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1. Introduction. The Greek mathematician Diophantus of Alexandria
noted that the rational numbers 1

16 , 33
16 , 17

4 , and 105
16 have the following

property: the product of any two of them increased by 1 is a square of a
rational number. Later Fermat found a set of four positive integers with the
above property: {1, 3, 8, 120} (see [3]). Recently Phil Gibbs has found a set of
six rational numbers having this property:

{
11
192 ,

32
192 ,

155
27 ,

512
27 ,

1235
48 , 180873

16

}

(unpublished yet). A set of positive integers {a1, . . . , am} is said to have the
property of Diophantus if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m.
Such a set is called a Diophantine m-tuple. It is a well known open question
whether there exist Diophantine quintuples.

Dujella and Pethő [4] proved that the pair {1, 3} cannot be extended
to a Diophantine quintuple. Recently Dujella has proved that there are no
Diophantine ninetuples (unpublished yet).

Euler (see [3]) showed that every Diophantine pair can be extended to
a quadruple. Arkin, Hoggatt and Straus [1] proved that this also holds for
Diophantine triples.

Erdős [5] and Moser (see [16]) asked the additive analog of the problem,
i.e., whether for all k there are integers a1 < . . . < ak such that ai + aj is a
perfect square for all 1 ≤ i < j ≤ k. Lagrange [11] and Nicolas [12] found a
set of six integers such that the sum of any two of them is a perfect square.
Rivat, Sárközy and Stewart [13] proved that if A ⊆ {1, . . . , N} and a+ a′ is
a perfect square for all a, a′ ∈ A, a 6= a′, then |A| � logN .

In this paper our goal is to extend the problems and results described
above in various directions. One of the theorems to be proved will also
generalize the following result of Schur (see [7]): for all positive integers n
there exists a real number M such that the Fermat congruence xn+yn ≡ zn
(mod p) has a non-trivial solution if p is a prime and p ≥M . Another proof
for this result can be found in [10, pp. 97–98].
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2. The results

Theorem 1. If A,B ⊆ {1, . . . , N} and ab + 1 is a kth power for all
a ∈ A, b ∈ B then

min(|A|, |B|) ≤ 1
log 2

logN for k = 2,(a)

min(|A|, |B|) ≤ 1
log(k − 1)

log logN + 1 for k ≥ 3.(b)

Probably for k = 2, |A| ≥ 2 we have |B| � logN . We have been able to
prove this only under a further condition:

Theorem 2. Let A,B ⊆ {1, . . . , N}, a1, a2 ∈ A, a1 ≤ a2 ≤ 2a1. If ab+1
is a perfect square for all a ∈ A, b ∈ B then

|B| ≤ 1
log 2

logN.

Conversely, we can give a set B where logN � |B|.
Theorem 3. There exists B ⊆ {1, . . . , N} such that if A = {1, 2} then

ab+ 1 is a perfect square for all a ∈ A, b ∈ B and |B| ≥
[

1
log 36 logN

]
.

Next we study the modular analog of the problem. It turns out that
unlike the problem of Diophantus, here arbitrarily large “good” sets exist.

Theorem 4. There is a constant p0 such that if p is a prime of the form
4k + 1 and p > p0 then there exists A ⊆ Zp so that |A| ≥ 1

6 log 3 log p and
aa′ + 1 is a square (i.e., quadratic residue or 0) mod p for all a, a′ ∈ A,
a 6= a′.

Next we will give an upper bound for |A| |B| for sets A, B with the
property that ab+ 1 is a square mod p for all a ∈ A, b ∈ B. The proof will
be based on the following theorem of Vinogradov:

Theorem 5. If A,B ⊆ Zp and

S =
∑

a∈A

∑

b∈B

(
ab+ 1
p

)

then |S| ≤
√

2p|A| |B|.
From this it is easy to deduce:

Theorem 6. If p is a prime, A,B ⊆ {1, . . . , p − 1} and for all a ∈ A,
b ∈ B the number ab + 1 is quadratic residue or 0 (mod p) then |A| |B| ≤
(
√

2p+ 1)2.

In order to see that the same holds in the general case where ab+ 1 is a
kth power for all a ∈ A, b ∈ B or a+ b is a kth power for all a ∈ A, b ∈ B we
have to use multiplicative characters. χ0 will denote the principal character.
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Part (a) of the next theorem generalizes Vinogradov’s Theorem 5, while
part (b) is due to Erdős and Shapiro:

Theorem 7. Let A, B ⊆ {1, . . . , p} and χ 6= χ0 be a multiplicative
character mod p. Then

∣∣∣
∑

a∈A

∑

b∈B
χ(ab+ 1)

∣∣∣ ≤
√
p|A| |B|,(a)

∣∣∣
∑

a∈A

∑

b∈B
χ(a+ b)

∣∣∣ ≤
√
p|A| |B|.(b)

Using this theorem we will get

Theorem 8. Let k ∈ N. If p is a prime, (p − 1, k) 6= 1, A,B ⊆ {1, . . .
. . . , p− 1} and

(a) for all a ∈ A, b ∈ B, there exists an integer x such that ab + 1 ≡ xk

(mod p) or
(b) for all a ∈ A, b ∈ B, there exists an integer x such that a + b ≡ xk

(mod p)

then |A| |B| ≤ (
√
p+ 2)2.

The importance of the condition (p − 1, k) 6= 1 lies in the fact that if
(p−1, k) = 1 then the congruence xk ≡ a (mod p) has precisely one solution
for all a ∈ N and thus there is no non-trivial upper bound for |A| |B|.

Next we extend the additive analog of the problem of Diophantus to the
case of two different sequences and k ≥ 2. The proof is like that in the case
of a single set A and k = 2 (see [13]). The interesting feature of these results
is that the proofs are based on a sieve result.

Theorem 9. For any integer k > 1, there is a real number N0 such that
if N ≥ N0, A,B ⊆ {1, . . . , N} and a+ b is a kth power for all a ∈ A, b ∈ B
then min(|A|, |B|) ≤ 4k logN .

Finally we will generalize the problems further by replacing xk by a
polynomial h(x).

Theorem 10. Let h(x) ∈ Fp[x] where the degree of h(x) is n > 1. Let p
be a prime and p > n, A,B ⊆ {1, . . . , p− 1} and

|A| |B| ≥ p
(
p− 1
p− n

)2

(n− 1)2.

(a) If for all d > 1, d | p − 1, the polynomial h(x) is not the constant
multiple of a dth power of a polynomial mod p then there exist a ∈ A, b ∈ B
such that the congruence ab ≡ h(x) (mod p) is solvable and , indeed , denoting
the number of solutions of the congruence in a ∈ A, b ∈ B, x ∈ Fp by N , we
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have
|N − |A| |B|| < n

p− 1
|A| |B|+ (n− 1)

√
p|A| |B|.

(b) There exist a ∈ A, b ∈ B such that the congruence a + b ≡ h(x)
(mod p) is solvable, and denoting the number of solutions of the congruence
(in a, b, x) by M , we have

|M − |A| |B|| < (n− 1)
√
p|A| |B|.

The starting point in our proof will be Weil’s Theorem. Is the condition
that for all d | p − 1, h(x) is not the constant multiple of a dth power nec-
essary? Suppose that there are constants c, d and h′(x) ∈ Fp[x] such that
d | p− 1 and h(x) = c(h′[x])d. Let m be a number which is not a dth power
mod p and A = {xd : x ∈ Fp, x 6= 0}, B = {cmxd : x ∈ Fp, x 6= 0}. Then
for all a ∈ A, b ∈ B there are no x ∈ Fp such that ab = cxd; therefore
the congruence ab ≡ h(x) (mod p) is not solvable in Fp. Specializing this
theorem we obtain a generalization of the Fermat congruence.

Corollary. Let n ∈ N and let f(x), g(x), h(x) ∈ Fp[x] have degree ≤ n
each. Let p be a prime and p > n4.

(a) Suppose that , for all d > 1, d | p − 1, neither of f(x), g(x), h(x)
is the constant multiple of a dth power of a polynomial mod p. Then the
congruence f(x)g(y) ≡ h(z) (mod p) is solvable.

(b) The congruence f(x) + g(y) ≡ h(z) (mod p) is solvable.

This result is not new (see [10, pp. 97–98]); the point is that it is obtained
here as a very special case of a general result involving general sequences.

3. Proofs

Proof of Theorem 1. Let x, y ∈ A, x < y and c, d ∈ B, c < d. Then
(y − x)(d− c) > 0. From this,

(xc+ 1)(yd+ 1) > (xd+ 1)(yc+ 1).

Now (xc + 1)(yd + 1) is a kth power and k
√

(xd+ 1)(yc+ 1) is an integer,
thus

xycd+ xc+ yd+ 1 ≥ ( k
√

(xd+ 1)(yc+ 1) + 1)k.

So
xycd+ xc+ yd+ 1 ≥ xycd+ xd+ yc+ 1 + k(xycd)(k−1)/k.

Using xd+ yc > xc we get yd > kk(xc)k−1.
Let A = {a1, . . . , am}, B = {b1, . . . , bn} where a1 < . . . < am and

b1 < . . . < bn. For simplicity we assume that m ≤ n. In the case k = 2
we get a1b1 ≥ 4 or a2b2 ≥ 16 because aibj + 1 is a perfect square for all
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1 ≤ i ≤ j ≤ 2. From this,

N2 ≥ ambm > 4am−1bm−1 > . . . > 4m.

So m ≤ 1
log 2 logN .

A similar result holds in the case k > 2. Then we have at+1bt+1 >
(atbt)k−1 for 1 ≤ t ≤ m. Using the fact that a1b1 > 2k−1 we get

N2 ≥ ambm > (am−1bm−1)k−1 > . . . > 2(k−1)m .

Then
m ≤ 1

log(k − 1)
log logN + 1,

which completes the proof of Theorem 1.

Proof of Theorem 2. Let B = {b1, . . . , bn} where b1 < . . . < bn. We
have proved that a2bt+1 > 4a1bt for 1 ≤ t ≤ n − 1. As 2a1 ≥ a2, we have
bt+1 > 2bt. Therefore N ≥ 2m, whence the statement of the theorem follows.

Proof of Theorem 3. Let x1 = 5, x2 = 29 and xn = 6xn−1 − xn−2 for
n ≥ 3. Then xn ≤ 6xn−1. From this we have xn < 6n. Let B = {x2

i − 1 :
xi <

√
N}.

It remains to prove that |B| ≥
[

1
log 36 logN

]
and for all a ∈ A, b ∈ B

the number ab + 1 is a perfect square. If 6i ≤
√
N then x2

i − 1 ∈ B. So
|B| ≥

[
1

log 36 logN
]
. We write

yn = 1
2xn+1 − 3

2xn.

Then

yn+1 = 1
2 (6xn+1 − xn)− 3

2xn+1 = 4xn + 3
(

1
2xn+1 − 3

2xn
)

= 4xn + 3yn.

So we have
yn+1 = 3yn + 4xn, xn+1 = 2yn + 3xn.

Therefore the numbers yn, xn satisfy the Pell equation y2 − 2x2 = −1 since
the numbers 3, 2 form the smallest solution of the Pell equation y2−2x2 = 1.
Therefore both (x2

i − 1) + 1 = x2
i and 2(x2

i − 1) + 1 = y2
i are perfect squares.

This completes the proof of Theorem 3.

Theorem 4 will follow from the following Ramsey type result:

Lemma 1. If s1, s2, s3 are non-negative integers then there exists an
integer r with the following property : If G is a complete graph, |G| ≥ r and
C is any 3-colouring of the edges of G with colours c1, c2, c3, then for some
1 ≤ i ≤ 3 the graph G has a subgraph G′ which is monochromatic with colour
ci and |G′| ≥ si. Furthermore, denoting the least integer r with this property
by R(s1, s2, s3) we have

R(s1, s2, s3) ≤ (s1 + s2 + s3)!
s1!s2!s3!

.
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Proof. If any of the numbers s1, s2, s3 is 0 then the lemma is trivial
because R(s1, s2, s3) = 0. We may assume that s1, s2, s3 > 0. The following
inequality is well known [9, p. 75]:

R(s1, s2, s3) ≤ R(s1 − 1, s2, s3) +R(s1, s2 − 1, s3) +R(s1, s2, s3 − 1)

for s1, s2, s3 > 0. Using induction we get the assertion.

Proof of Theorem 4. Consider the graph whose vertices are the residue
classes modulo p. Since p is a prime of the form 4k+1 there exists an integer
i such that i2 ≡ −1 (mod p).

Let the edge e join the classes a and b. We colour e with c1 if
(
ab+1
p

)
= 1

or 0. Furthermore we colour e with c2 if
(−ab+1

p

)
= 1 or 0 and

(
ab+1
p

)
= −1.

Finally we colour e with c3 if
(−a2b2+1

p

)
= 1 or 0 and

(
ab+1
p

)
=
(−ab+1

p

)
=

−1 (we set
(

0
p

)
= 0). We colour all edges because otherwise

(
ab+ 1
p

)
=
(−ab+ 1

p

)
=
(−a2b2 + 1

p

)
= −1.

So

−1 =
(

(ab+ 1)(−ab+ 1)(−a2b2 + 1)
p

)
=
(

(a2b2 − 1)2

p

)
.

But this contradicts the obvious fact that
( (a2b2−1)2

p

)
= 1 or 0.

Take c =
[

1
3 log 3 log p

]
+ 1. Applying Lemma 1 we obtain

R(c, c, c) ≤ (3c)!
c!c!c!

.

By the Stirling formula, as c→∞ we have

(3c)!
c!c!c!

≤ (1 + o(1))

(
3c
e

)3c√
2π3c

((
c
e

)c√
2πc
)3 ≤ 33c−3 ≤ p.

Thus if p is large enough then R(c, c, c) ≤ p. Therefore the graph has a
subgraph X which is monochromatic with colour cj for some 1 ≤ j ≤ 3 and
|X| ≥ c.

Let A be X if we coloured the edges of X with c1, let it be {ix : x ∈ X}
if we coloured the edges of X with c2, and {ix2 : x ∈ X} if we coloured the
edges of X with c3.

Now |A| ≥ 1
2 |X|. Using the definition of colouring, we conclude that the

product of any two elements of A increased by 1 is a quadratic residue or 0
mod p.

Proof of Theorem 5. See [17, Chap. 5, Problem 8].

Proof of Theorem 6. We may assume that |A| ≤ |B|. Using the assump-
tion that for all a ∈ A, b ∈ B we have

(
ab+1
p

)
= 1 or 0, it follows from
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Theorem 5 that

|A| |B| −
√
|A| |B| ≤ |A|(|B| − 1) ≤

∑

a∈A

∑

b∈B

(
ab+ 1
p

)
≤
√

2p|A| |B|.

But this is equivalent to the assertion.

Proof of Theorem 7. Erdős and Shapiro proved Theorem 7(b) in [6].
Later Friedlander and Iwaniec [8] studied similar questions. They proved
that if A ⊆ (M,M +A), B ⊆ (M,M +B), AB ≤ p and B ≤ A then for any
integer r ≥ 1 and ε > 0, we have
∣∣∣
∑

a∈A

∑

b∈B
χ(a+ b)

∣∣∣� A1/2|A|1/2|B|
(

(A+ p1/(2r)B)B
A2|B|2

)1/(4r)

p1/(8r)+ε

+ |A|1/2|B|1/2(A+ p1/(2r)B)1/2,

the implied constant depending on r and ε.

In order to prove Theorem 7(a), we will use Gaussian sums. Let

τ(χ) =
n∑

m=1

χ(m)e
(
m

q

)
,

where χ is a primitive character. Then |τ(χ)| = √p; the proof can be found
in [2, p. 66]. We shall need the following lemmas.

Lemma 2. If χ is a primitive character mod p then

χ(n) =
1

τ(χ)

p∑

h=1

χ(h)e
(
hn

p

)
.

Proof. See [2, p. 68].

The following lemma is well known and very simple.

Lemma 3. If T (α) =
∑p
n=1 cne(nα) then

p∑

h=1

∣∣∣∣T
(
h

p

)∣∣∣∣
2

= p

p∑

n=1

|cn|2.

By Lemma 2 we get

S =
∣∣∣
∑

a∈A

∑

b∈B
χ(ab+ 1)

∣∣∣ =
∣∣∣∣

1
τ(χ)

∑

a∈A

∑

b∈B

p∑

h=1

χ(h)e
(

(ab+ 1)h
p

)∣∣∣∣.

We replace h = lb−1 and use the fact that |τ(χ)| = √p:

S =
1√
p

∣∣∣∣
∑

a∈A

∑

b∈B

p∑

l=1

χ(lb−1)e
(
al + lb−1

p

)∣∣∣∣.
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Let B′ = {b−1 : b ∈ B}. It is trivial that |B′| = |B|. Furthermore,

S =
1√
p

∣∣∣∣
p∑

l=1

χ(l)
∑

a∈A
e

(
al

p

)∑

b∈B′
χ(b)e

(
bl

p

)∣∣∣∣

≤ 1√
p

p∑

l=1

∣∣∣∣
∑

a∈A
e

(
al

p

)∣∣∣∣
∣∣∣∣
∑

b∈B′
χ(b)e

(
bl

p

)∣∣∣∣.

Using the Cauchy–Schwarz inequality we get

S ≤ 1√
p

√√√√
p∑

l=1

∣∣∣∣
∑

a∈A
e

(
al

p

)∣∣∣∣
2 p∑

l=1

∣∣∣∣
∑

b∈B′
χ(b)e

(
bl

p

)∣∣∣∣
2

.

Applying Lemma 3 with cn = 0 if n 6∈ A and cn = 1 if n ∈ A we get
p∑

l=1

∣∣∣∣
∑

a∈A
e

(
al

p

)∣∣∣∣
2

= p|A|.

Similarly, writing cn = 0 if n /∈ B′ and cn = χ(n) if n ∈ B′, by Lemma 3 we
get

p∑

l=1

∣∣∣∣
∑

b∈B′
χ(b)e

(
bl

p

)∣∣∣∣
2

= p|B|.

Therefore S ≤ √p
√
|A| |B|.

Proof of Theorem 8. Let f(a, b) be ab + 1 in case (a) and a + b in case
(b). It will be sufficient to prove that Theorem 8 holds when k is a prime.
Indeed, in the general case we know that (k, p − 1) 6= 1, thus k has a k0

prime divisor which divides p− 1. Then f(a, b) is a perfect k0th power mod
p for all a ∈ A, b ∈ B.

So consider the case when k is a prime and thus k | p−1. Without loss of
generality we may assume that |A| ≤ |B|. We will using the following simple
statement: for (x, p) = 1 we have

∑

χ:χk=χ0

χ(x) =
{
k if x is a kth power mod p and x 6≡ 0 mod p,
0 if x is not a kth power mod p or x ≡ 0 mod p.

Now for |A| ≤ |B| Theorem 7 shows that

k(|A| |B| −
√
|A| |B|) ≤ k|A|(|B| − 1) ≤

∑

a∈A

∑

b∈B
f(a,b)6=0

∑

χ:χk=χ0

χ(f(a, b))

≤ |A| |B|+
∑

χ:χk=χ0
χ6=χ0

∑

a∈A

∑

b∈B
χ(f(a, b))

≤ |A| |B|+ (k − 1)
√
p
√
|A| |B|.
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It follows that

|A| |B| ≤
(√

p+
k

k − 1

)2

.

In order to prove Theorem 9, we shall need the following lemma.

Lemma 4 (Gallagher). Let X be a set of integers in the interval [M + 1,
M + N ]. For each prime p let νX(p) denote the number of residue classes
modulo p that contain an element of X. Then for any finite set P of primes
we have

|X| ≤
∑
p∈P log p− logN∑

p∈P (log p)/νX(p)− logN

provided that the denominator is positive.

Proof. This is Gallagher’s “larger sieve” (see [13]).

Proof of Theorem 9. Let A′ and B′ denote the sets of integers r such
that r ∈ {1, . . . , p− 1} and there is at least one a ∈ A resp. b ∈ B congruent
to r modulo p. Then using Theorem 8 with A′ and B′, respectively, we get

min{νA(p), νB(p)} ≤ √p+ 3.

Let P = {p : p is a prime, p ≡ 1 (mod k), p ≤ 4(ϕ(k) logN)2}. Divide the
set P into two parts:

PA = {p ∈ P : min{νA(p), νB(p)} = νA(p)},
PB = {p ∈ P : min{νA(p), νB(p)} 6= νA(p)}.

It follows from Lemma 4 that either of the following inequalities is true if
its denominator is positive:

|A| ≤
∑
p∈PA log p− logN∑

p∈PA (log p)/νA(p)− logN
, |B| ≤

∑
p∈PB log p− logN∑

p∈PB (log p)/νB(p)− logN
.

We may assume that
∑

p∈PA

log p
νA(p)

− logN ≥
∑

p∈PB

log p
νB(p)

− logN.

Then by Mertens’s theorem and the prime number theorem for arithmetic
progressions of small moduli we have

W = 2
( ∑

p∈PA

log p
νA(p)

− logN
)
≥
∑

p∈PA

log p
νA(p)

− logN +
∑

p∈PB

log p
νB(p)

− logN

=
∑

p∈P

log p
min(νA(p), νB(p))

− 2 logN ≥
∑

p∈P

log p√
p+ 3

− 2 logN

= (2 + o(1)) logN,
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whence

|A| ≤
∑
p∈P log p− logN

(1 + o(1)) logN
≤ 4k logN.

This completes the proof of Theorem 9.

Proof of Theorem 10. (a) We shall need the following lemmas:

Lemma 5. We have

∑

χ

∣∣∣
p−1∑

n=1

cnχ(n)
∣∣∣
2

= (p− 1)
p−1∑

n=1

c2n.

This lemma is well known and easy to prove.

Lemma 6. Suppose χ is a modulo p character of order d > 1. Suppose
f(x) ∈ Fp[x] has m distinct roots over the algebraic closure of Fp, and it is
not the constant multiple of the dth power of a polynomial over Fp. Then

∣∣∣
∑

x∈Fp
χ(f(x))

∣∣∣ ≤ (m− 1)
√
p.

Proof. This lemma was proved by A. Weil (see [15, p. 43]).

If ab ≡ h(x) (mod p) then
∑
χ χ(a−1b−1h(x)) = p − 1, otherwise∑

χ χ(a−1b−1h(x)) = 0. It is clear that there exist a ∈ A, b ∈ B such
that the congruence ab ≡ h(x) (mod p) is solvable if and only if

0 < (p− 1)N =
∑

a∈A

∑

b∈B

p−1∑

x=0

∑

χ

χ(a−1b−1h(x)).

Let H denote the number of distinct zeros of h(x). Then

|(p−H)|A| |B| − (p− 1)N | =
∣∣∣
∑

a∈A

∑

b∈B

p−1∑

x=0

∑

χ6=χ0

χ(a−1b−1h(x))
∣∣∣.

Using the Cauchy–Schwarz inequality and Lemmas 5 and 6 we have

∣∣∣
∑

a∈A

∑

b∈B

p−1∑

x=0

∑

χ6=χ0

χ(a−1b−1h(x))
∣∣∣

≤
∑

χ6=χ0

∣∣∣
∑

a∈A
χ(a−1)

∑

b∈B
χ(b−1)

∣∣∣
∣∣∣
p−1∑

x=0

χ(h(x))
∣∣∣

≤
√∑

χ6=χ0

∣∣∣
∑

a∈A
χ(a−1)

∣∣∣
2
√∑

χ6=χ0

∣∣∣
∑

b∈B
χ(b−1)

∣∣∣
2
(H − 1)

√
p

≤ (H − 1)(p− 1)
√
p|A| |B|.
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If

|A| |B| ≥ p
(
p− 1
p−H

)2

(n− 1)2

then
∑

a∈A

∑

b∈B

p−1∑

x=0

∑

χ

χ(a−1b−1h(x)) > 0.

Furthermore,

(H − 1)
√
p|A| |B| >

∣∣∣∣N −
p−H
p− 1

|A| |B|
∣∣∣∣ ≥ |N − |A| |B|| −

H

p− 1
|A| |B|.

Thus Theorem 10(a) is proved.
(b) We will use the following lemma:

Lemma 7. Suppose p is a prime. Suppose g(x) = anx
n + . . . + a0 is a

polynomial with integer coefficients, 0 < n < p and p - an. Then
∣∣∣∣
p−1∑

x=0

e

(
g(x)
p

)∣∣∣∣ ≤ (n− 1)
√
p.

Proof. This lemma was proved by A. Weil (see [15, p. 45]).

If a+ b ≡ h(x) (mod p) then

p−1∑

k=0

e

(
k(h(x)− a− b)

p

)
= p,

otherwise
p−1∑

k=0

e

(
k(h(x)− a− b)

p

)
= 0.

It is clear that there exist a ∈ A, b ∈ B such that the congruence a+b ≡ h(x)
(mod p) is solvable if and only if

0 < pN =
∑

a∈A

∑

b∈B

p−1∑

x=0

p−1∑

k=0

e

(
k(h(x)− a− b)

p

)
.

Then

|p|A| |B| − pN | =
∣∣∣∣
∑

a∈A

∑

b∈B

p−1∑

x=0

p−1∑

k=1

e

(
k(h(x)− a− b)

p

)∣∣∣∣.

Using the Cauchy–Schwarz inequality and Lemmas 3 and 7 we have



64 K. Gyarmati

∣∣∣∣
∑

a∈A

∑

b∈B

p−1∑

x=0

p−1∑

k=1

e

(
k(h(x)− a− b)

p

)∣∣∣∣

=
p−1∑

k=1

∣∣∣∣
∑

a∈A
e

(
−ka
p

)∑

b∈B
e

(
−kb
p

)∣∣∣∣
∣∣∣∣
p−1∑

x=0

e

(
kh(x)
p

)∣∣∣∣

≤

√√√√
p−1∑

k=1

∣∣∣∣
∑

a∈A
e

(
−ka
p

)∣∣∣∣
2
√√√√

p−1∑

k=1

∣∣∣∣
∑

b∈B
e

(
−kb
p

)∣∣∣∣
2

(n− 1)
√
p

≤ (n− 1)p
√
p|A| |B|.

If |A| |B| > p(n− 1)2 then

∑

a∈A

∑

b∈B

p−1∑

x=0

p−1∑

k=1

e

(
k(h(x)− a− b)

p

)
> 0.

Thus Theorem 10 is proved.

Proof of Corollary. In part (a) it will be sufficient to prove that the
statement holds in the case when for all d | p − 1, h(x) is not the constant
multiple of a dth power. Let A = {f(x) : x ∈ Fp}, B = {g(y) : y ∈ Fp}. Then
|A|, |B| ≥ (p− 1)/n because the congruences f(x) ≡ a (mod p), g(y) ≡ a
(mod p) have at most n solutions. So

|A| |B| > p

(
p− 1
p− n

)2

(n− 1)2.

Using Theorem 10 we get the statement of Corollary.

I would like to thank Professor András Sárközy for the valuable advice.
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