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1. Introduction. Assuming the Generalized Riemann Hypothesis
(GRH), the non-trivial zeros of L-functions lie on the line <s = 1/2. The
distribution of these zeros governs the behavior of a variety of problems,
ranging from the distribution of primes in arithmetic progressions to the
size of the class number to the geometric rank of the Mordell–Weil group of
elliptic curves, among others [CI, Da, Go, GZ, RubSa]. In many instances
we need to know more than just the fact that the zeros lie on the line, but
additionally how they are distributed on the line.

One of the most successful approaches to modeling these zeros is through
random matrix theory. Originally arising in statistical investigations [Wis],
the subject flourished in the 1950s and 1960s with the work of Wigner [Wig1–
Wig5], Dyson [Dy1, Dy2] and others, who applied it to describe the energy
levels of heavy nuclei. In the 1970s, Montgomery and Dyson [Mon] noticed
that the 2-level correlation of zeros of the Riemann zeta function matched
those of the Gaussian Unitary Ensemble (GUE); see [Ha, FirMi] for more on
the history. Since then random matrix theory has made precise statements
about the main term in the behavior of numerous statistics involving zeros
of L-functions [Con, KeSn1–KeSn3].

While the limiting behavior of n-level correlations of a single L-function
has been shown to agree (for suitable test functions) with the scaling limit
of the GUE [Hej, Mon, RS], the behavior near the central point is different
for different L-functions, and depends on the arithmetic of the form (for
example, the order of vanishing of L-functions attached to elliptic curves is
conjecturally equal to the rank of the Mordell–Weil group). To study these
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low-lying zeros, Katz and Sarnak [KaSa1, KaSa2] introduced a different
statistic, the n-level density, defined as follows. Assuming GRH, the non-

trivial zeros of an L-function L(s, g) are 1/2 + iγ
(j)
g with γ

(j)
g real, where

· · · ≤ γ(−2)g ≤ γ(−1)g ≤ γ(1)g ≤ γ(2)g ≤ · · · if the sign of the functional equation

is even (if it is odd, there is an extra zero: γ
(0)
g = 0). The n-level density for

a finite family of L-functions G is

(1.1) D(n)(G; f) :=
1

|G|
∑
g∈G

∑
j1,...,jn
ji 6=±jk

f1

(
logR

2π
γ(j1)g

)
· · · fn

(
logR

2π
γ(jn)g

)
,

where the fi are even Schwartz functions whose Fourier transforms have
compact support and logR is a normalization parameter (essentially the
average of the logarithms of the analytic conductors) so that the scaled ze-
ros near the central point have mean spacing 1. The Katz–Sarnak Density
Conjecture states that as the conductors tend to infinity the distribution
of the scaled zeros near the central point converges to the same limiting
distribution as the normalized eigenvalues near 1 of a subgroup of the uni-
tary group U(N) as N →∞. The corresponding group is typically unitary,
symplectic, or orthogonal matrices (or a trivial modification to take into
account forced zeros at the central point).

There is strong evidence for this conjecture. First, in the function field
case the correspondence is clear as the subgroup is the monodromy group.
Second, there are now many families of L-functions where we can prove
agreement for suitably restricted test functions, including Dirichlet L-func-
tions, elliptic curves, cuspidal newforms, Maass forms, number field L-func-
tions and symmetric powers of GL2 automorphic representations, to name
a few [AILMZ, AM, DM1, FioMi, FI, Gao, GK, Gü, HM, HR, ILS, KaSa1,
KaSa2, Mil, MilPe, OS1, OS2, RR, Ro, Rub, Ya, Yo]. More generally, in
recent work Shin and Templier [ShTe] determined the symmetry type of
many families of automorphic forms on GLn over Q, and Dueñez and Miller
[DM2] showed how to understand the low-lying zeros of many compound
families of L-functions (arising from Rankin–Selberg convolutions) in terms
of the behavior of the constituent families.

In the present paper we study the low-lying zeros (i.e., those near the
central point) of quadratic Dirichlet L-functions via the n-level density. Ru-
binstein [Rub] showed these agree with the scaling limit of symplectic matri-

ces whenever f̂1, . . . , f̂n are supported in
∑n

i=1 |ui| < 1. Gao [Gao] extended
this result in his thesis. It is important to have as large support as possible,
because extending the support is frequently related to finer questions about
the arithmetic of the family. Interestingly, while Gao was able to compute
the number theory side for test functions supported in

∑n
i=1 |ui| < 2, he was
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only able to show agreement with the Katz–Sarnak determinantal expansion
for the symplectic ensemble for n ≤ 3.

This created an annoying situation in the literature, where both num-
ber theory and random matrix theory had been computed in the regime∑n

i=1 |ui| < 2, but could only be shown to agree in this full range for n ≤ 3.
Gao’s proof involved using ad hoc Fourier transform identities to match the
manageable number of terms present for such small n. Unfortunately, the
number of summands grows very rapidly with n, and this approach becomes
impractical for higher n.

In this paper, we further extend the agreement between number theory
and random matrix theory. Our proof is in two steps. First, we resolve a
combinatorial obstruction by rewriting both densities using the same com-
binatorial perspective: we express the terms of the densities in terms of
certain pairs of set partitions. This allows us to show agreement between
most of the terms arising in the densities, for any n. Second, we reduce the
Density Conjecture (in the range

∑n
i=1 |ui| < 2) to showing that a term aris-

ing in the random matrix theory is the Möbius transform (over the lattice
of set partitions) of a corresponding term from number theory. We cannot
prove this identity for all n, but we use Möbius inversion and properties of
Fourier transforms to give it a canonical form that is possible to check with
a computation. As an application, we verify it for n ≤ 7:

Theorem 1.1. Let f1, . . . , fn be even Schwartz functions with the f̂i
supported in

∑n
i=1 |ui| < 2. For n ≤ 7, the Katz–Sarnak Density Conjecture

holds for the low-lying zeros of quadratic Dirichlet L-functions {L(s, χ8d)},
where d ∈ N is odd and square-free.

In the above theorem, following Gao [Gao] we restricted the family of
quadratic characters. This simplifies the analysis by excluding χ2, and fa-
cilitates applications of Poisson summation in Gao’s thesis [Gao]. Note that
χ8d is a real primitive character with even sign (i.e., χ8d(−1) = 1).

We briefly sketch the proof. Both sides are known for
∑n

i=1 |ui| < 2 by
[Rub, Gao]; the difficulty is showing that the two expressions are equal. We
proceed as follows:

(1) We regroup the terms in the random matrix theory in terms of pairs
of set partitions F ,G, such that F refines G and each block of G is
a union of at most two blocks of F .

(2) We do the same to the number theory; this step is more involved
because the counting is naturally ‘backwards’ there, so the main step
is to switch the order in which the pairs of partitions are counted.

(3) We separate the remaining non-matching terms from the rest of the
sum, and show that they are all instances of a single Möbius inversion
identity.



148 J. Levinson and S. J. Miller

(4) We (Möbius-)invert the identity and use properties of Fourier trans-
forms to convert all the terms to integrals over Rn≥0. We reduce to
showing that the integrands are identically equal in the region ui > 0,∑n

i=1 ui < 2.
(5) We reduce to a formal polynomial over the subsets of {1, . . . , n},

modulo two relations that encode the support restriction: this gives
an algorithm for showing the Fourier identity, which we use to verify
up to n = 7.

Remark 1.2. This work is an extension of the first-named author’s 2011
senior thesis at Williams College [Lev]. There agreement was shown for
n ≤ 6 through a more computational approach. In the course of extending
these results and preparing the present manuscript, we learned of the work
of Entin, Roddity-Gershon and Rudnick [ER-GR], who are able to show
agreement for all n. Instead of taking a combinatorial approach, they pro-
ceed by going through a function field analogue and using the limit of large
finite fields where the hyperelliptic ensemble is shown to have USp statis-
tics. In particular, their results imply that our identity holds for all n; it
would be interesting to complete the ideas of this paper and derive a purely
combinatorial proof of this fact.

The paper is organized as follows. We assume the reader is familiar with
[Rub, Gao], and we will just quote the number theory and random matrix
theory expansions from these works. In §2 we review some notation and
derive some combinatorial results which allow us to recast our problem as a
related Fourier transform identity. We briefly discuss the obstruction which
restricts our theorem to n ≤ 7, and see why the two sides at first look so
different. We continue in the next section by recasting the random matrix
theory and number theory expansions to a more amenable form, reducing
the problem to the aforementioned Fourier transform identity, which we
analyze in §4. There we rewrite everything in a more tractable canonical
form, and discuss the verification for n ≤ 7, which completes the proof of
Theorem 1.1.

2. Combinatorial preliminaries. The purpose of this section is to
set the notation for the subsequent combinatorial analysis, and highlight
the technical issues.

2.1. Set partitions. We recall some basic properties of set partitions.
A partition F of a finite set S is a collection of subsets F = {F1, . . . , Fk}
⊂ P(S) such that the Fi are non-empty and pairwise disjoint, and S =⋃k
i=1 Fi. The Fi are called the blocks of F and the number k = ν(F ) of

blocks is the length of F . The set of all partitions of a set S is denoted by
Π(S); when n ∈ N, by abuse of notation we write Π(n) for Π({1, . . . , n}).
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We partially order Π(S) by partition refinement: F � G if each block of
F is contained in some block of G (equivalently, each block of G is a union
of blocks of F ). We write O = {{1}, . . . , {n}} and N = {{1, . . . , n}} for the
minimal and maximal partitions.

We associate to any finite partially ordered set P the incidence algebra

(2.1) A = {f : P × P → C : f(x, y) = 0 unless x � y},
with pointwise addition and multiplication defined by the convolution ∗:

(2.2) (f ∗ g)(x, y) =
∑
z∈[x,y]

f(x, z)g(z, y),

where

(2.3) [x, y] := {z : x � z � y}
is the segment from x to y. The multiplicative identity is denoted by δ,
where

(2.4) δ(x, y) =

{
1 if x = y,

0 otherwise.

We have the zeta function

(2.5) ζ(x, y) =

{
1 if x � y,

0 otherwise.

We think of multiplication by ζ as ‘integration’, since

(ζ ∗ f)(x, y) =
∑
z∈[x,y]

f(z, y).(2.6)

The convolution inverse of ζ is the Möbius function µ, which satisfies the
identity

(2.7) δ(x, y) = (µ ∗ ζ)(x, y) =
∑
z∈[x,y]

µ(x, z) =

{
1 if x = y,

0 otherwise.

We will use Möbius inversion on functions from P to C. The incidence
algebra acts on functions (on the left) as follows. For f ∈ A and g : P → C,
we define

(2.8) (f ∗ g)(x) =
∑
y�x

f(x, y)g(y),

and the Möbius inversion formula is given by

(2.9) f = (ζ ∗ g) ⇔ g = (µ ∗ f)

or, more explicitly,

(2.10) (∀x) f(x) =
∑
y�x

g(y) ⇔ (∀x) g(x) =
∑
y�x

µ(x, y)f(y).
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The Möbius function of Π(n) is known (see for example [Rot]): if F � G
and the ith block of G is a union of bi blocks of F , then

(2.11) µ(F ,G) = (−1)ν(F )−ν(G)

ν(G)∏
i=1

(bi − 1)!.

The coefficients µ(O,F ) and µ(F ,N) will often show up in our sums and
are given by

µ(O,F ) = (−1)n−ν(F )

ν(F )∏
i=1

(|Fi| − 1)!,(2.12)

µ(F ,N) = (−1)ν(F )−1(ν(F )− 1)!.(2.13)

We make extensive use of the following definition.

Definition 2.1. If F � G ∈ Π(n) are partitions, we say F is a 2-
refinement of G (or G is 2-coarser than F ) if each block of G is a union of
at most two blocks of F . If only one block decomposes, we say G covers F .

Covers and 2-refinements arise in our sums, and we note that in these
cases the Möbius function simplifies to µ(F ,G) = (−1)ν(F )−ν(G). Also, if G
covers F via the decomposition Fi ∪ Fj = Gk, it is easy to see that

(2.14)
µ(O,F )

µ(O,G)
= −(|Fi| − 1)!(|Fj | − 1)!

(|Gk| − 1)!
.

More generally, for a 2-refinement F � G, let F l ∈ [F ,G] be the partition
obtained by only decomposing the lth block of G into blocks from F , say
Gl = Fl1 ∪ Fl2 . Then

(2.15)
µ(O,F )

µ(O,G)
=
∏
l

µ(O,F l)

µ(O,G)
= (−1)ν(F )−ν(G)

∏
l

(|Fl1 | − 1)!(|Fl2 | − 1)!

(|Gl| − 1)!
,

where l runs over the blocks Gl that decompose in F .

Definition 2.2. If F is a 2-refinement of G, we define the sets

(2.16)

S(F ,G) = {l : Gl decomposes in F},
Sc(F ,G) = {l : Gl is a block of F},
W (F ,G) = {l : Fl joins with another block of F in G},
W c(F ,G) = {l : Fl remains a block in G};

so S ∪ Sc = {1, . . . , ν(G)} and W ∪W c = {1, . . . , ν(F )}.
Remark 2.3. Given G ∈ Π(n), a 2-refinement F is uniquely specified

by a choice of blocks S ⊆ {1, . . . , ν(G)} and, for each l ∈ S, a choice of
decomposition Gl = Hl ∪Hc

l . (If |Gl| = 1 for some l ∈ S, there are no valid
decompositions of Gl.)
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Conversely, given F , a partition G 2-coarser than F is uniquely specified
by a choice of blocks W ⊆ {1, . . . , ν(F )} with |W | even, and a way of pairing
up the elements of W .

2.2. The combinatorial obstruction. We can now clarify some of
the obstacles we need to address.

The first reason the random matrix theory and number theory densities
in [Gao] appear different is as follows. In the random matrix theory density,
for each partition F = {F1, . . . , Fk} we at one point consider all ways of
decomposing some or all of the blocks Fi into exactly two proper non-empty
subsets each. That is, we consider all the 2-refinements F ′ of F . On the
number theory side, we instead consider all the ways of pairing up (some
or all of) the blocks Fi. In other words, we consider all the partitions G of
which F is a 2-refinement. Because the counting is ‘backwards’ here, the
terms appear very different from those encountered on the other side. By
reindexing these sums appropriately, we are able to match up the parts of the
random matrix theory and number theory densities related to 2-refinements.
We then reduce the remaining difference to a Fourier transform identity.

We verify this remaining Fourier transform identity up to the case n = 7
by breaking down the remaining combinatorics. The difference between our
approach and Gao’s is as follows. Gao verified the cases n = 1, 2, 3 by using
various ad hoc Fourier transform identities, and explicitly computing for-
mulas for (sums of) integrals over certain regions in Rn (n ≤ 3), such as
(equation (5.11) from [Gao]):

(2.17)

�

R3
≥0

u1>1+u2+u3

3∏
i=1

f̂i(ui) dui =

∞�

1

u1−1�

0

u1−u2−1�

0

3∏
i=1

f̂i(ui) dui,

�

R3
≥0

u2>1+u1+u3

3∏
i=1

f̂i(ui) dui =

∞�

0

∞�

1+u1

u2−u1−1�

0

3∏
i=1

f̂i(ui) dui,

and showed that these sums yielded zero over various subregions of the
support region |u1|+ |u2|+ |u3| < 2. In contrast, we will write

(2.18)

�

R3
≥0

u1>1+u2+u3

3∏
i=1

f̂i(ui) dui =
�

R3
≥0

χ̃(u1 − u2 − u3)
3∏
i=1

f̂i(ui) dui,

�

R3
≥0

u1>1+u2+u3

3∏
i=1

f̂i(ui) dui =
�

R3
≥0

χ̃(−u1 + u2 − u3)
3∏
i=1

f̂i(ui) dui,
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where χ̃ is the indicator function of the interval [1,∞), and show equality
by analyzing the combinatorics of various sums of products of indicator
functions.

3. Recasting the expansions. In this section we rewrite both sides
to facilitate the comparison, and reduce the problem to a Fourier transform
identity. To state the random matrix theory (RMT) expansion we need the
following definition.

Definition 3.1 (χ∗). For an integer k ≥ 1, the sum of indicator func-
tions χ∗k on Rk is defined by

(3.1) χ∗k(u1, . . . , uk)

=
∑
π∈Sk
π(1)=1

( k∏
i=1

χ(uπ(1) + · · ·+ uπ(i) − uπ(i+1) − · · · − uπ(k))
)
,

where Sk is the symmetric group on {1, . . . , k}, we sum over the (k − 1)!
permutations fixing 1, and χ is the indicator function of [−1, 1].

Note that χ∗n is symmetric in the variables u2, . . . , un but not u1. We
have the following, however:

Proposition 3.2. Fix m ∈ {1, . . . , n}. Let φm;n be defined analogously
to (3.1), but with the condition “π(1) = 1” replaced by “π(1) = m” (and
k = n), so

(3.2) φm;n(u1, . . . , un)

=
∑
π∈Sn
π(1)=m

( n∏
i=1

χ(uπ(1) + · · ·+ uπ(i) − uπ(i+1) − · · · − uπ(n))
)
,

Let f1, . . . , fn be even Schwartz functions. Then

(3.3)
�

Rn
φm;n(u1, . . . , un)

n∏
i=1

fi(ui) dui =
�

Rn
χ∗n(u1, . . . , un)

n∏
i=1

fi(ui) dui.

All our integrals will be against even functions f1, . . . , fn, so by abuse of
notation, we will sometimes refer to χ∗G, where G is a set (generally a block
of a partition G ∈ Π(n)). The definition is the same as above (with k = |G|)
and G is understood as the set of indices for the variables ui; any i ∈ G can
play the role of the ‘distinguished’ element 1.

Proof of Proposition 3.2. We consider the summands of χ∗n one at a time.
Let π be a permutation with π(1) = 1 and let k be such that π(k) = m. We
show that the π term gives the same integral as the term in φm;n coming



Low-lying zeros of quadratic Dirichlet L-functions 153

from the permutation π′, where

(3.4) π′ =

(
1 2 · · · n− k + 1 n− k · · · n

π(k) π(k + 1) · · · π(n) π(1) · · · π(k − 1)

)
.

In particular, π′(1) = π(k) = m and thus π′ is one of the terms in φm;n.

To see this, first replace uπ(i) 7→ −uπ(i) for i = k, . . . , n in each χ factor.
This does not change the value of the integral because the fi are all even.
Now uπ(k) appears with a negative sign in the kth through nth factors.
Since χ is an even function, multiply its argument by −1 on each of these
factors, so that uπ(k) now always appears with a positive sign. Reordering
the factors cyclically, so that the kth term appears first (followed by the
(k + 1)st, . . . , nth, 1st, . . . , (k − 1)th), gives the desired expression.

This process is invertible, so the terms of φm;n are in one-to-one cor-
respondence with the terms of χ∗n (and this correspondence preserves the
values of the integrals).

3.1. Recasting the random matrix theory side. The n-level eigen-
value density for USp (see equation (4.12) in [Gao]) is

�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx =

∑
G∈Π(n)

(−2)n−ν(G)

ν(G)∏
l=1

(Pl +Ql +Rl),(3.5)

where

Pl = (|Gl| − 1)!

((
−1

2

) �

R

Ĝl(u) du+
�

R

Gl(x) dx

)
,(3.6)

Ql = −
∑

[H,Hc]

(|H| − 1)!(|Hc| − 1)!
�

R

|u|Ĥ(u)Ĥc(u) du,(3.7)

Rl =
1

2

�

R|Gl|
((|Gl| − 1)!− χ∗Gl(ui1 , . . . , ui|Gl|))

∏
i∈Gl

f̂i(ui) dui,(3.8)

with G = {G1, . . . , Gν(G)} and Gl(x) =
∏
i∈Gl fi(x). Also, the sum

∑
[H,Hc]

ranges over the ways of decomposing Gl into two proper, non-empty disjoint

subsets H and Hc, and Ĥ(u) =
∏̂
i∈H fi(u) and similarly for Hc. Except for

Lemma 3.6, we do not need the expansion of χ∗Gl until §4.

In the current section we alter this expression in two ways. First, we
rearrange the formula so that the Ql terms (involving decompositions of the
blocks of G) are put in a form described by 2-refinements of G. When we
work with the number theory side, we perform a similar rearrangement that
makes it easy to see the correspondence between these terms. The second im-
provement is to reduce the number of Rl terms we must analyze by showing
that any product of two Rl terms vanishes due to support restrictions.
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3.1.1. Reindexing the RMT side. We first recast the above formula in
terms of 2-refinements of G.

Lemma 3.3. Equation (3.5) is equivalent to

(3.9)
�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx

=
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)
∏
l∈Sc

(Al + Cl),

where
∑2ref

F�G runs over all the 2-refinements of G (including G itself ) and

D(F ,G) =
∏

l∈S(F ,G)

�

R

|u|Ĥl(u)Ĥc
l (u) du,(3.10)

Al = −1

2

�

R

Ĝl(u) du+
�

R

Gl(x) dx,(3.11)

Cl =
1

2

�

R|Gl|

(
1−

χ∗Gl(ui1 , . . . , ui|Gl|
)

(|Gl| − 1)!

) ∏
i∈Gl

f̂i(ui) dui,(3.12)

and Hl∪Hc
l = Gl is the decomposition of Gl in F , with Ĥl(u) =

∏̂
i∈Hl fi(u)

and similarly for Ĥc
l (u) (note empty products are 1). The sets S = S(F ,G)

and Sc = Sc(F ,G) are as in Definition 2.2.

Proof. We view the sum
∑

[H,Hc] in (3.5) as a sum
∑cvr,Gl

F≺G over all strictly
finer partitions F ≺ G that are covered by G via a decomposition of Gl into
H ∪Hc. Note that if Gl is a singleton set, then we take the empty sum to
be 0. Also, we pull the (|Gl| − 1)! and (−1)n−ν(G) factors to the front, to
make a µ(O,G) coefficient. From (2.14) we have

(3.13) − (|H| − 1)!(|Hc| − 1)!

(|Fl| − 1)!
=
µ(O,F )

µ(O,G)
.

The new RMT formula is then

(3.14)
�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx =

∑
G∈Π(n)

2n−ν(G)µ(O,G)

ν(G)∏
l=1

(Al +Kl + Cl),

where Al and Cl are as in (3.11) and (3.12), and

Kl =

cvr,Gl∑
F≺G

µ(O,F )

µ(O,G)

�

R

|u|Ĥ(u)Ĥc(u) du,(3.15)

with Ĥ(u) =
∏̂
fi∈H fi(u) and similarly for Ĥc(u).
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Now, we begin expanding the product
∏

(Al +Kl +Cl) to work directly
with the Kl term. The goal is to re-express these terms as sums over 2-
refinements of G. We have

(3.16)
�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx

=
∑

G∈Π(n)

2n−ν(G)µ(O,G)
( ∑
S⊆{1,...,ν(G)}

∏
l∈S

Kl

∏
l∈Sc

(Al + Cl)
)
.

We first have the following lemma, which converts the Kl term from a
sum over partitions covered by G into a sum over 2-refinements of G.

Lemma 3.4. Let G ∈ Π(n) and let S ⊆ {1, . . . , ν(G)} be a fixed subset
(i.e., a fixed choice of blocks of G). Then

(3.17) µ(O,G)
∏
l∈S

Kl =

2ref,S∑
F�G

µ(O,F )D(F ,G),

where
∑2ref,S

F�G runs over all the 2-refinements F of G such that S(F ,G) = S

is the set of blocks of G that decompose in F . The term D(F ,G) is as in
(3.10) and Kl is as in (3.15).

Remark 3.5. In order to have any 2-refinements F of G on the right-
hand side of (3.17), each of the blocks Gl (l ∈ S) must not be a singleton
set. Note that (3.17) holds either way. If Gl is a singleton set for some l ∈ S,
the Kl factor on the left-hand side and the entire right-hand side are both
empty sums, hence zero.

Proof of Lemma 3.4. Expanding the left-hand side, we have

(3.18) µ(O,G)
∏
l∈S

Kl = µ(O,G)
∏
l∈S

cvr,Gl∑
F�G

µ(O,F )

µ(O,G)

�

R

|u|Ĥ(u)Ĥc(u) du.

When we expand this sum, we obtain a sum of terms, each of the form

(3.19) µ(O,G)
∏
l∈S

µ(O,F l)

µ(O,G)

�

R

|u|Ĥl(u)Ĥc
l (u) du,

where F l is the partition covered by G by decomposing the block Gl =
Hl ∪Hc

l and leaving the other blocks of G unchanged.
Let F � G be the partition obtained by decomposing all the Gl this way.

Then each summand corresponds to a unique such F , a 2-refinement of G
with S(F ,G) = S. By the identity (2.15), the µ coefficient becomes

(3.20) µ(O,G)
∏
l∈S

µ(O,F l)

µ(O,G)
= µ(O,G)

µ(O,F )

µ(O,G)
= µ(O,F ),
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so the term simplifies to

(3.21) µ(O,F )
∏
l∈S

�

R

|u|Ĥl(u)Ĥc
l (u) du = µ(O,F )D(F ,G),

as desired.

Conversely, every 2-refinement F � G with S(F ,G) = S arises (once)
this way, so the two sides of (3.17) match.

We now return to the proof of Lemma 3.3. When we sum (3.17) over all
S ⊆ {1, . . . , ν(G)}, we get a sum over all the 2-refinements F of G (including
G itself, from S = ∅). We have

(3.22)
�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx

=
∑

G∈Π(n)

2n−ν(G)
2ref∑
F�G

µ(O,F )D(F ,G)
∏
l∈Sc

(Al + Cl),

where
∑2ref

F�G runs over all the 2-refinements of G (including G itself), com-
pleting the proof of Lemma 3.3.

3.1.2. Expanding the Cl terms. We expand and simplify the
∏
l(Al+Cl)

term. The following lemma drastically reduces the number of terms we have
to analyze.

Lemma 3.6. Let Gl and Gk be disjoint subsets of {1, . . . , n}. Then

Cl · Ck =
�

R|Gl|

(
1−

χ∗Gl(u)

(|Gl| − 1)!

) ∏
i∈Gl

f̂i(ui) dui(3.23)

×
�

R|Gk|

(
1−

χ∗Gk(u)

(|Gk| − 1)!

) ∏
i∈Gk

f̂i(ui) dui = 0,

where χ∗Gl(u) is shorthand for χ∗Gl(ui1 , . . . , ui|Gl|
), as defined in equation (3.1).

Proof. Since Gl and Gk are disjoint, we must have either

(3.24)
∑
i∈Gl

supp(f̂i) < 1 or
∑
j∈Gk

supp(f̂j) < 1,

since the total support is less than 2. Without loss of generality, assume Gl’s
total support is less than 1. Then

(3.25) | εi1ui1 + · · ·+ εikuik︸ ︷︷ ︸
ij∈Gl

| ≤
∑
Gl

|ui| < 1

in the region of support, so χ(
∑

Fl
εiui) = 1 for any εi = ±1. Since χ∗Gl is a

sum of (|Gl| − 1)! products of χ’s, the Gl integrand is identically 0.
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To emphasize the significance of this lemma, we note that instead of
having to expand a product of the form

∏k
l=1(Al + Cl) into 2k terms,

(3.26)

k∏
l=1

(Al + Cl) =
∑

U⊆{1,...,n}

∏
l∈U

Al
∏
l /∈U

Cl,

we only end up with k + 1 non-vanishing terms:

(3.27)

k∏
l=1

(Al + Cl) =

k∏
l=1

Al +

k∑
l=1

Cl
∏
l′ 6=l

Al′ .

Combining Lemmas 3.6 and 3.3 yields the following.

Lemma 3.7. With notation as in Lemma 3.3, (3.5) is equivalent to

(3.28)
�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx

=
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)
( ∏
l∈Sc

Al +
∑
l∈Sc

Cl
∏
l′ 6=l

Al′
)
.

Here Sc = Sc(F ,G) is as in Definition 2.2.

The expression (3.28) is the one we use when we start matching terms
with the number theory (NT) side.

3.2. Recasting the NT formula. We now rewrite the NT density as a
sum over 2-refinements of partitions, bringing it closer to the RMT formula
established in Lemma 3.3. This allows us to fully match one set of terms
appearing on both sides. We then alter each formula slightly to reduce the
problem to a Fourier transform identity, relating the terms Cl on the RMT
side (equation (3.12)) to the integrals over Rk≥0 on the number theory side
(equation (3.34)).

Gao’s expression for the n-level density of zeros of quadratic Dirichlet

L-functions, which we abbreviate as W
(n)
Q , is (adapted from equation (2.16)

in [Gao])

(3.29)
�

Rn

n∏
i=1

fi(x)W
(n)
Q (x) dx

= lim
X→∞

π2

4X

∑
d∈D(X)

∑
F∈Π(n)

2n−ν(F )µ(O,F )

ν(F )∏
l=1

(Al +Bl),

where

Al =
�

R

Fl(x) dx− 1

2

�

R

F̂l(u) du,(3.30)
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Bl = − 2

logX

∑
p

log p
√
p

(
8d

p

)
F̂l

(
log p

logX

)
.(3.31)

Here d is the conductor, F = {F1, . . . , Fν(F )} and Fl(x) =
∏
i∈Fl fi(x),

∑
p

is over the primes, and
(
8d
p

)
is the Legendre symbol.

Note that the Al terms are independent of d and X. Hence, if we expand
the products, the Al terms can be pulled past limX→∞

∑
d∈D(X), making

their contributions easy to analyze:

(3.32) lim
X→∞

π2

4X

∑
d∈D(X)

(∏
l

Al

)(∏
l′

Bl′
)

=
(∏

l

Al

)(
lim
X→∞

π2

4X

∑
d∈D(X)

∏
l′

Bl′

)
.

The main difficulty comes from the expressions

(3.33) lim
X→∞

π2

4X

∑
d∈D(X)

∏
l∈W

Bl,

where W ⊆ {1, . . . , ν(F )}, since the Legendre symbol
(
8d
p

)
in the series

(3.31) introduces a dependence on d and X.

For these, Gao develops the following formula (see equation (3.13) in
[Gao]):

Lemma 3.8. Let F ={F1, . . . , Fν(F )} be as above, and W ⊆{1, . . . , ν(F )}.
Then

(3.34) lim
X→∞

π2

4X

∑
d∈D(X)

∏
l∈W

Bl

=

(
1 + (−1)|W |

2

)
2|W |

∑
(A;B)

|W |/2∏
i=1

∞�

0

uiF̂ai(ui)F̂bi(ui) dui

+ (−2)|W |−1
∑

W2(W
|W2| even

( ∑
(C;D)

|W2|/2∏
i=1

∞�

0

uiF̂ci(ui)F̂di(ui) dui

)

×
( �

R
|Wc

2 |
≥0

( ∑
I(W c

2

(−1)|I|χ̃
(∑

Ic

ui −
∑
I

ui

))∏
W c

2

F̂i(ui) dui

)
,

where W c
2 = W \W2, and the summations

∑
(A;B) and

∑
(C;D) run over the

ways of pairing up the elements of W and W2, respectively. Also, χ̃ is the
indicator function of the interval (1,∞). Empty products are 1.
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We now obtain the general formula for the n-level density by combining
expressions (3.29) and (3.34) and using the expansion

(3.35)

ν(F )∏
i=1

(Al +Bl) =
∑

W⊆{1,...,ν(F )}

∏
W c

Al
∏
W

Bl.

3.2.1. Reindexing the NT side. We put the NT formula in a form closer
to the RMT formula, as a sum indexed by 2-refinements of partitions. We
establish the following.

Lemma 3.9. Gao’s expression (3.29) for the NT density is equivalent to

(3.36)
�

Rn

n∏
i=1

fi(x)W
(n)
Q (x) dx

=
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)

( ∏
l∈Sc

Al−
1

2

∑
T⊆Sc

E(G,T )
∏

l∈Sc−T
Al

)
,

where
∑2ref

F�G runs over the 2-refinements F of G, the sets S(F ,G) and

Sc = Sc(F ,G) are as in Definition 2.2, and

D(F ,G) =
∏

l∈S(F ,G)

�

R

|u|Ĥl(u)Ĥc
l (u) du,(3.37)

Al =
−1

2

�

R

Ĝl(u) du+
�

R

Gl(x) dx,(3.38)

E(G,T ) = 2|T |
�

R|T |≥0

(∑
I⊆T

(−1)|I|χ̃
(∑

I

ui −
∑
Ic

ui

))∏
l∈T

Ĝl(ul) dul,(3.39)

where for l ∈ S(F ,G), Gl = Hl ∪ Hc
l is the decomposition of the block Gl

into blocks of F , and χ̃ is the indicator function of (1,∞). Empty products
are 1, and empty sums, in particular E(G, ∅), are 0.

In order to prove Lemma 3.9, we first alter formula (3.34) for the
∏
Bl

terms.

Lemma 3.10. Let F ∈ Π(n) and W ⊆ {1, . . . , ν(F )}. The following
formula is equivalent to Gao’s (3.34):

(3.40) lim
X→∞

π2

4X

∑
d∈D(X)

∏
l∈W

Bl =

(
1+(−1)|W |

2

)( 2cor,W∑
G�F

2ν(F )−ν(G)D(F ,G)
)

− 1

2

∑
W2⊆W
|W2| even

( 2cor,W2∑
G�F

2ν(F )−ν(G)D(F ,G)
)
E(F ,W c

2 ),
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where
∑2cor,W

G�F and
∑2cor,W2

G�F run over the partitions G 2-coarser than F

with W (F ,G) = W and W2, respectively, and the other notation is as in
Lemma 3.9.

Proof. If |W | is even, we claim

(3.41) 2|W |
∑
(A;B)

|W |/2∏
i=1

∞�

0

u F̂ai(u)F̂bi(u) du =

2cor,W∑
G�F

2ν(F )−ν(G)D(F ,G),

where the left-hand side is as in Gao’s formula, (3.34). (The same identity
holds with W replaced by W2.)

To see this, first note that by Remark 2.3, each way of pairing up the
elements of an even subset W ⊆ {1, . . . , ν(F )} corresponds to a unique par-
tition G that is 2-coarser than F , with W (F ,G) = W . This correspondence
is one of the key ingredients, as it allows us to begin expressing the sum in
terms of 2-coarser partitions. Later we will switch orders of summation, con-
verting sums over 2-coarser partitions into sums over 2-refinements, which
is what we have on the RMT side.

Thus

(3.42) 2|W |
∑
(A;B)

|W |/2∏
i=1

∞�

0

u F̂ai(u)F̂bi(u) du

= 2|W |
2cor,W∑
G�F

|W |/2∏
i=1

∞�

0

u F̂ai(u)F̂bi(u) du.

For the integrands, observe that pairing Fl1 with Fl2 to form a block Gl
of G is equivalent to decomposing Gl into two subsets Gl = Hl ∪ Hc

l with

Hl = Fl1 and Hc
l = Fl2 . Next, since each F̂li is an even function, we can

replace
	∞
0 with 1

2

	
R, and uF̂l1(u)F̂l2(u) becomes |u|F̂l1(u)F̂l2(u), as in the

definition of the term D(F ,G):

(3.43) 2|W |
2cor,W∑
G�F

|W |/2∏
i=1

∞�

0

uF̂ai(u)F̂bi(u) du = 2|W |
2cor,W∑
G�F

2−|W |/2D(F ,G).

Finally, for the 2|W |/2 coefficient, observe that ν(F ) − ν(G) = |W |/2, since
each pairing reduces the total number of blocks by 1. We apply identity
(3.41) to both the

∑
(A;B) and

∑
(C;D) terms in Gao’s expression (3.34) to

obtain the desired form (3.40).

Proof of Lemma 3.9. Applying Lemma 3.10 to Gao’s expression (3.29)
for the NT density gives
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(3.44)
�

Rn

n∏
i=1

fi(x)W
(n)
Q (x) dx

=
∑

F∈Π(n)

2n−ν(F )µ(O,F )
∑

W⊆{1,...,ν(F )}

( ∏
l /∈W

Al

)(
lim
X→∞

π2

4X

∑
d∈D(X)

∏
l∈W

Bl

)
= S1 + S2,

where

S1 =
∑

F∈Π(n)

2n−ν(F )µ(O,F )
∑

W⊆{1,...,ν(F )}
|W | even

( ∏
l /∈W

Al

)
(3.45)

×
( 2cor,W∑

G�F
2ν(F )−ν(G)D(F ,G)

)
,

S2 = −1

2

∑
F∈Π(n)

2n−ν(F )µ(O,F )
∑

W⊆{1,...,ν(F )}

( ∏
l /∈W

Al

)
(3.46)

×
∑

W2⊆W
|W2| even

( 2cor,W2∑
G�F

2ν(F )−ν(G)D(F ,G)
)
E(F ,W c

2 ).

We work with S1 and S2 separately, since S2 includes an extra summation.
For S1, we have

S1 =
∑

F∈Π(n)

2n−ν(F )µ(O,F )
∑

W⊆{1,...,ν(F )}
|W | even

( ∏
l /∈W

Al

)
(3.47)

×
( 2cor,W∑

G�F
2ν(F )−ν(G)D(F ,G)

)

=
∑

F∈Π(n)

∑
W⊆{1,...,ν(F )}
|W | even

2cor,W∑
G�F

2n−ν(G)µ(O,F )D(F ,G)
∏
l /∈W

Al.

Now the double sum ∑
W⊆{1,...,ν(F )}
|W | even

2cor,W∑
G�F

is equivalent to summing over all the partitions G that are 2-coarser than
F , i.e. to

∑2cor
G�F , since every such G arises exactly once this way (including

G = F , from the case W = ∅). Note that the set {l /∈ W} is just the list of
blocks that are common to both F and G, so it is the same as Sc(F ,G). By
switching the order of summation of F and G, we obtain
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S1 =
∑

F∈Π(n)

2cor∑
G�F

2n−ν(G)µ(O,F )D(F ,G)
∏

l∈Sc(F ,G)

Al(3.48)

=
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)
∏

l∈Sc(F ,G)

Al.

The term S2 is more delicate, because of the extra summation:

S2 = −1

2

∑
F∈Π(n)

2n−ν(F )µ(O,F )
∑

W⊆{1,...,ν(F )}

( ∏
l /∈W

Al

)
(3.49)

×
∑

W2⊆W
|W2| even

( 2cor,W2∑
G�F

2ν(F )−ν(G)D(F ,G)
)
E(F ,W c

2 )

= −1

2

∑
F∈Π(n)

∑
W⊆{1,...,ν(F )}

∑
W2⊆W
|W2| even

2cor,W2∑
G�F

2n−ν(G)

× µ(O,F )D(F ,G)E(F ,W \W2)
∏
l /∈W

Al.

We switch the choice of subsets W,W2 ⊆ {1, . . . , ν(F )}. In particular, the
choice of W and W2 effectively partitions {1, . . . , ν(F )} into three disjoint
subsets:

W2 (with |W2| even) : lists the blocks of F merged to

form blocks of G in the D(F ,G) term,

W −W2 : lists the blocks to go in the E term,

{1, . . . , ν(F )} −W : lists the blocks to go in the
∏
Al term.

We switch this so that W2 is chosen first, which allows us to pull the∑2cor,W2

G�F to the front. In other words, we choose W2, followed by a disjoint

set T ⊆ {1, . . . , ν(F )} − W2, which lists the blocks to go in the E term.
With this change, the E(F ,W \W2) is replaced by E(F , T ), and

∏
l /∈W Al

becomes
∏
l /∈W2∪T Al.

Now we can pull the
∑2cor,W2

G�F outward:

S2 = −1

2

∑
F∈Π(n)

∑
W2⊆{1,...,ν(F )}
|W2| even

∑
T⊆W c

2

2cor,W2∑
G�F

2n−ν(G)(3.50)

× µ(O,F )D(F ,G)E(F , T )
∏

l /∈T∪W2

Al
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= −1

2

∑
F∈Π(n)

∑
W2⊆{1,...,ν(F )}
|W2| even

2cor,W2∑
G�F

∑
T⊆W c

2

2n−ν(G)

× µ(O,F )D(F ,G)E(F , T )
∏

l /∈T∪W2

Al.

The summation
∑
|W2| even

∑2cor,W2

G is now the same as what we encountered
in our analysis of S1, a sum over all partitions G that are 2-coarser than
F (including G = F , from the case W2 = ∅). The set W c

2 is the same as
Sc(F ,G), the list of blocks common to both partitions, so we rewrite

∑
T⊆W c

2

as
∑

T⊆Sc(F ,G) and
∏
l /∈T∪W2

with
∏
l∈Sc−T . We obtain

S2 = −1

2

∑
F∈Π(n)

2cor∑
G�F

2n−ν(G)µ(O,F )D(F ,G)(3.51)

×
∑

T⊆Sc(F ,G)

E(F , T )
∏

l∈Sc−T
Al.

Now we switch the
∑

F and
∑

G, converting S2 into a sum over 2-refine-
ments:

S2 = −1

2

∑
G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)(3.52)

×
∑

T⊆Sc(F ,G)

E(F , T )
∏

l∈Sc−T
Al.

Finally, we rewrite E(F , T ) = E(G,T ). This is just a relabeling, since
T ⊆ Sc is the set of blocks Fl ∈ F that are unchanged in G, and the integral

over R|T |≥0 in the definition of E (equation (3.39)) only involves the functions

F̂l(ul) where l ∈ T . Nonetheless, it is important as it expresses the E term
in terms of the outermost summation

∑
G.

Putting together our expressions (3.48) for S1 and (3.52) for S2 yields
an NT formula expressed in terms of 2-refinements:

(3.53)
�

Rn

n∏
i=1

fi(x)W
(n)
Q (x) dx

=
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)

( ∏
l∈Sc

Al−
1

2

∑
T⊆Sc

E(G,T )
∏

l∈Sc−T
Al

)
.

This completes the proof of Lemma 3.9.

Remark 3.11. The key step in the proof of Lemma 3.9 was to switch
the order of summation of F and G in the NT density, replacing a sum
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over 2-coarser partitions by a sum over 2-refinements. On the RMT side,
2-refinements already appeared naturally as products of the terms Ql (equa-
tion (3.7)), and thus no switch was necessary.

3.3. Reducing to the Fourier identity. Lemmas 3.7 and 3.9 estab-

lish the following forms for the RMT and NT density expressions, W
(n)
USp

and W
(n)
Q :

(3.54) RMT :
�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx

=
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)
( ∏
l∈Sc

Al +
∑
l∈Sc

Cl
∏
l′ 6=l

Al′
)
,

(3.55) NT :
�

Rn

n∏
i=1

fi(x)W
(n)
Q (x) dx

=
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)

( ∏
l∈Sc

Al−
1

2

∑
T⊆Sc

E(G,T )
∏

l∈Sc−T
Al

)
,

where
∑2ref

F�G runs over the 2-refinements F of G, and

D(F ,G) =
∏

l∈S(F ,G)

�

R

|u|Ĥl(u)Ĥc
l (u) du,(3.56)

Al =
−1

2

�

R

Ĝl(u) du+
�

R

Gl(x) dx,(3.57)

Cl =
1

2

�

R|Gl|

(
1−

χ∗Gl(ui1 , . . . , ui|Gl|
)

(|Gl| − 1)!

) ∏
i∈Gl

f̂i(ui) dui,(3.58)

E(G,T ) = 2|T |
�

R|T |≥0

(∑
I⊆T

(−1)|I|χ̃
(∑

I

ui −
∑
Ic

ui

))∏
l∈T

Ĝl(ul) dul,(3.59)

and for l ∈ S(F ,G), Gl = Hl ∪ Hc
l is the decomposition of the block Gl

into blocks of F , and χ̃ is the indicator function of (1,∞). Empty products
are 1, and empty sums, in particular E(G, ∅), are 0.

We have some cancelation right away: namely, the terms
∏
l∈Sc Al with-

out Cl or E(G,T ) factors match, since the new expressions count all the
D(F ,G) factors the same way on both sides. Compare this with the original
density expressions (3.5) and (3.29), which only make it easy to see equality
between the terms with all Al factors (without any of the Cl, E(G,T ) or
D(F ,G) factors). Those terms show up in the new expressions as the trivial
2-refinements where F = G.
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Unfortunately, with the expressions above, the sums do not match term-
by-term: the E terms combine across many different 2-refinement pairs
(G,F ). The goal of this subsection is to reduce the Density Conjecture to
an identity relating the E(G,T ) to the Cl terms. We use Möbius inversion
to express the identity in a fairly simple way. We then verify the identity for
n ≤ 7 by breaking down the remaining combinatorics.

3.3.1. Isolating the Cl and E terms. By canceling the matching terms
in the two densities, we are reduced to showing equality between

RMT =
∑

G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)
∑
l∈Sc

Cl
∏
l′ 6=l

Al′ ,(3.60)

NT = −1

2

∑
G∈Π(n)

2ref∑
F�G

2n−ν(G)µ(O,F )D(F ,G)(3.61)

×
∑
T⊆Sc

E(G,T )
∏

l∈Sc−T
Al,

with notation as in (3.56)–(3.59). Note that these expression are not the
same as the n-level density expressions, (3.54) and (3.55): all the matching
terms have been removed.

In this section, we rewrite the C and E terms to depend only on T ,
not G. This allows us to pull them outside the summation

∑
G

∑
F . We

show the following.

Lemma 3.12. Equations (3.60) and (3.61) are equivalent to

RMT =
1

2

∑
U⊆{1,...,n}

(2|U|C(OU )) Rest(Uc),(3.62)

NT =
1

2

∑
U⊆{1,...,n}

(
2|U|

∑
T ∈Π(U)

µ(OU , T )E(T )
)

Rest(Uc),(3.63)

where

Rest(Uc) =
∑

G∈Π(Uc)

2ref∑
F�G

2|U
c|−ν(G)µ(OUc , F )D(F ,G)

∏
l∈Sc

Al,(3.64)

C(T ) =
1

2

�

Rν(T )

(µ(T , N) + (−1)ν(T )χ∗ν(T )(u1, . . . , uν(T )))(3.65)

×
ν(T )∏
l=1

T̂l(ul) dul,



166 J. Levinson and S. J. Miller

E(T ) =
�

Rν(T )
≥0

( ∑
I⊆{1,...,ν(T )}

(−1)|I|+1χ̃
(∑

I

ui −
∑
Ic

ui

))
(3.66)

×
ν(T )∏
l=1

T̂l(ul) dul,

and OU is the minimal element of Π(U) (all singleton blocks), and the rest
of the notation is as above. Observe that µ(T , N) = (−1)ν(T )−1(ν(T ) − 1)!
and so µ(OU , NU ) = (−1)|U|−1(|U| − 1)!.

Proof. We begin with the number theory side. First of all, from the
definition in (3.59), E(G,T ) is an integral involving only the functions

(3.67) Ĝl(u) =
∏̂
i∈Gl

fi(u)

from the blocks Gl, l ∈ T . We obtain the E term by choosing a partition
G ∈ Π(n), followed by a 2-refinement F , followed by a choice of blocks
T ⊆ Sc(F ,G).

To isolate the E term, we switch orders. We first choose a subset U ⊆
{1, . . . , n} of test functions and a partition T ∈ Π(U), and then choose a par-
tition of the remaining elements, G′ ∈ Π(Uc), and a 2-refinement F ′ of G′.
We use E(T ) as defined in (3.66). Note that E(G,T ) = (−1) · 2ν(T )E(T ).
(Compare (3.66) and (3.59).)

So, for each term we have

(3.68) E(G,T )D(F ,G)
∏

l∈Sc(F ,G)−T

Al = −2ν(T )E(T )D(F ′, G′)
∏
l∈Sc

Al.

For the 2n−ν(G)µ(O,F ) coefficient, we have to pull out a factor of
2|U|−ν(T )µ(OU , T ) (where OU is the minimal element of Π(U)):

2n−ν(G)µ(O,F ) = 2n−ν(G)(−1)n−ν(F )

ν(F )∏
l=1

(|Fl| − 1)!(3.69)

= (2|U|−ν(T )µ(OU , T ))(2|U
c|−ν(G′)µ(OUc , F

′)).

Note that the 2−ν(T ) will cancel with the 2ν(T ) coefficient on E(T ) in (3.68).

This gives the desired expression for the number theory side:

(3.70)
1

2

∑
U⊆{1,...,n}

( ∑
T ∈Π(U)

2|U|µ(O, T )E(T )
)

×
∑

G∈Π(Uc)

2ref∑
F�G

2|U
c|−ν(G)µ(O,F )D(F ,G)

∏
l∈Sc

Al.
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We proceed similarly for the random matrix theory side. First of all,
the Cl term appearing in (3.58) always has the test functions arranged as∏
i∈Gl f̂i(ui) dui, for some block Gl of G, with each test function Fourier-

transformed separately. Thus with notation as in (3.65), the Cl term always
takes the form

(3.71) Cl =
(−1)|U|−1

(|U| − 1)!
C(OU ) =

1

µ(OU , N)
C(OU ),

where U = Gl ⊆ {1, . . . , n} and OU is the minimal element of Π(U), with
each test function in its own (singleton) block. (It is nonetheless necessary
to define C(T ) for any partition T ∈ Π(U), in order to use Möbius inversion
later.)

The argument is now similar to (in fact more straightforward than) the
NT side. The Cl term in (3.61) arises choosing a partition G ∈ Π(n), a 2-
refinement F of G, and a single block Gl ∈ Sc(F ,G) to put in the Cl term.

We switch orders. We first choose a subset U ⊆ {1, . . . , n} (from which to
get a C(OU ) term), then choose a partition G′ ∈ Π(Uc) and a 2-refinement
F ′ of G′. As with the RMT side, the D(F ,G) and Al terms are unaffected,
but we have to break up the Möbius coefficient µ(O,F ). As the (|Fl| − 1)!
factor cancels the 1/(|U| − 1)! factor on the C(OU ) term, the coefficient
becomes

(3.72) 2n−ν(G)µ(O,F ) · Cl

= 2n−ν(G)(−1)n−ν(F )

ν(F )∏
l=1

(|Fl| − 1)! · (−1)|U|−1

(|U| − 1)!
C(OU )

= (2|U|−1C(OU ))(2|U
c|−ν(G′)µ(OUc , F

′)).

So for a single term, we have

(3.73) 2n−ν(G)µ(O,F )D(F ,G)Cl
∏
l′ 6=l

Al′

= 2|U|−1C(OU )
(

2|U
c|−ν(F ′)µ(OUc , F

′)D(F ′, G′)
∏
l∈Sc

Al

)
.

Thus the RMT side becomes

RMT =
1

2

∑
U⊆{1,...,n}

2|U|C(OU )(3.74)

×
∑

G∈Π(Uc)

2ref∑
F�G

2|U
c|−ν(G)µ(O,F )D(F ,G)

∏
l∈Sc

Al,

which is the desired expression.
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3.3.2. The Fourier identity. Lemma 3.12 reduces the density conjecture
to showing that (3.62) and (3.63) are equal. These expressions separate the
C and E terms from the others, so the question is: how do they match up?
We believe the following conjecture, which essentially says that they match
term-by-term in the form given by Lemma 3.12.

Conjecture 3.13 (Fourier identity 1). With notation as in Lemma
3.12, and ∗ denoting (incidence algebra) convolution, C is the Möbius trans-
form of E:

(3.75) C = µ ∗ E, or equivalently ζ ∗ C = E,

as functions on Π(n).

In particular, the identity we need, which we apply once for each subset
U ⊆ {1, . . . , n} in (3.62) and (3.63), is simply

Conjecture 3.14 (Fourier identity 2). With notation as in Lemma 3.12,

(3.76) C(O) =
∑
T ∈Π(n)

µ(O, T )E(T ).

Equivalently, by Möbius inversion,

(3.77)
∑
T ∈Π(n)

C(T ) = E(O).

It is clear that Conjecture 3.13 implies Conjecture 3.14 and Conjecture
3.14 implies the Density Conjecture. In fact, Conjecture 3.14 is equivalent
to Conjecture 3.13. The equivalence stems from the fact that if F ∈ Π(n)
has k blocks F1, . . . , Fk, then C(F ) and E(F ) are identical to the integrals
C(O), E(O) for O ∈ Π(k), using the Fi(x) as a new set of test functions.
Thus, if (3.77) holds for k ≤ n (for all choices of test function), then in fact
ζ ∗ C = E.

Note that equation (3.76) is the result of taking (3.62) and (3.63), as-
suming inductively that the identity holds for the numbers less than n, and
discarding all matching terms (leaving only U = {1, . . . , n}). As such, it is
actually equivalent to the Density Conjecture (and therefore must be true
by the results of [ER-GR], though there should be a purely combinatorial
proof of this fact).

For our purposes, identity (3.77) is preferable since, in contrast to (3.76),
all the summands are easy to convert to integrals over the same region (Rn≥0),
which we do in §4. We summarize our results so far.

Theorem 3.15 (Reduction to Fourier identity). Let f1, . . . , fn be even

test functions with f̂1, . . . , f̂n supported in
∑n

i=1 |ui| < 2. The Fourier iden-
tity (3.77) implies the Density Conjecture for quadratic Dirichlet L-func-
tions,
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(3.78)
�

Rn

n∏
i=1

fi(x)W
(n)
USp(x) dx =

�

Rn

n∏
i=1

fi(x)W
(n)
Q (x) dx.

In the next section, we study the Fourier identity further and put it in
a ‘canonical’ form, which we use to verify the cases n ≤ 7. We prove

Theorem 3.16 (Density Conjecture, n ≤ 7). With notation and as-
sumptions as in Theorem 3.15, the Fourier identity (3.77) holds for n ≤ 7.

The above immediately implies our main result, Theorem 1.1. In partic-
ular, for n ≤ 7 the n-level density of zeros of quadratic Dirichlet L-functions
{L(s, χ8d)} (with d ∈ N odd and square-free) is the same as the n-level
eigenvalue density of the Unitary Symplectic Ensemble (for test functions
where the sum of the supports is at most 2).

The remainder of the paper is devoted to the proof of the Fourier identity
and Theorem 3.16.

4. The Fourier identity. In this section we consider the Fourier iden-
tity (3.77) for a fixed n:

(4.1)
∑

F∈Π(n)

C(F ) = E(O),

where for F ∈ Π(n),

C(F ) =
1

2

�

Rν(F )

(µ(F ,N) + (−1)ν(F )χ∗ν(F )(u1, . . . , uν(F )))(4.2)

×
ν(F )∏
l=1

F̂l(ul) dul,

E(O) =
�

Rn≥0

( ∑
I⊆{1,...,n}

(−1)|I|+1χ̃
(∑

I

ui −
∑
Ic

ui

)) n∏
i=1

f̂i(ui) dui;(4.3)

see Definition 3.1 for the description of χ∗ν(F ).

We first reduce the Fourier identity to a canonical form. Our method is
to convert all the summands C(F ) to integrals over Rn≥0 and reduce to a
sum of products of indicator functions of the form

(4.4) χ̃(ε1u1 + · · ·+ εnun), χ̃ = I(1,∞),

with each εi = ±1. We examine, for each term, the set {i : εi = +1}, and

use combinatorial arguments and the assumption
∑

supp(f̂i) < 2 to simplify
some terms and show that others are identically zero. We start by reducing
to a canonical form:
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Proposition 4.1 (Fourier identity, canonical form). With notation as
above,

(4.5)
∑

F∈Π(n)

C(F ) =
�

Rn≥0

C0(u1, . . . , un)
n∏
i=1

f̂i(ui) dui,

with

(4.6) C0(u1, . . . , un) =
∑

J⊆{2,...,n}

∑
chainsA
A1={1}

(−1)n−k
k∏
i=1

(χ̃Ai4J + χ̃Aci4J),

where A ranges over the chains A1 ⊂ · · · ⊂ Ak such that A1 = {1}, and for
a subset W ⊆ {1, . . . , n}, we write

(4.7) χ̃W := χ̃
(∑
i∈W

ui −
∑
i/∈W

ui

)
, χ̃ = I(1,∞),

and 4 denotes symmetric difference.

Hence, comparing (4.3) and (4.5), the identity of functions

(4.8) C0(u1, . . . , un) =
∑

I⊆{1,...,n}

(−1)|I|+1χ̃I

on the simplex {ui > 0;
∑
ui < 2} ⊂ Rn implies the Fourier identity (3.77).

While we are unable to prove (4.8) for all n, we give a method for checking
it for specific values of n. Our method is partly ad hoc, but suffices for n ≤ 7
(for larger n, the computations are the same, but become intractable). We
note that for n = 1, 2, 3, the identity (4.1) appears in [Gao] as the last
(unnumbered) equations on pages 57 and 58 and equation (5.7).

4.1. The canonical form. We first reduce (4.1) to a sum of indicator
functions by converting all integrals to the region Rn≥0.

Lemma 4.2. With notation as above, the Fourier identity (4.1) for n > 1
follows from the equality of indicator functions

(4.9)
∑

F∈Π(n)

C ′(F ) = E′(O)

on the region {0 < ui < supp(f̂i), i = 1, . . . , n)} ⊂ Rn≥0, where

C ′(F ) =
1

2

∑
εi=±1
i=1,...,n

(
µ(F ,N)(4.10)

+ (−1)ν(F )χ∗ν(F )

(∑
i∈F1

εiui, . . . ,
∑

i∈Fν(F )

εiui

))
,



Low-lying zeros of quadratic Dirichlet L-functions 171

E′(O) =
∑

I⊆{1,...,n}

(−1)|I|+1χ̃
(∑

I

ui −
∑
Ic

ui

)
.(4.11)

(Note that E′(O) is just the sum of indicator functions in the integrand of
E(O).)

Proof. Our test functions f1, . . . , fn are all even, so we have two identi-
ties. First, for any partition F ∈ Π(n) having k blocks,

(4.12)
�

Rk
g(u1, . . . , uk)

k∏
i=1

F̂i(ui) dui

=
�

Rn
g
(∑
i∈F1

ui, . . . ,
∑

i∈Fν(F )

ui

) n∏
i=1

f̂i(ui) dui

for any integrand g via a linear change of variables. Second,

(4.13)
�

Rn
h(u1, . . . , un)

n∏
i=1

f̂i(ui) dui

=
∑
εi=±1
i=1,...,n

�

Rn≥0

h(ε1u1, . . . , εnun)

n∏
i=1

f̂i(ui) dui

for any h. Applying these transformations gives, with notation as in (4.10),

(4.14) C(F ) =
�

Rn≥0

C ′(F )
n∏
i=1

f̂i(ui) dui,

which is the desired expression.

We use the identity

(4.15) χ(u) = 1− χ̃(u)− χ̃(−u)

to rewrite the left-hand side as a sum of products of terms of the form
χ̃(
∑
εiui) with each εi = ±1. The advantage of using χ̃ throughout comes

from it not being an even function: to know whether χ(
∑
εiui) = 0, we need

to consider both
∑
εiui > 1 and

∑
εiui < −1, but with χ̃ only the first case

matters. This will facilitate several simplifications.

Definition 4.3 (Combinatorial notation). We adopt the following no-
tation: Given a term χ̃(ε1u1 + · · · + εnun), let A be the set of indices for
which εi = +1, and Ac the set for which εi = −1. We define

(4.16) χ̃A := χ̃
(∑

A

uai −
∑
Ac

uai

)
.

This notation reduces arguments about products of χ̃(
∑

i εiui) to com-
binatorial arguments about subsets A ⊆ {1, . . . , n}. The χ∗ integrand for a
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partition F ∈ Π(n) is thus, in combinatorial notation,

(4.17) χ∗(F ) =
∑

π∈Sν(F )

π(1)=1

ν(F )∏
i=1

(1− χ̃Fπ(1)∪···∪Fπ(i) − χ̃(Fπ(1)∪···∪Fπ(i))c),

where Sν(F ) is the group of permutations of {1, . . . , ν(F )}.
Changing the signs of some of the εi in χ̃A is equivalent to taking a

symmetric difference, replacing χ̃A with χ̃A4J , where J ⊆ {1, . . . , n} is the
set of indices whose signs have been changed. We note that µ(F ,N) =
(−1)ν(F )−1(ν(F ) − 1)! is the same as the number of permutations on the
inner sum. We thus write

(4.18) C ′(F ) =
1

2

∑
J⊆{1,...,n}

(
µ(F ,N)

+ (−1)ν(F )
∑

π∈Sν(F )

π(1)=1

ν(F )∏
i=1

(1− χ̃(Fπ(1)∪···∪Fπ(i))4J − χ̃(Fπ(1)∪···∪Fπ(i))4Jc)
)

=
1

2

∑
J⊆{1,...,n}

∑
π∈Sν(F )

π(1)=1

(
(−1)ν(F )−1

+

ν(F )∏
i=1

(χ̃(Fπ(1)∪···∪Fπ(i))4J + χ̃(Fπ(1)∪···∪Fπ(i))4Jc − 1)
)
.

In combinatorial notation, the right-hand side of (4.9) is just

(4.19) E′(O) =
∑

I⊆{1,...,n}

(−1)|I|+1χ̃I .

To shorten the notation, we write the summands in terms of chains rather
than partitions. Given a partition F ∈ Π(n) and a permutation π ∈ Sν(F )

such that π(1) = 1, we obtain a strictly ascending chain

(4.20) Fπ(1) ⊂ Fπ(1) ∪ Fπ(2) ⊂ · · · ⊂ Fπ(1) ∪ · · · ∪ Fπ(k) = {1, . . . , n}.
Thus each choice of F and π corresponds uniquely to a strictly ascending
chain

(4.21) A : A1 ( A2 ( · · · ( Ak

of subsets of {1, . . . , n} such that 1 ∈ A1 and Ak = {1, . . . , n}. The corre-
sponding product of indicator functions is then

(4.22) (χ̃A14J + χ̃Ac14J − 1)(χ̃A24J + χ̃Ac24J − 1) · · · (χ̃Ak4J + χ̃Ack4J − 1).

Thus we can write the left-hand side of (4.9) as
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(4.23)
∑

F∈Π(n)

C ′(F )

=
1

2

∑
J⊆{1,...,n}

∑
chainsA, 1∈A1

Ak={1,...,n}

(
(−1)k−1 +

k∏
i=1

(χ̃Ai4J + χ̃Ai4Jc − 1)
)
,

where A ranges over all ascending chains of subsets of {1, . . . , n} such that
1 ∈ A1 and Ak = {1, . . . , n} is the last (largest) set in the chain.

Observe that a given product of χ̃ terms occurs many times in the sum
(4.23) when the (−1) terms are expanded. We account for this cancelation
below and give the canonical form of the Fourier identity. We employ the
following standard fact about chains (see Appendix A for a proof). We
say B is a subchain of A if the ascending sequence of sets forming B is a
subsequence of the sequence for A.

Proposition 4.4 (Sums over chains). Let A and B be chains. If A =
A1 ⊂ · · · ⊂ Ak, write k = |A|, and if B is a subchain of A, write A � B.
For a fixed B with 1 ∈ B1,

(4.24)
∑

A�B, 1∈A1

Ak={1,...,n}

(−1)|A| =

{
(−1)n if B1 = {1},
0 otherwise.

Lemma 4.5 (Fourier identity, canonical form). With notation as above,

(4.25)
∑

F∈Π(n)

C ′(F ) =
∑

J⊆{2,...,n}

∑
chainsA
A1={1}

(−1)n−|A|
|A|∏
i=1

(χ̃Ai4J + χ̃Aci4J),

where A ranges over the chains A1 ⊂ · · · ⊂ Ak (k = |A|) such that A1 = {1}.
(We do not require Ak = {1, . . . , n}.)

Proof. Consider the expansion for
∑

F∈Π(n)C
′(F ) in (4.23). Since the

right-hand side is invariant under interchanging J and Jc, we replace
1
2

∑
J⊆{1,...,n} with

∑
J⊆{2,...,n}; that is, we may assume without loss of gen-

erality that 1 /∈ J .
Now we expand the (−1) factors in (4.23). The (−1)k cancels with the

(−1)k−1, so we are left with

(4.26)
∑

F∈Π(n)

C ′(F )

=
∑

J⊆{2,...,n}

∑
chainsA, 1∈A1

Ak={1,...,n}

∑
W⊆{1,...,t}

W 6=∅

(−1)|A|−|W |
∏
i∈W

(χ̃Ai4J + χ̃Ai4Jc)

=
∑

J⊆{2,...,n}

∑
chainsA, 1∈A1

Ak={1,...,n}

∑
chainsB�A
B6=∅

(−1)|A|−|B|
∏
B

(χ̃Bi4J + χ̃Bi4Jc),
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where B ranges over the subchains of A (excluding the ‘empty chain’ with
no sets). We switch orders of summation on B and A. We have

(4.27)
∑

chainsA, 1∈A1

Ak={1,...,n}

∑
∅6=B�A

=
∑
B

1∈B1

∑
A�B, 1∈A1

Ak={1,...,n}

,

and so

(4.28)
∑

F∈Π(n)

C ′(F )

=
∑

J⊆{2,...,n}

∑
chainsB
1∈B1

(−1)|B|
∏
B

(χ̃Bi4J + χ̃Bi4Jc)
( ∑
A�B, 1∈A1

Ak={1,...,n}

(−1)|A|
)

=
∑

J⊆{2,...,n}

∑
chainsB
B1={1}

(−1)n−|B|
∏
B

(χ̃Bi4J + χ̃Bi4Jc)

by Proposition 4.4.

4.2. Breaking down the combinatorics. We describe our approach
to confirm the Fourier identity (4.9) in the cases n ≤ 7. These arguments
are impractical to do by hand for n ≥ 4; we ran them in Mathematica with
the code available at

• http://www-personal.umich.edu/∼jakelev/,
• http://web.williams.edu/Mathematics/sjmiller/public html/math/

papers/jakel/FourierIdentity.tar.

The simplifications we use are as follows.

Lemma 4.6 (Simplifications). Let A,B ⊂ {1, . . . , n}. Then

χ̃A · χ̃B = χ̃A whenever A ⊂ B.(4.29)

Let A1, . . . , Ak ⊆ {1, . . . , n}, with k ≥ 2. For each i ∈ {1, . . . , n}, let ei be
the number of the Aj’s that contain i. Then

χ̃A1 · · · χ̃Ak = 0 if ei ≤ 3
4k for each i ∈ {1, . . . , n}.(4.30)

The first equation says, equivalently, that given a product χ̃A1 · · · χ̃Ak , we
need only keep the χ̃Aj for which the subsets Aj ⊂ {1, . . . , n} are minimal
with respect to containment, i.e., the χ̃ terms having the fewest positive
signs. The identity is essentially a formal sum of antichains, with additional
relations such as (4.30). We also remark that for k = 2, (4.30) is just the
statement χ̃A · χ̃B = 0 when A ∩B = ∅.

Proof of (4.29). If A ⊂ B, then Bc ⊂ Ac, so we have the inequalities

(4.31)
∑
B

ubi ≥
∑
A

uai and
∑
Ac

uai ≥
∑
Bc

ubi .
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Combining these implies that whenever
∑

A uai−
∑

Ac uai > 1, we also have

(4.32)
∑
B

ubi −
∑
Bc

ubi ≥
∑
A

uai −
∑
Ac

uai ≥ 1.

So if χ̃A = 1, it follows that χ̃B = 1 (if χ̃A = 0, then both sides of (4.29)
are 0).

Proof of (4.30). Add the inequalities
∑

a∈Aj ua−
∑

a′∈Acj
ua′>1 together.

Then +ui occurs ei times and −ui occurs k − ei times, so the result is

(4.33) (2ei − k)u1 + · · ·+ (2en − k)un > k.

The condition ei ≤ 3
4k is the same as k/2 ≥ 2ei − k, yielding

(4.34)
k

2
(u1 + · · ·+ un) > k,

that is, u1 + · · ·+ un > 2, violating the support restriction.

Remark 4.7. If k ≤ 4, then (4.30) is equivalent to
⋂k
i=1Ai = ∅. For

k > 4 it is a stronger condition.

In sum, our method of verifying the Fourier identity (4.9) is to apply
the simplifications above to the sum (4.25) to simplify and remove terms.
We are able to verify the cases n ≤ 7 this way; for n = 8 the verification
becomes intractable, since the number of terms on the left-hand side of (4.9)
becomes large (2n ·sequence A027882 in The On-Line Encylopedia of Integer
Sequences).

Although we cannot prove the identity for all n, we give a conjecture
that indicates one way of grouping terms in the identity.

Conjecture 4.8. For fixed n and J ⊆ {2, . . . , n}, let

(4.35)

simp1(J ;n) =

(∑
A⊆J

(−1)|A|χ̃A∪{1}

)
×
( ∑
B: J⊆B⊆{2,...,n}

(−1)|B|−|J |−1χ̃B

)
,

simp2(n) =
∑

A⊆{2,...,n}

(−1)|A|χ̃A∪{1}.

Then the inner sum of the Fourier identity (4.25) is

(4.36)
∑

chainsA
A1={1}

(−1)n−|A|
|A|∏
i=1

(χ̃Ai4J + χ̃Aci4J)

=

{
simp1(J ;n) if J 6= {2, . . . , n},
simp1(J ;n) + simp2(n) if J = {2, . . . , n}.
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It is easy to see, by summing over J ⊆ {2, . . . , n}, that this conjecture
implies the Fourier identity. Using Lemma 4.6 and Proposition 4.7, the iden-
tity is easily checked for J = ∅, {2}, {2, . . . , n}; for the remaining cases, it is
sufficient (by relabeling) to consider J = {2, . . . , i} for 3 ≤ i ≤ n − 1, but
we do not as yet have a proof.

5. Concluding remarks. By adopting an appropriate combinatorial
perspective, we are able to unify the analysis of the number theory and
random matrix theory expansions. We reduce showing agreement of the two
expressions of the n-level density to a combinatorial identity, which we can
verify for n ≤ 7. As there should be a purely combinatorial proof of this
identity, we conclude with a few thoughts related to it; we welcome any
correspondence with people interested in extending these arguments.

5.1. Verifying the identity formally. We can view the Fourier iden-
tity as a formal identity: the indicator functions χ̃A generate a subring
C(n) ⊆ L∞(Rn) that is a quotient of a polynomial ring in 2n variables,

(5.1) C[xA : A ⊆ {1, . . . , n}]→ C(n), xA 7→ χ̃A.

As a ring of functions, C(n) is certainly a reduced ring, so it is sufficient
to check that the identity holds over every quotient C(n)/P , where P ∈
SpecC(n) is a prime ideal.

By equation (4.29) of Lemma 4.6, this map factors through the quotients

(5.2) C ′(n) =
C[xA : A ⊆ {1, . . . , n}]
(xAxB − xA : A ⊆ B)

, C ′′(n) =
C(n)∑

(xA1 · · ·xAk)
,

where the second quotient is by the ideal generated by all monomials
xA1 · · ·xAk such that χ̃A1 · · · χ̃Ak is identically zero as an indicator function
in the supported region, namely

(5.3)
{
u1 > 0, . . . , un > 0,

∑
ui < 2

}
⊆ Rn.

(We remark that condition (4.30) does not describe all such products.)
For C ′(n), prime ideals are in one-to-one correspondence with antichains:

if {W1, . . . ,Wk} is an antichain, the corresponding prime ideal is

(5.4) P = (xA : for each i, A 6⊇Wi) + (xA − 1 : for some i, A ⊇Wi).

Passing to C ′′(n) just removes ‘identically zero’ antichains from considera-
tion. For each of the remaining antichains W = {W1, . . . ,Wk}, we consider
the Fourier identity under the map C(n)→ C defined by

(5.5) xA 7→
{

1 if A ⊇Wi for some i,

0 otherwise.

(The kernel of this map is the prime ideal P above.) Verifying that the
Fourier identity holds under each of these maps is sufficient to verify the



Low-lying zeros of quadratic Dirichlet L-functions 177

full Fourier identity. Assuming C ′′(n) ∼= C(n) (that is, assuming there are
no additional relations between the χ̃A), this is also a necessary condition.

We express both sides of the Fourier identity in terms of Euler charac-
teristics. Fix an antichain W = {W1, . . . ,Wk} and let

(5.6) S = S(W) = {A ⊆ {1, . . . , n} : A ⊆W c
i for some i} =

k⋃
i=1

[∅,W c
i ].

Thus S is a simplicial set; its vertices are
⋃k
i=1W

c
i and its maximal faces

are the W c
i . By evaluating as in (5.5), the sets A with Ac ∈ S evaluate to 1,

so the right-hand side of the Fourier identity becomes, up to sign,

(5.7)
∑

A:Ac∈S
(−1)|A|+1 =

∑
A∈S

(−1)n−|A|+1 = (−1)n−1χEul(S),

the Euler characteristic of the simplicial complex S.
We now express the left-hand side in a related way. First, we deter-

mine the value of χ̃A4J + χ̃Ac4J under the evaluation map. Given J,W ⊆
{1, . . . , n}, let U(J,W ) be the union of segments from P(1, . . . , n),

(5.8) U(J,W ) =
[
W − J,W c ∪ (W − J)

]
∪
[
W ∩ J,W c ∪ (W ∩ J)

]
.

It is easy to see the following:

(1) the two segments are disjoint if W 6= ∅,
(2) A4 J ⊇W if and only if A is in the first segment,
(3) Ac 4 J ⊇W if and only if A is in the second segment.

In particular, we conclude that, evaluated at W,

(5.9) χ̃A4J + χ̃Ac4J =

{
1 if A ∈

⋃k
i=1 U(J,Wi),

0 otherwise.

We are only interested in chains where A1 = {1}, so let

U(J ;W) =
k⋃
i=1

U(J,Wi),(5.10)

Û(J ;W) = ({1}, {1, . . . , n}] ∩ U(J ;W).(5.11)

Evaluating the inner summand of the Fourier identity for J gives a sum
over all chains in U that begin with A1 = {1}. If {1} /∈ U , there are no such
chains in U , so the sum is 0; otherwise, such chains are in bijection with all
chains A′ in Û (with the length off by 1), so that

(5.12)
∑

chainsA
A1={1}
Ai∈U

(−1)n−|A| = (−1)n
∑

chainsA′
Ai∈Û

(−1)|A
′|−1 = (−1)nχEul(Û),

the Euler characteristic of the order complex ∆ord(Û).
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In other words, the Fourier identity now reads, with the (−1)n canceled
and χEul denoting the Euler characteristic,

(5.13)
∑

J⊆{2,...,n}
{1}∈U(J ;W)

−χEul(Û(J ;W)) = χEul(S(W)).

5.2. Which products of the indicator functions χ̃A are 0? In
addition to the approach using Euler characteristics in Section 5.1, the au-
thors are interested in suggestions or answers to the problem of determining
which products χ̃A1 · · · χ̃Ak are identically zero in the integration region,
where Aj ⊆ {1, . . . , n} and

χ̃A := χ̃
(∑
i∈A

xi −
∑
i∈Ac

xi

)
,

and χ̃(x) is the indicator function of (1,∞).

In other words, we wish to solve the following linear program: Let M be
a k × n matrix with each entry ±1, and let

b = (1 · · · 1)T ∈ Rk,(5.14)

c = (1 · · · 1)T ∈ Rn.(5.15)

Minimize cTx =
∑

i xi, subject to

Mx ≥ b,(5.16)

x ≥ 0.(5.17)

For j = 1, . . . , k, let Aj ⊆ {1, . . . , n} be the set of +1’s in the jth row of M .
Then the product χ̃A1 · · · χ̃Ak is identically zero iff one of the following holds:

(1) the minimum of cTx is 2 or greater, or
(2) the problem is infeasible.

The product is non-zero iff the minimum c∗ belongs to [0, 2). Note that the
problem cannot be unbounded since cTx ≥ 0. Of course, we could replace
the objective function by the inequality

∑
i xi < 2.

A. Sums over chains. We give the proof of Lemma 4.4 involving sums
over chains as A.1(3) below. The authors thank B. Ullery for the proof of
A.1(1).

Lemma A.1. Given chains A,B, we write B � A if B is a subchain of A
(we include the ‘empty chain’ with no sets). If A = A1 ⊂ · · · ⊂ Ak, we write
k = |A|. Then
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(1) For any n, ∑
A: 1∈A1

Ak={1,...,n}

(−1)|A| =

{−1, n = 1,

0, n > 1.

(2) For any n, ∑
A:A1=∅

Ak={1,...,n}

(−1)|A| = (−1)n−1.

(3) For fixed B with 1 ∈ B1,∑
A�B, 1∈A1

Ak={1,...,n}

(−1)|A| =

{
(−1)n if B1 = {1},
0 otherwise.

Proof. (1) For n = 1 there is only one possible chain of the desired form,
namely {1}. Otherwise, there is a bijection between chains A of the desired
form with A1 = {1} and those with A1 ) {1}, by deleting or prepending
{1} from the beginning of the chain. Since this reverses the parity of |A|,
the sum vanishes.

(2) Inductively, consider a chain A′ : ∅ = A′1 ⊂ · · · ⊂ A′k = {1, . . . , n−1}
on {1, . . . , n− 1}. There are 2k− 1 ways of inserting the element n into the
chain while keeping A1 = ∅ and the last set equal to {1, . . . , n}: we can add
it into one of the Ai, i = 2, . . . , k, or we can insert it immediately after Ai
as Ai ∪ {n}, for i = 1, . . . , k.

The chains A obtained this way contribute (k−1)·(−1)|A
′|+k ·(−1)|A

′|+1

= (−1)|A
′|+1, giving the recurrence

(A.1)
∑
A:A1=∅

Ak={1,...,n}

(−1)|A| = −
∑
A:A1=∅

Ak={1,...,n−1}

(−1)|A
′|.

For n = 1, there is only one such chain, namely ∅ ⊂ {1}, which has length 2.

(3) Write B = B1 ⊂ · · · ⊂ B`. Choosing A � B is the same as choosing
` + 1 chains, namely, a chain with 1 ∈ A1 and Ak = B1, then, for each
2 ≤ i ≤ ` − 1, a chain from Bi to Bi+1, and finally a chain from B` to
{1, . . . , n}. Thus, we factor our sum as

(A.2)
∑

A�B, 1∈A1

Ak={1,...,n}

(−1)|A|

= (−1)|B|
( ∑
A: 1∈A1
Ak=B1

(−1)|A|
)
·
( ∑
A:A1=B1
Ak=B2

(−1)|A|
)
· · ·
( ∑
A:A1=B`
Ak={1,...,n}

(−1)|A|
)
.
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Each Bi is double-counted in the lengths of the chains, so we multiply by
(−1)` = (−1)|B|.

By parts (1) and (2) above, this is continued as

(A.3) = (−1)|B|
{

(−1), B1 = {1},
0, B1 6= {1}

}
· (−1)|B2|−|B1|−1 · · · (−1)n−|B`|−1,

which is (−1)n when B1 = {1} and 0 otherwise, as desired.
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[OS1] A. E. Özlük and C. Snyder, Small zeros of quadratic L-functions, Bull. Austral.
Math. Soc. 47 (1993), 307–319.
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