1, supD |a(·)|}. By (5.1) and (5.2), for every
n ∈ N large enough, on D ∩ P1,

log [fn(·), a(·)] = log |fn(·)| − log |fn(·)| − log max{1, |a(·)|} ≥ − logR.

Hence log [fn, a]can(·) ≥ − logR on D since both sides are continuous. This
implies that (1.5) holds on A∞(f) \ {∞}.

Next, fix an R > 0 in |K∗| so large that DR ⊂ A∞. Then
⋃
n∈N f

n(K(f))
⊂ P1 \ DR. Hence by (5.1),

sup
n∈N

∣∣log [fn, a]can(·)− log |fn − a|can(·)
∣∣

≤ log max{1, R}+ log max{1, |a(·)|} <∞

on K(f).

We conclude this section with an example. Suppose thatK has character-
istic p > 0, and set f(z) = z + zp and a = Id. Then K(f) =

{S ∈ P1 \ {∞} : |S| ≤ 1}. For each j ∈ N, fp
j
(z) = z + zp

pj

and the
equality

log |fpj − Id|can = pp
j

log | · |

holds on P1 \{∞}. By the continuity of both sides, this extends to P1 \{∞}.
In particular, (1.5′) does not hold on K(f) \ P1. Hence the equidistribution
property (1.2) for f(z) = z + zp and a = Id does not hold.

Of course, this could be more directly seen since

lim
j→∞

νapj = lim
j→∞

1

ppj + 1
(pp

j
δ0 + δ∞) = δ0

weakly on P1, but suppµf = J(f) = ∂K(f) = {Scan}.
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[18] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren

Math. Wiss. 316, Springer, Berlin, 1997.
[19] J. H. Silverman, Integer points, Diophantine approximation, and iteration of rational

maps, Duke Math. J. 71 (1993), 793–829.
[20] M. Sodin, Value distribution of sequences of rational functions, in: Entire and Sub-

harmonic Functions, Adv. Soviet Math. 11, Amer. Math. Soc., Providence, RI, 1992,
7–20.

[21] L. Szpiro and T. J. Tucker, Equidistribution and generalized Mahler measures, in:
Number Theory, Analysis and Geometry: In Memory of Serge Lang, Springer, 2012,
609–638; preprint available at arXiv:math/0510404.
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