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1. Introduction. As usual Z, Q, R and C denote the ring of integers,
the rational field, the real field and the complex field respectively. We also let
Z+ = {1, 2, . . .} and C∗ = C\{0}. For a ∈ Z and n ∈ Z+, by (a, n) we mean
the greatest common divisor of a and n. If n is odd then the Jacobi symbol(
a
n

)
is defined in terms of Legendre symbols (see, e.g., [IR]). For x ∈ R, [x]

and {x} stand for the integral and the fractional parts of x respectively. For
a prime p and an integer a prime to p, the Fermat quotient (ap−1 − 1)/p
is denoted by qp(a). For an odd prime p and a ∈ Z, we define the Euler
quotient

(1.1) eqp(a) =
a(p−1)/2 −

(
a
p

)

p
.

The Gauss lemma used to prove the law of quadratic reciprocity is as
follows:

Gauss’s Lemma. Let n > 0 be an odd integer and a an integer prime
to n. Then

(1.2)
(
a

n

)
= (−1)|Sn(a)| where Sn(a) =

{
k ∈ Z+ :

k

n
<

1
2
<

{
ka

n

}}
.

Almost every textbook on number theory only contains Gauss’s Lemma
with n = p being an odd prime. The general version of Gauss’s Lemma
was first published by M. Jenkins [J] in 1867 with an elementary proof; in
the textbook [R] H. Rademacher supplied a proof using subtle properties of
quadratic Gauss sums.
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For x ∈ R let
(
x

0

)
= 1 and

(
x

n

)
=

1
n!

n−1∏

j=0

(x− j) for n = 1, 2, . . .

Recently A. Granville [G] obtained a congruence for
∏

0<k<n

(
p−1

[pk/n]

)
mod p2

where p is an odd prime not dividing n ∈ Z+. With the help of Gauss’s
Lemma, we are able to get the following more general result.

Theorem 1.1. Let m ∈ Z and n ∈ Z+. Let p be an odd prime not
dividing n.

(i) If δ ∈ {0, 1} then

(1.3) (−1)
p−1

2 [n−δ2 ]
∏

0<k≤[(n−δ)/2]

(
pm− 1
[pk/n]

)

≡
{(

n
p

)
+ pmn eqp(n) (mod p2) if 2 -n,

(
2n
p

)
+ pm

(
(−1)δ

(
n
p

)
2 eqp(2) +

(
2
p

)
n eqp(n)

)
(mod p2) if 2 |n.

(ii) We have

(1.4)
n−1∑

k=0

(−1)k+(n−1)[pk/n]
(
pm− 1
[pk/n]

)

≡
{
mn(1− 2p−1) (mod p2) if 2 |n,
1 (mod p2) if 2 -n.

Remark 1.1. In (1.3) we use Euler quotients instead of Fermat quo-
tients, this makes the congruence somewhat symmetric in the case 2 |n.

Now we deduce Granville’s result from our Theorem 1.1.

Corollary 1.1 (Granville [G]). Let n be a positive integer and p an
odd prime not dividing n. Then

(1.5)
∏

0<k<n

(
p− 1
[pk/n]

)
≡ (−1)

p−1
2 (n−1)(np − n+ 1) (mod p2).

Proof. Observe that

(−1)
p−1

2 (n−1)
∏

0<k<n

(
p− 1
[pk/n]

)

= (−1)
p−1

2 ([n−1
2 ]+[n2 ])

∏

0<k≤[(n−1)/2]

(
p− 1
[pk/n]

)
·

∏

0<k≤[n/2]

(
p− 1

[p(n− k)/n]

)

= (−1)
p−1

2 [n−1
2 ]

∏

0<k≤[(n−1)/2]

(
p− 1
[pk/n]

)
· (−1)

p−1
2 [n2 ]

∏

0<k≤[n/2]

(
p− 1
[pk/n]

)
.
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Applying Theorem 1.1(i) with m = 1 and δ = 0, 1, we then obtain

(−1)
p−1

2 (n−1)
∏

0<k<n

(
p− 1
[pk/n]

)
≡ 1 + 2pn

(
n

p

)
eqp(n) (mod p2).

For any integer a prime to p, clearly

ap−1−1 =
(
a(p−1)/2 +

(
a

p

))(
a(p−1)/2−

(
a

p

))
≡ 2
(
a

p

)
p eqp(a) (mod p2).

So (1.5) follows.

For a, n ∈ Z with 0 ≤ a < n, we let

a(n) = a mod n = a+ nZ = {a+ nx : x ∈ Z}.
For a finite system A = {as(ns)}ks=1 of such residue classes, we define the
covering function wA : Z→ {0, 1, . . .} by

(1.6) wA(x) = |{1 ≤ s ≤ k : x ∈ as(ns)}|.
When wA(x) = m for all x ∈ Z, A is said to be an exact m-cover (of Z).
We also use the term disjoint cover instead of exact 1-cover. (See [S3] and
[S4] for problems and results on covers of Z.) For two systems A and B of
residue classes, if wA = wB, then we say that A is covering equivalent to B,
and denote this by A ∼ B. For d, n ∈ Z+ and a ∈ {0, 1, . . . , d− 1}, clearly

(1.7) {a+ jd(nd)}n−1
j=0 ∼ {a(d)},

in particular {r(n)}n−1
r=0 ∼ {0(1)}.

In this paper we will also prove the following extension of Corollary 1.1.

Theorem 1.2. Let p be an odd prime. Let A = {as(ns)}ks=1 (0 ≤ as <
ns) and B = {bt(mt)}lt=1 (0 ≤ bt < mt) be covering equivalent systems with
the moduli ns and mt not divisible by p but dividing an integer N . Then for
any x ∈ [0, p) we have

(1.8)
k∏

s=1

(
pN/ns − 1

[(x+ pas)/ns]

)/ l∏

t=1

(
pN/mt − 1

[(x+ pbt)/mt]

)

≡ (−1)(k−l)(p−1)/2
(

1 + pN

( k∑

s=1

qp(ns)
ns

−
l∑

t=1

qp(mt)
mt

))
(mod p2).

Remark 1.2. Actually we may not require the integer N in Theorem 1.2
to be a common multiple of those moduli ns and mt. For example N = 1 is
allowed if we do not mind using x 6∈ Z in the notation

(
x
n

)
.

Corollary 1.2. Let A = {as(ns)}ks=1 (0 ≤ as < ns) be an exact
m-cover of Z. Let N be the least common multiple of n1, . . . , nk and p an
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odd prime not dividing N . Then

(1.9)
k∏

s=1

(
pN/ns − 1
[pas/ns]

)
≡ (−1)(k−m)(p−1)/2

(
1+pN

k∑

s=1

qp(ns)
ns

)
(mod p2).

Proof. Let B be the system consisting of m copies of 0(1). Then A ∼ B.
Since

[
p0
1

]
= qp(1)

1 = 0, Corollary 1.2 follows immediately from Theo-
rem 1.2.

Remark 1.3. Applying Corollary 1.2 to the trivial disjoint cover A =
{r(n)}n−1

r=0 we then get Corollary 1.1 again.

In the next section we will give some examples of uniform maps the
concept of which arose from our previous study of covering equivalence (cf.
[S1] and [S2]). On the basis of Section 2, we prove Theorems 1.1 and 1.2 in
Section 3.

2. Some uniform maps

Definition 2.1. Let m be an integer and M an additive abelian group.
Let f be a map from a subset of C×C into M . If for any ordered pair 〈x, y〉
in the domain Dom(f) of f and each positive integer n prime to m, we have

(2.1)
{〈

x+mr

ny
, ny

〉
: r = 0, 1, . . . , n− 1

}
⊆ Dom(f)

and

(2.2)
n−1∑

r=0

f

(
x+mr

n
, ny

)
= f(x, y),

then we call f an m-uniform map (into M).

The functional equation (2.2) with m = 1 was first introduced by the
author in [S1] where he showed the following theorem in the case m = 1 by
a complicated induction method.

Theorem 2.1. Let m be an integer and M a left R-module where R
is a ring with identity. Let f be a map into M with Dom(f) ⊆ C× C such
that (2.1) holds for any 〈x, y〉 ∈ Dom(f) and n ∈ Z+ with (m,n) = 1. Then
the following two statements are equivalent :

(a) f is an m-uniform map into M .
(b) Whenever

(2.3)
∑

1≤s≤k
x∈as(ns)

λs =
∑

1≤t≤l
x∈bt(mt)

µt for all x ∈ Z
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(with λs, µt ∈ R, as, ns, bt,mt ∈ Z, 0 ≤ as < ns, 0 ≤ bt < mt and
(nsmt,m) = 1), we have

(2.4)
k∑

s=1

λsf

(
x+mas
ns

, nsy

)
=

l∑

t=1

µtf

(
x+mbt
mt

,mty

)

for 〈x, y〉 ∈ Dom(f).

Proof. Since {r(n)}n−1
r=0 ∼ {0(1)} for all n ∈ Z+, (b) implies (a).

Now we show (b) under the condition (a). Suppose that (2.3) holds. Let
N be the least common multiple of those moduli ns and mt. If 〈x, y〉 ∈
Dom(f), then
k∑

s=1

λsf

(
x+mas
ns

, nsy

)

=
k∑

s=1

λs

N/ns−1∑

j=0

f

(
(x+mas)/ns + jm

N/ns
,
N

ns
(nsy)

)

=
k∑

s=1

λs

N−1∑

r=0
r∈as(ns)

f

(
x+mr

N
,Ny

)
=
N−1∑

r=0

( ∑

1≤s≤k
r∈as(ns)

λs

)
f

(
x+mr

N
,Ny

)

=
N−1∑

r=0

( ∑

1≤t≤l
r∈bt(mt)

µt

)
f

(
x+mr

N
,Ny

)
=

l∑

t=1

µtf

(
x+mbt
mt

,mty

)
.

Proposition 2.1. (i) Let m ∈ Z. Then the function [ ]m : R× R→ Q
given by

(2.5) [ ]m(x, y) = [x] +
1−m

2
is an m-uniform map into the rational field Q.

(ii) For each m = 0, 1, . . . the functions bm : C × C∗ → C and em :
C× Z→ C given by

(2.6) bm(x, y) = ym−1Bm(x)

and

(2.7) em(x, y) =




eπixyymEm(x) if y is odd ,

− 2
m+ 1

eπixyymBm+1(x) if y is even,

are 1-uniform maps into the complex field C, where Bm(x) and Em(x) are
the mth Bernoulli polynomial and the mth Euler polynomial respectively.

Proof. Let n be any positive integer.
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(i) If (m,n) = 1 then

n−1∑

r=0

([
x+mr

n

]
+

1−m
2

)

=
n−1∑

r=0

(
x+mr

n
+

1−m
2
−
{
x+mr

n

})

= x+m

n−1∑

r=0

(
r

n
− 1

2

)
−
n−1∑

r=0

({{x}+ [x] +mr

n

}
− 1

2

)

= x− m

2
−
n−1∑

s=0

({x}+ s

n
− 1

2

)
= x− m

2
−
(
{x} − 1

2

)
= [x] +

1−m
2

.

(ii) Let m be a nonnegative integer. Raabe’s identity states that

(2.8)
n−1∑

r=0

Bm

(
z +

r

n

)
= n1−mBm(nz).

Another known identity (cf. [B]) asserts that

(2.9) Em(nz) =





nm
n−1∑

r=0

(−1)rEm

(
z +

r

n

)
if 2 -n,

− 2nm

m+ 1

n−1∑

r=0

(−1)rBm+1

(
z +

r

n

)
if 2 | n.

By these two identities we can easily check that
n−1∑

r=0

bm

(
x+ r

n
, ny

)
= bm(x, y) for x ∈ C and y ∈ C∗

and
n−1∑

r=0

em

(
x+ r

n
, ny

)
= em(x, y) for x ∈ C and y ∈ Z.

Remark 2.1. In [S1] the author briefly mentioned the basic things for
Proposition 2.1. For more examples of 1-uniform maps, the reader is referred
to [S5].

Corollary 2.1. Let p be an odd prime and n > 0 an even integer
prime to p. Then

(2.10)
n−1∑

r=0

(−1)rBp−1

(
r

n

)
≡ −nqp(2) (mod p).
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Proof. By Proposition 2.1,

2np−2

1− p
n−1∑

r=0

(−1)rBp−1

(
r

n

)
=
n−1∑

r=0

ep−2

(
r

n
, n

)
= ep−2(0, 1)

does not depend on the value of the positive even integer n. So

np−2
n−1∑

r=0

(−1)rBp−1

(
r

n

)
= 2p−2

(
2Bp−1 −

2−1∑

r=0

Bp−1

(
r

2

))

= 2p−1Bp−1 −Bp−1.

Since

pBp−1 ≡
p−1∑

r=1

rp−1 ≡ −1 (mod p)

(see, e.g., [IR]), (2.10) follows at once.

Proposition 2.2. Let p be an odd prime. For x ≥ 0 and m ∈ Z \ pZ
let

(2.11) q(x,m) =
qp(m)
m

+
∑

0<j≤[x]
p-j

1
jm

.

Then the function q(x,m) = q(x,m) mod p is a p-uniform map into the
finite field Z/pZ.

Proof. Let m ∈ Z \ pZ and n ∈ Z+ \ pZ. Since

qp(mn) =
mp−1 − 1

p
+mp−1n

p−1 − 1
p

≡ qp(m) + qp(n) (mod p),

for x ≥ 0 the congruence
n−1∑

k=0

q

(
x+ pk

n
, nm

)
≡ q(x,m) (mod p)

is equivalent to

(2.12) qp(n) ≡
∑

0<j≤[x]
p-j

1
j
− 1
n

n−1∑

k=0

∑

0<j≤[(x+pk)/n]
p-j

1
j

(mod p).

Now it suffices to show (2.12) for all x = 0, 1, . . .
By pp. 125–126 of [GS] we have

(2.13) Bp−1

({
pk

n

})
−Bp−1 ≡ −

∑

0<j≤[pk/n]

1
j

(mod p)

for k = 0, 1, . . . , n− 1.
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Observe that
n−1∑

k=0

(
Bp−1

({
pk

n

})
−Bp−1

)

=
n−1∑

r=0

Bp−1

(
r

n

)
− nBp−1 = n2−pBp−1 − nBp−1

=
n

np−1 ·
1− np−1

p
(pBp−1) ≡ nqp(n) (mod p).

Thus (2.12) holds for x = 0.
Let r ∈ Z+. Assume (2.12) for x = r−1. Denote by k0 the unique integer

k ∈ [0, n) such that r+ pk ≡ 0 (modn). Clearly p | r if and only if p divides
j0 = (r + pk0)/n. For k ∈ {0, 1, . . . , n− 1}, we have

[
r + pk

n

]
=
[
r − 1 + pk

n

]
+
{

1 if k = k0,
0 otherwise.

If p - r, then
1
r
− 1
n
· 1
j0

=
1
r
− 1
r + pk0

≡ 0 (mod p).

Thus
∑

0<j≤r
p-j

1
j
− 1
n

n−1∑

k=0

∑

0<j≤[(r+pk)/n]
p-j

1
j

≡
∑

0<j≤r−1
p-j

1
j
− 1
n

n−1∑

k=0

∑

0<j≤[(r−1+pk)/n]
p-j

1
j
≡ qp(n) (mod p).

This concludes the induction step. We are done.

3. Proofs of Theorems 1.1 and 1.2

Lemma 3.1. (i) Let a ∈ Z, n ∈ Z+ and (2a, n) = 1. Then

(3.1) |Sn(a)| ≡
∑

0<k<n/2

[
ka

n

]
+
n2 − 1

8
(a− 1) (mod 2).

(ii) Let m,n ∈ Z+ and (m,n) = 1. Then for δ ∈ {0, 1} we have

(3.2)
∑

0<k≤(n−δ)/2

[
km

n

]
+

∑

0<k≤(m−δ)/2

[
kn

m

]
=
[
m− δ

2

][
n− δ

2

]
.

The above lemma is well known and usually stated in textbooks with
a,m, n being odd primes.
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Lemma 3.2. Let k,m, n ∈ Z and 0 ≤ k < n. Let p be an odd prime
not dividing n. Then

(3.3) (−1)[pk/n]
(
pm− 1
[pk/n]

)
≡ 1 + pm

(
Bp−1

({
pk

n

})
−Bp−1

)
(mod p2).

Proof. For any l ∈ {0, 1, . . . , p− 1},

(3.4) (−1)l
(
pm− 1

l

)
=
∏

0<j≤l

(
1− pm

j

)
≡ 1− pm

∑

0<j≤l

1
j

(mod p2).

Combining this with (2.13) we then obtain (3.3).

Proof of Theorem 1.1. As p−1 is even, we have Bp−1(1−x) = Bp−1(x).

(i) Let l = [(n− δ)/2] and εn = (1 + (−1)n)/2. By Lemma 3.2,

∏

0<k≤l
(−1)[pk/n]

(
pm− 1
[pk/n]

)
≡ 1+pm

∑

0<k≤l

(
Bp−1

({
pk

n

})
−Bp−1

)
(mod p2).

Observe that

2
∑

0<k≤l

(
Bp−1

({
pk

n

})
−Bp−1

)
− εn(−1)δ

(
Bp−1

(
1
2

)
−Bp−1

)

=
∑

0<k≤l

(
Bp−1

({
pk

n

})
+Bp−1

({
p(n− k)

n

})
− 2Bp−1

)

− εn(−1)δ
(
Bp−1

({
p

2

})
−Bp−1

)

=
n−1∑

k=0

(
Bp−1

({
pk

n

})
−Bp−1

)
≡ nqp(n) (mod p)

where the last step is taken as in the proof of Proposition 2.2. By Corollary
2.1, Bp−1(1/2) − Bp−1 ≡ 2qp(2) (mod p). Recall that qp(a) ≡ 2

(
a
p

)
eqp(a)

(mod p) for any a ∈ Z with (a, p) = 1. So

∑

0<k≤l

(
Bp−1

({
pk

n

})
−Bp−1

)

≡ n
(
n

p

)
eqp(n) + εn(−1)δ2

(
2
p

)
eqp(2) (mod p).

By Lemma 3.1 and Gauss’s Lemma,

(−1)
∑

0<k≤l[pk/n] =(−1)l(p−1)/2−∑0<k<p/2[nk/p] =(−1)l(p−1)/2
(
n

p

)(
2
p

)n−1

.



96 Z. W. Sun

Therefore

(−1)l(p−1)/2
(
n

p

)(
2
p

)n−1 ∏

0<k≤l

(
pm− 1
[pk/n]

)

=
∏

0<k≤l
(−1)[pk/n]

(
pm− 1
[pk/n]

)

≡ 1 + pm

(
n

(
n

p

)
eqp(n) + εn(−1)δ2

(
2
p

)
eqp(2)

)
(mod p2)

and hence (1.3) follows.
(ii) Write S for the left hand side of (1.4) and set

S′ =
n−1∑

r=0

(−1)rBp−1

(
r

n

)
.

By Lemma 3.2,

S ≡
n−1∑

k=0

(−1){pk}n
(

1 + pm

(
Bp−1

({pk}n
n

)
−Bp−1

))

≡ (1− pmBp−1)∆+ pmS′ (mod p2)
where

{pk}n = n

{
pk

n

}
= pk − n

[
pk

n

]
and ∆ =

n−1∑

r=0

(−1)r =
1− (−1)n

2
.

If 2 -n, then S′ = Bp−1 since

(−1)n−rBp−1

(
n− r
n

)
= −(−1)rBp−1

(
r

n

)
,

therefore S ≡ 1 (mod p2). When 2 |n we may apply Corollary 2.1. This
concludes the proof.

Proof of Theorem 1.2. Since A ∼ B, by Theorem 2.1 and Proposition
2.1 we have

k∑

s=1

([
x+ pas
ns

]
+

1− p
2

)
=

l∑

t=1

([
x+ pbt
mt

]
+

1− p
2

)
.

So (1.8) is equivalent to the following

PA =
k∏

s=1

(−1)[(x+pas)/ns]
(

pN/ns − 1
[(x+ pas)/ns]

)
·
(

1− pN
k∑

s=1

qp(ns)
ns

)

≡ PB =
l∏

t=1

(−1)[(x+pbt)/mt]
(

pN/mt − 1
[(x+ pbt)/mt]

)

×
(

1− pN
l∑

t=1

qp(mt)
mt

)
(mod p2).
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By (3.4) we have

PA ≡
k∏

s=1

(
1− pN

ns

∑

0<j≤[(x+pas)/ns]

1
j

)(
1− pN qp(ns)

ns

)

≡
k∏

s=1

(
1− pN

ns

(
qp(ns) +

∑

0<j≤[(x+pas)/ns]

1
j

))

≡
k∏

s=1

(
1− pNq

(
x+ pas
ns

, ns

))

≡ 1− pN
k∑

s=1

q

(
x+ pas
ns

, ns

)
(mod p2);

similarly

PB ≡ 1− pN
l∑

t=1

q

(
x+ pbt
mt

,mt

)
(mod p2).

In view of Theorem 2.1 and Proposition 2.2, PA ≡ PB (mod p2). We are
done.

Acknowledgments. The author is indebted to Professor Andrew Gran-
ville for his comments, and to the referee for his suggestions.
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