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Average size of 2-Selmer groups of elliptic curves, II
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1. Introduction. For a given elliptic curve E defined over Q possess-
ing a 2-torsion point, we denote by Sel2(E/Q) the 2-Selmer group of E
over Q. While it is known that the order of Sel2(E/Q) can be arbitrarily
large (cf. [1], [11]), the study of its average value has attracted the attention
of some authors. For instance, with purely analytic tools, Heath-Brown ([7],
[8]) studied the congruent number curves and his results provide very good
understanding of the distribution of the orders of 2-Selmer groups of such
curves. In particular, the main results of [7], [8] imply the existence of a pos-
itive proportion of rank 0 congruent number curves. In [14], we investigated
the average order of the 2-Selmer groups of the elliptic curves over Q given
by the equation

(1.1) E(a, b) : y2 = x(x+ a)(x+ b),

that is, the curves over Q with 2-torsion Z2 × Z2 (the so-called generalized
Frey–Hellegouarch curves). Motivated by a question posed by A. Brumer,
we considered the sum

S(X) :=
∑

1≤|a|,|b|≤X
a6=b

# Sel2(E(a, b)).

Influenced by Heath-Brown’s approach to the problem in [7], by estimating
character sums we showed that there exists an absolute constant c > 0 such
that

(1.2) S(X) ≤ cX2.

In other words, we proved that the average order of the 2-Selmer groups of
curves given by (1.1) is bounded. This also implies that the average rank of
the Mordell–Weil groups of these curves is bounded.
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A natural question to ask is about the average order of Sel2(E(a, b))
with one variable, say b, varying over a certain interval. If one could show
that the average order of the 2-Selmer groups of E(a, b) with b running over
every interval of size between |a|1−ε and |a|1+ε was uniformly bounded as
|a| → ∞, then (1.2) would be obviously true. Unfortunately, the average
order of Sel2(E(a, b)) in this sense depends on a quite complicatedly, and it
is not possible to get a uniform estimate for b running over that small inter-
val. Moreover, even ignoring the uniformity, the expected boundedness may
not always hold. For example, considering the Legendre curves E(1, u) and
curves E(2, u) with 1 < |u| ≤ X, one finds out that, while the average order
of Sel2(E(2, u)) is absolutely bounded, the average order of Sel2(E(1, u)) is
unbounded with an order of magnitude

√
logX !

This seems mysterious, the secret, however, does not lie deep. The key
difference between these two families of curves is that 1 is a square and 2
is not. For a given curve E(a, b), the order of Sel2(E(a, b)) depends on the
number of some special factorizations of a, b and a − b. Roughly speaking,
the closer |a|, |b| and |a − b| are to squares, or the fewer prime divisors
ab(a− b) has, a higher ratio the admissible factorizations occupy in all the
factorizations. This heuristic explains why the average size of Sel2(E(1, u))
differs from that of Sel2(E(2, u)) significantly.

In this paper, we shall show that this phenomenon persists for any fixed a,
in accordance with whether |a| is a square or not. For a non-zero integer a,
and a positive number X, let

(1.3) S(a;X) :=
∑

1≤|b|≤X
b6=a

# Sel2(E(a, b)).

If |a| is not a square, we prove that the average order of Sel2(E(a, b)) is
bounded by a constant depending on a.

Theorem 1.1. Suppose a is a fixed non-zero integer and |a| is not a
square. Then there exist positive constants c1 and c2, depending only on a,
such that for every X ≥ 2 we have

(1.4) c1X < S(a;X) ≤ c2X.
The following corollary is an obvious consequence of Theorem 1.1.

Corollary 1.2. Suppose a is a fixed non-zero integer and |a| is not
a square. Then the average Mordell–Weil rank of elliptic curves E(a, b) is
bounded by a constant depending on a.

When a = ±d2 for some integer d, we expect a lower bound
√

logX
for the average order of the 2-Selmer groups of the curves E(±d2, u) as |u|
varies up to X. One should note that, while the sum of S(±d2;X) has a
lower bound with order of magnitude X

√
logX, an explicit lower bound
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depends on d. Not seeking for the best possible explicit constant, we shall
prove

Theorem 1.3. Let d denote an integer. Suppose A > 0 and 0 < ε < 1
are any fixed numbers. Then there exist constants c3 > 0 and X0 > 0,
depending only on A and ε, such that , for every X > X0, we have

(1.5) S(±d2;X) ≥ c3
(
φ(d)
d

)3/2(3
4

)ω(d)

·X
√

logX

if |d| ≤ (logX)A, and

(1.6) S(±d2;X) ≥ c3
(
φ(d)
d

)3/2(1
2

)ω(d)

·X
√

logX

if |d| ≤ X1−ε. Here and throughout , by φ(d) and ω(d) we denote respectively
Euler’s totient function and the number of distinct prime divisors of d.

One may ask whether X
√

logX gives the correct order of magnitude of
S(±d2;X) for fixed d. In the same manner as we prove Theorem 1.1, we can
prove an upper bound for S(d2;X), uniformly for d relatively small with
respect to X.

Theorem 1.4. Suppose X > 3 and A > 0 is any fixed real number. If
d ≤ (logX)A, then there exists a constant c4 > 0, depending on A, such that

(1.7) S(±d2;X) ≤ c4
(

d

φ(d)

)5

·X
√

logX.

In our proof of Theorem 1.3 (see Sections 3 and 4), while it seems neces-
sary to consider S(d2;X) and S(−d2;X) separately as the related systems
of quadratic equations (see Lemma 2.1) are formally different, the proofs
for the bounds of S(d2;X) and S(−d2;X) are similar. To avoid unneces-
sary repetition, we shall prove the lower bounds for S(d2;X) only. We also
remark that, with extra effort, we can eliminate the factor (d/φ(d))5 in
Theorem 1.4, though we shall not do so in this paper.

The rest part of the paper is devoted to proving Theorems 1.1 and 1.3.
The proof for Theorem 1.4 can be carried out by imitating the proof for
Theorem 1.1; therefore, it is omitted.

Throughout the paper, we have fixed meanings for the following notation:

• µ(n): the Möbius function which takes value 0 if n has any square
divisor other than 1 and otherwise takes value (−1)ω(n).
• �: by writing m ≡ � (mod d), we mean that m is prime to d and is a

quadratic residue modulo d.
• τk(n): the usual k-fold divisor function.
• P (n): the largest prime divisor of n.
• p(n): the smallest prime divisor of n.
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• s(n): the radical of n, i.e., the largest squarefree integer dividing n.
• m (modn) or (m)n: (for (m,n) = 1) the inverse of m modulo n, i.e.,
mm ≡ 1 (modn).
• a (modn): (in display) a running over a complete residue system mod-

ulo n, i.e., Z/nZ.
• a (modn×): (in display) a running over the elements of (Z/nZ)×.

Moreover, when used for the range of a variable involved in a sum, e.g.,
M < m ≤ 2M , a capital letter always stands for a power of 2.

Remark. In the proofs of the theorems, it often happens that, at a
certain stage, we have to treat several similar cases (or estimate some sim-
ilar sums). If the cases or sums can be treated in the same manner, we
always only treat one of them to avoid unnecessary duplications. Moreover,
in complicated formulas, we leave out error terms that have smaller order
of magnitude than the term(s) displayed.

2. Some lemmas. In this section we state several lemmas which will
be needed in the next sections.

Lemma 2.1. For integers a, b satisfying ab(a − b) 6= 0, (a, b) = 1, and
a squarefree integer ∆ > 0, the order of Sel2(E(a∆, b∆)) is equal to the
number of homogeneous spaces described by the quadratic equation systems

(2.1)





a′δ1V
2 +

b

b′
· δ4W

2 = δ2νX
2,

b′δ1V
2 +

a

a′
· δ4W

2 = δ3νY
2,

which have a solution with W 6= 0 in every local field including R, where |a′|,
|b′| and ν are respectively divisors of |a|, |b| and |a− b|, ∆ = δ1δ2δ3δ4, and
both |a′|δ1δ2ν and |b′|δ1δ3ν are squarefree. Moreover , the number of such
spaces with a′ (or b′) having fixed sign is equal to 1

2# Sel2(E(a∆, b∆)).

Proof. This is a consequence of the complete 2-descent (cf. [12, pp. 281–
282]). One can also refer to §2 of [14] for a detailed discussion or easily
verify this by following the 2-descent carried out in [7]. For the last part,
one can just proceed with the 2-descent on E(a∆, b∆)(Q)/{O, T2} for a
certain appropriate 2-torsion point T2.

Lemma 2.2. Suppose ε > 0 is any fixed number , X, M and N are suffi-
ciently large real numbers, and {am} and {bn} are two complex sequences,
supported on odd integers, satisfying |am|, |bn| ≤ 1. Fix positive integers h,
q satisfying (h, q) = 1 and q ≤ {min(M,N)}ε/3. Let

S :=
∑

m,n

ambn

(
m

n

)
,
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where the summation is subject to

M < m ≤ 2M, N < n ≤ 2N, mn ≤ X, mn ≡ h (mod q).

Then

(2.2) S �MN15/16+ε +M15/16+εN,

where the constant involved in the �-symbol depends on ε only.

Proof. This is essentially Lemma 4 of [7], proved basing on the work of
Burgess [3]. One can also refer to Lemma 4.1 of [13].

Lemma 2.3 ([13, Lemma 4.2]). Suppose s is a fixed positive integer. Let
N be sufficiently large. Then for arbitrary positive integers q, r and any
non-principal character χ (mod q), we have

(2.3)
∑

n≤x, (n,r)=1

µ2(n)s−ω(n)χ(n)� xτ(r) exp(−η
√

log x)

with a positive constant η = ηs,N , uniformly for q ≤ logN x.

Lemma 2.4. Let s and C be two positive integers, and A > 0 be any
fixed number. For X > 1, let T ≤ exp(

√
logX) and M,N ≥ T be given.

There exists some constant η > 0 such that , for any positive integer r, any
integer h prime to C, and any distinct characters χ1, χ2 (mod q), where
q � (logX)A, we have

(2.4)
∑

m,n

µ2(m)µ2(n)s−ω(m)−ω(n)χ1(m)χ2(n)

� τ(r)X exp(−η
√

log T ) logX

where the sum is over coprime variables satisfying the conditions

M < m ≤ 2M, N < n ≤ 2N, mn ≤ X,
mn ≡ h (modC), (mn, r) = 1,

and the constant involved in the �-symbol depends on s and C only.

Proof. This is just a little different from Lemma 10 of [7], where mn runs
over an arithmetic progression modulo 8. Replacing the condition mn ≡ h
(modC) by introducing the summation

1
φ(C)

∑

χ (modC)

χ(m)χ(n)χ(h)

as a factor to the sum, we see that, for every fixed χ (modC), at least one
of χχ1 and χχ2 is non-principal. Then a direct application of (2.3) yields
the lemma.
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In our applications, sometimes we require a more general version of Lem-
mas 2.3 and 2.4. More precisely, we need estimates similar to (2.3) and (2.4)
with the summands involving some extra multiplicative factors.

Lemma 2.5. Assume all the conditions in Lemma 2.3. Suppose α(n) is a
multiplicative function with the property that there exists a positive constant
c such that , for every prime p,

(2.5) |α(p)− 1| < cp−1 and |α(pk)| < c+ 1 for k ≥ 2.

Then for arbitrary positive integers N and r there exists a positive constant
η = ηs,N such that for every q ≤ logN x and any non-principal character
χ (mod q), we have

(2.6)
∑

n≤x, (n,r)=1

µ2(n)s−ω(n)α(n)χ(n)� xτ(r) exp(−η
√

log x),

with the constant involved in the �-symbol depending on c and s only.

Proof. The proof can be carried out by exactly the same method used
in the proof of Lemma 4.2 in [13]. For the generating function

g(z) :=
∞∑

n=1
(n,r)=1

µ2(n)s−ω(n)α(n)χ(n)
nz

,

in a zero-free region of the L-function, we have the decomposition

g(z) =
∏

p|r

(
1 +

χ(p)
spz

)−1

G1(z, χ)L(z, χ)1/s,

where G1(z, χ) is analytic and absolutely convergent for Re(z) > 3/4. Then
an application of Perron’s formula (cf. [10, Chapter 5, Theorem 1]) and
estimates of Dirichlet L-functions yields (2.6).

Similarly, we have a generalization of Lemma 2.5.

Lemma 2.6. Suppose α1(m) and α2(n) are two multiplicative functions
satisfying (2.5) for some fixed c. Then, under the conditions of Lemma 2.4,
we have

(2.7)
∑

m,n

µ2(m)α1(m)χ1(m)
sω(m)

· µ
2(n)α2(n)χ2(n)

sω(n)

� τ(r)X exp(−η
√

log T ) logX,

where m and n are subject to the conditions given in Lemma 2.4, the constant
involved in the �-symbol depending on c, s and C only.

The next lemma deals with a special kind of sum. The estimate given
here is required in the proof of Theorem 1.1.
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Lemma 2.7. Suppose a and b are fixed non-zero integers and b is not a
square, and M and N are sufficiently large real numbers satisfying

(2.8) N1/100 < M ≤ exp((logN)2).

Suppose α1(n) and α2(n) are multiplicative functions satisfying (2.5) for
some constant c > 0. Let

(2.9) S(M,N) :=
∑

M<m≤2M
N<n≤2N

(mn,2ab)=1
am≡� (modn)
b≡� (modm)

µ2(mn)α1(m)α2(n).

Then

(2.10) S(M,N)� MN√
logM logN

,

where the constant involved in the �-symbol depends on a, b and c.

Proof. We start from the fact that, for coprime integers s and t, where
t is positive and odd, s ≡ � (mod t) if and only if

2−ω(t)
∏

p|t

(
1 +

(
s

p

))
= 1,

which, when t is squarefree, is equivalent to

2−ω(t)
∑

d|t

(
s

d

)
= 1.

Thus we have

(2.11) S(M,N)

=
∑

M<m1m2≤2M
N<n1n2≤2N

(m1m2n1n2,2ab)=1

µ2(m1m2n1n2)α1(m1m2)α2(n1n2)
2ω(m1m2n1n2)

(
am1m2

n1

)(
b

m1

)
.

Let T := (logN)49. We shall split the sum (2.9) into three parts according
to the range of n2: (1) n2 ≤ N/T ; (2) N/T < n2 ≤ N ; (3) N < n2 ≤ 2N .
We note that α1(n) and α2(n) are bounded by both 2ω(n) and (log logn)c.
From Lemma 2.2, the subsum subject to condition (1) is bounded by

(2.12)
∑

n2≤N/T

MN(log logM)c

n2

(
M−1/16+10−3

+
(
N

n2

)−1/16+10−3)

� MN

(logN)2 �
MN√

logM logN
,

which is admissible for (2.10).
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Noticing that, if n1 6= 1,
( ·
n1

)(
b
·
)

and
( ·
n1

)
are both non-principal char-

acters of conductor O(T ), and that either the range of m1 or the range of
m2 is � exp(T ε), we conclude from Lemma 2.5 that the subsum subject to
condition (2) is

�
∑

N/T<n2≤N

µ2(n2)|α2(n2)|
2ω(n2)

· N
n2
· τ(n2)M exp(−η

√
logM)(2.13)

� MN(log logN)c+1

exp(η
√

logM)
,

which is more than enough.
The subsum subject to condition (3) is actually

(2.14)
∑

M<m≤2M
(m,2ab)=1
b≡� (modm)

µ2(m)α1(m)
∑

N<n≤2N
(n,2abm)=1

µ2(n)α2(n)
2ω(n)

.

From (2.5), in a zero-free region of ζ(s), the generating function of the inner
sum is of the form

g(s) =
√
ζ(s)h(s)

∏

p|2abm

(
1 +

α2(p)
2ps

)−1

,

where h(s) is analytic and absolutely convergent in the half-plane Re(s) > δ
for any fixed δ > 0. A standard application of Perron’s formula (see, for
example, proof of Theorem 14.9 in [9]) yields

∑

N<n≤2N
(n,2abm)=1

µ2(n)α2(n)
2ω(n)

�
∏

p|2abm

(
1 +

1
2p

+
c

2p2

)
N√

logN

�
(

m

φ(m)

)1/2
N√

logN
.

(One should note that a condition on the comparison of the sizes of M and
N (such as (2.8)) is necessary in estimating errors on the boundary of the
contour integral.)

Thus, to show that the contribution from the subsum subject to the
condition (3) is also admissible, it suffices to show that, for an arithmetic
function α(m) satisfying (2.5), and a sufficiently large M , we have

(2.15)
∑

m≤M
(m,2ab)=1
b≡� (modm)

µ2(m)α(m)� M√
logM

.
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Let f(s) be the generating function of the sum in (2.15). Then for
Re(s) > 1, we have

(2.16) f(s) =
∏

p-2a
( bp )=1

(
1 +

α(p)
ps

)
= k(s)

∏

p≥3
( bp )=1

(
1 +

1
ps

)
,

where k(s), depending on a and b, is analytic and absolutely convergent on
the half-plane Re(s) > δ for any fixed δ > 0. Thus, for any squarefree m
satisfying (m, 2ab) = 1 and b ≡ � (modm), we have

(2.17) α(m) =
∑

d|m
γ(d)%(m/d),

where
γ(d) = 1 if b ≡ � (mod d), γ(d) = 0 otherwise,

and the arithmetic function %(d) satisfies, for any fixed δ > 0 and X ≥ 1,

(2.18)
∑

d≤X
|%(d)| � Xδ.

From the classical result that
∑

n≤X
γ(n)�b

X√
logX

,

combined with (2.17) and (2.18), we have

∑

m≤M
(m,2ab)=1
b≡� (modm)

µ2(m)α(m)�
∑

m≤M
γ(m)

√
M

m
=
√
M

M�

2

1√
t
d
∑

m≤t
γ(m)

� M√
logM

+
√
M

M�

2

∑
m≤t γ(m)

t3/2
dt

� M√
logM

,

as required.

Finally, we state the Bombieri–Vinogradov Theorem which we shall ap-
peal to several times in the proof of Theorem 1.3. As usual, for fixed positive
integers a and q with (a, q) = 1, we write

ψ(x; q, a) :=
∑

n≤x
n≡a (mod q)

Λ(n), E(x; q, a) := ψ(x; q, a)− x

φ(q)
.

Lemma 2.8 (The Bombieri–Vinogradov Theorem). Suppose x > 3, ε > 0
is any fixed small real number , and Q = x1/2−ε. Then for any A > 0, we
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have

(2.19)
∑

q≤Q
max

(a,q)=1
max
y≤x
|E(y; q, a)| � x(logx)−A,

the constant implied by the �-symbol depending only on ε and A.

Proof. This is actually a weaker form of Theorem 4 of Bombieri [2] (see
also [4, Theorem, Chapter 28]).

3. Proof of the first part of Theorem 1.3. We shall prove the
theorem for S(d2;X). Formally, there is some minor difference between the
treatment for d odd and even, but they are essentially the same. In this
section, we shall only consider the case of d odd. The other case can be done
in the same way. For d odd, to get a lower bound, we shall only consider the
curves given by the equation

E(d2, 2u) : y2 = x(x+ d2)(x+ 2u),

where 1 ≤ u ≤ X/2 is prime to 2d, with |2u− d2| squarefree.
By Lemma 2.1, # Sel2(E(d2, 2u)) is equal to the number of quadratic

equation systems

(3.1)





u0V
2 +

d2

f
W 2 = vZ2,

fV 2 +
2u
u0

W 2 = vY 2,

that are everywhere locally solvable, where |u0| is a squarefree divisor of 2u,
v is a positive divisor of 2u− d2 and |f | is a squarefree divisor of d.

We shall only count the systems with v = 1, f = 1 and u0 ≡ 1 (mod 8)
positive, which can be written as

(3.2)

{
u0V

2 + d2W 2 = Z2,

V 2 + 2u1W
2 = Y 2,

where u1 = u/u0. One equivalent form of (3.2) is

(3.3)

{
(2u0u1 − d2)W 2 + Z2 = u0Y

2,

d2W 2 − Z2 = −u0V
2.

Note that for each curve E(d2, 2u), if only counting the systems (3.2) that
are everywhere locally solvable, we sum up this part of # Sel2(E(d2, 2u))
over u then we get a lower bound for S(d2;X). Heuristically, such a sim-
plification is not harmful to the bound we are seeking, and the result-
ing lower bound will have the expected order of magnitude. For the sys-
tem (3.2) to be solvable in every Qp, it suffices to be solvable in Qp with
p | 2du0u1(2u0u1 − d2).
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We first note that (3.2) is always solvable in Q2 under the assumption
u0 ≡ 1 (mod 8). In fact, one can take V = 1, W = 4 and get the correspond-
ing 2-adic unit solutions in Y and Z.

If we write the two equations in (3.2) as f(x, y) = 0 and g(x, y) = 0,
where {x, y} ⊂ {V,W, Y, Z}, then the Jacobian of the quadratic system
f(x, y) = g(x, y) = 0, with respect to the possible choices of (x, y), is re-
spectively given by 4(2u0u1 − d2)VW , −4u0V Y , 4V Z, −4d2WY , 8u1WZ
and 4Y Z. If for p |u0u1d(2u0u1 − d2), (V,W, Y, Z) ∈ F4

p is a solution of
(3.2) in Fp with at most one of {V,W, Y, Z} equal to 0, it is easy to see
that at least one of the six possible Jacobians is not 0 in Fp. Thus, from
(a very special case of) Hensel’s Lemma, this solution of (3.2) in Fp can
be lifted to a solution, say (V0,W0, Y0, Z0) ∈ Z4

p, with at most one of
V0, W0, Y0 and Z0 being 0. Moreover, it is fairly easy to check that any
solution (V0,W0, Y0, Z0) ∈ Z4

p of (3.2) in Zp with precisely one variable
equal to 0 yields a solution (V1,W1, Y1, Z1) ∈ (Z×p )4 of (3.2). (This can
be achieved by replacing the 0 variable by pk for a sufficiently large inte-
ger k.)

Thus, for p |u0u1d(2u0u1 − d2), to determine whether a system (3.2) is
“non-trivially” solvable in Qp, it suffices to check whether this system (or a
reduced equivalent one) has a “non-trivial” solution in Fp: a solution with
at least three variables non-zero in Fp.

We note that for any p |u0u1, the system (3.2) is always non-trivially
solvable in Fp. For example, for p |u0, V 2 + 2u1W

2 = Y 2 has p2 solutions
(V,W, Y ) ∈ F3

p, 2p− 1 of which have W = 0, thus we always have a solution
(V0,W0, Y0) ∈ F3

p for the equation with W0 6= 0. We must then have either
V0 6= 0 or Y0 6= 0 (or both). Let Z0 = dW0. Then we have a non-trivial
solution (V0,W0, Y0, Z0) ∈ F4

p of the system (3.2). Similarly, one can show
that every system (3.2) is non-trivially solvable in Fp if p |u1.

For p | 2u0u1 − d2, (3.3) is non-trivially solvable in Fp if and only if(
u0
p

)
= 1 and, if this condition is satisfied, one can find a non-trivial solution

(V0,W0, Y0, Z0) ∈ F4
p of (3.3) with W0 = 0 and V0Y0Z0 6= 0.

Things are a little more complicated for p | d. We consider two cases.

(I):
(
u0
p

)
= 1. In this case, it is easy to find a non-trivial solution of (3.2)

in Fp:W = 0, V = Y 6= 0 and Z = γV , where γ is a square root of u0 in Fp.
(II):

(
u0
p

)
= −1. In this case, (3.2) cannot be non-trivially solvable in

Fp. However, if we suppose ordp(d) = k and let d = pkd0, then the system
{
u0V

2 + d2
0W

2 = Z2,

p2kV 2 + 2u1W
2 = Y 2,

is non-trivially solvable in Fp if
( 2u1
p

)
= 1. Thus, it is then non-trivially
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solvable in Qp. Moreover, a solution, say (V0,W0, Y0, Z0) ∈ (Z×p )4, of this
system gives a non-trivial solution (pkV0,W0, Y0, p

kZ0) of (3.2) in Qp.

It is also easy to check that (3.2) is solvable in Qp only if
(
u0

p

)
= 1 or

(
2u1

p

)
= 1,

or, equivalently,

(3.4)
(
u0

p

)
= 1 or

(
2u− d2

p

)
= −1 for each prime p | d.

Therefore, (3.2) is non-trivially solvable in Qp for p | d if and only if (3.4)
holds.

So from the discussion above we have

(3.5) # Sel2(E(d2, 2u)) ≥
∑∗

u0|u
u0≡1 (mod 8)

u0≡� (mod 2u−d2)

µ2(u0),

where the asterisk indicates that (3.4) holds. By writing n := 2u− d2, and
introducing a function α(d, u0, n) defined by

α(d, u0, n) :=
∏

p|d

(
1− 1

4

(
1−

(
u0

p

))(
1 +

(
n

p

)))
,

we have, for sufficiently large X, and any fixed 0 < θ2 < θ1 ≤ 1,

(3.6) S(d2;X) ≥
∑

Xθ2<u0≤Xθ1
u0≡1 (mod 8)

(u0,d)=1

µ2(u0)
∑

n≤X−d2

n≡−d2 (mod 2u0)
u0≡� (modn)

(n,d)=1

µ2(n)α(d, u0, n).

To split the condition u0 ≡ � (modn) so that the inner sum of (3.6) is easier
to estimate, we count only those integers n with a large prime divisor; we
shall write n = mp with p a large prime factor of n. For any fixed 0 < θ3 < 1,
from (3.6), we get

(3.7) S(d2;X)

≥
∑

Xθ2<u0≤Xθ1
u0≡1 (mod 8)

(u0,d)=1

µ2(u0)
∑

m≤Xθ3
(m,2u0d)=1
u0≡� (modm)

µ2(m)
∑

X/2m<p≤(X−d2)/m
p≡−d2m (mod 2u0)

(u0
p )=1

α(d, u0,mp).

Since u0 ≡ 1 (mod 8), we have
(
u0

p

)
=
(
p

u0

)
=
(−d2m

u0

)
=
(
m

u0

)
=
(
u0

m

)
= 1,
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because u0 ≡ � (modm). So the condition
(
u0
p

)
= 1 attached to the inner

sum is automatically satisfied. We also note that

α(d, u0, n) = 4−ω(d)
∑

s(d)=d1d2d3d4

3ω(d1)(−1)ω(d3)
(

u0

d2d4

)(
n

d3d4

)
.

Thus, in the case d ≤ (logX)A, letting θ1 = 1/3, θ2 = 2/9 and θ3 = 1/24
(or any other appropriate choice for the values of θj , j = 1, 2, 3), we get

(3.8) S(d2;X)

≥ 1
logX

∑

X2/9<u0≤X1/3

u0≡1 (mod 8)
(u0,d)=1

µ2(u0)
∑

m≤X1/24

(m,2u0d)=1
u0≡� (modm)

µ2(m)

×
∑

X/2m<k≤X/m
k≡−d2m (mod 2u0)

α(d, u0,mk)Λ(k) +O

( ∑

u0≤X1/3

∑

m≤X1/24

√
X

m

)

=
1

4ω(d) logX

∑

s(d)=d1d2d3d4

3ω(d1)(−1)ω(d3)
∑

X2/9<u0≤X1/3

u0≡1 (mod 8)
(u0,d)=1

µ2(u0)
(

u0

d2d4

)

×
∑

m≤X1/24

(m,2u0d)=1
u0≡� (modm)

µ2(m)
(

m

d3d4

) ∑

X/2m<k≤X/m
k≡−d2m (mod 2u0)

(
k

d3d4

)
Λ(k) +O(X41/48).

As we shall see, the main term has order of magnitude� X(logX)1/2−ε

for any ε > 0. Just for notational convenience, henceforth we will leave out
all the error terms that are O(X).

For the inner sum of (3.8), we note that

(3.9)
∑

X/2m<k≤X/m
k≡−d2m (mod 2u0)

(
k

d3d4

)
Λ(k)

=
∑

a (mod d3d4)×

(
a

d3d4

) ∑

X/2m<k≤X/m
k≡−d2m (mod 2u0)
k≡a (mod d3d4)

Λ(k)

=
∑

a (mod d3d4)×

(
a

d3d4

) ∑

X/2m<k≤X/m
k≡−d2(m)2u0+2au0(2u0)d3d4 (mod 2u0d3d4)

Λ(k),
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where for an integer t prime tom, (m)t indicates the inverse ofm in (Z/tZ)×.
Now we write the inner sum of (3.8) as

(3.10)
1

φ(2u0d3d4)

(
X

m
− X

2m

)

+ E

(
X

m
; 2u0d3d4,−d2(m)2u0 + 2au0(2u0)d3d4

)

− E
(
X

2m
; 2u0d3d4,−d2(m)2u0 + 2au0(2u0)d3d4

)

= α1(~d, a,m, u0;X) + α2(~d, a,m, u0;X) + α3(~d, a,m, u0;X), say,

where we write ~d rather than d to indicate that the terms depend on the
factorization of d described before.

By S1(d2;X), S2(d2;X) and S3(d2;X), we denote respectively the sub-
sums of the last multiple sum in (3.7) corresponding to the three parts
of the inner sum of (3.8), as described in (3.9). For the entire sum, we
expect that the summand α1 contributes the main term while the others
give error terms. We thus want to show that S2(d2;X) and S3(d2;X) are
well bounded, but S1(d2;X) gives the major contribution. We shall use the
Bombieri–Vinogradov Theorem (actually, a weaker form suffices) to bound
the sums S2(d2;X) and S3(d2;X), and use a direct computation to deal
with the sum S1(d2;X).

First, from Lemma 2.8, we have

(3.11) S3(d2;X)

� d

logX

∑

w≤2X1/3(logX)A

∑

m≤X1/24

max
a (modw)×

∣∣∣∣ψ
(
X

2m
;w, a

)
− X/2m

φ(w)

∣∣∣∣

� (logX)A−1
∑

m≤X1/24

X

m

(
log

X

m

)−A−3

� X

(logX)3 .

With exactly the same estimate, we get

(3.12) S2(d2;X)� X

(logX)3 .

Since for odd integers q > 1,

∑

a (mod q)×

(
a

q

)
= 0,

the terms of S1(d2;X) subject to d3d4 6= 1 vanish. Hence
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(3.13) S1(d2;X)

=
1

4ω(d) logX

∑

s(d)=d1d2

3ω(d1)
∑

X2/9<u0≤X1/3

u0≡1 (mod 8)
(u0,d1)=1

µ2(u0)
φ(2u0)

(
u0

d2

)

×
∑

m≤X1/24

(m,2u0d1d2)=1
u0≡� (modm)

µ2(m)
(
X

m
− X

2m

)

∼ X

22ω(d)+3 logX

∑

s(d)=d1d2

3ω(d1)
∑

m≤X1/24

(m,2d1d2)=1

µ2(m)
m2ω(m)

×
∑

χ1 (modm)
χ2

1=χ0

∑

χ2 (mod 8)

∑

X2/9<u0≤X1/3

(u0,md1)=1

µ2(u0)χ1χ2(u0)
φ(u0)

(
u0

d2

)
,

where, in the last step, an error of O(X/(logX)B) for a large B > 0 has
been discarded.

For notational convenience, we denote by χ := χ1χ2
( ·
d2

)
a character

modulo 8md1d2. Then from the simple fact that

(3.14)
1

φ(u0)
=

1
u0

∑

s|u0

µ2(s)
φ(s)

,

the innermost sum of (3.13) is equal to

(3.15)
∑

s≤(logX)2

µ2(s)χ(s)
sφ(s)

∑

X2/9/s<t≤X1/3/s
(s,t)=1

µ2(t)χ(t)
t

+O((logX)−1)

=
∑

s≤(logX)2

µ2(s)χ(s)
sφ(s)

∑

a (mod 8msd1d2)×

χ(a)
∑

X2/9/s<t≤X1/3/s
t≡a (mod 8msd1d2)

µ2(t)
t

+O((logX)−1).

Note that

(3.16)
∑

X2/9/s<t≤X1/3/s
t≡a (mod 8msd1d2)

µ2(t)
t

=
∑

h≤
√
X1/3/s

(h,2msd1d2)=1

µ(h)
h2

∑

X2/9/sh2<r≤X1/3/sh2

r≡ah2 (mod 8msd1d2)

1
r
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=
∑

h≤X1/12

(h,2msd1d2)=1

µ(h)
h2

∑

X2/9/sh2<r≤X1/3/sh2

r≡ah2 (mod 8msd1d2)

1
r

+O(X−1/12 logX)

=
∑

h≤X1/12

(h,2msd1d2)=1

µ(h)
h2 ·

(
logX

72msd1d2
+O

(
sh2

X2/9

))
+O(X−1/12 logX)

=
logX

72ζ(2)msd1d2

∏

p|2msd1d2

(
1− 1

p2

)−1

+O(X−1/12 logX).

Here the error gives a negligible contribution to the entire sum, and the
main term of (3.15) vanishes when χ is non-principal. Thus the terms that
give a major contribution are those subject to χ1 = χ0, χ2 = χ0 and d2 = 1.
Therefore, with our convention, we have, from (3.13)–(3.16),

(3.17) S1(d2;X)

≥ X
(

3
4

)ω(d)

8 logX

∑

m≤X1/24

(m,2d)=1

µ2(m)
2ω(m)m

∑

s≤(logX)2

(s,2md)=1

µ2(s)
sφ(s)

· φ(8ms · s(d)) logX
72ζ(2)ms · s(d)

=
Xφ(d)

(
3
4

)ω(d)

144ζ(2)d

∑

m≤X1/24

(m,2d)=1

µ2(m)φ(m)
m22ω(m)

∑

s≤(logX)2

(s,2md)=1

µ2(s)
s2

≥ Xφ(d)
(

3
4

)ω(d)

144ζ(2)d

∑

m≤X1/24

(m,2d)=1

µ2(m)φ(m)
m22ω(m)

.

By Perron’s formula, it is easy to see that

(3.18)
∑

m≤X1/24

(m,2d)=1

µ2(m)φ(m)
m22ω(m)

≥ c
(
φ(d)
d

)1/2√
logX

for some absolute constant c > 0. Therefore, (3.17) and (3.18), along with
(3.11) and (3.12), yield

(3.19) S(d2;X) ≥ c′
(
φ(d)
d

)3/2(3
4

)ω(d)

·X
√

logX

for some absolute constant c′ > 0. This proves the first part of Theorem 1.3.

4. Proof of the second part of Theorem 1.3. In this section, we let
d ≤ X1−ε for any fixed 0 < ε < 10−2. For the second part of Theorem 1.3,
in considering the solvability of (3.2) in Qp with p | d, we require

(
u0
p

)
= 1
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instead of (3.4). This change results in replacing the factor (3/4)ω(d) in the
coefficient by (1/2)ω(d). However, with this modification, we are able to treat
the lower bound for larger values of d. Following the discussion in the last
section up to (3.7), we have

(4.1) S(d2;X)

≥ 1
logX

∑

Xθ2<u0≤Xθ1
u0≡1 (mod 8)

(u0,d)=1
u0≡� (mod d)

µ2(u0)
∑

m≤Xθ3
(m,2u0d)=1
u0≡� (modm)

µ2(m)
∑

X/2m<k≤X/m
k≡−d2m (mod 2u0)

Λ(k).

Throughout this section, let

θ1 =
1
2

(1− ε2)− ε3, θ2 =
1
2

(1− ε2)− 2ε3, θ3 = ε2.

Note that 2u0 ≤ 2Xθ1 ≤ (X/m)1/2−ε3 . Estimating the error term by the
Bombieri–Vinogradov Theorem as we did for the first case, apart from an
error O(X(logX)−A), where A > 1 is a certain fixed number, we have

(4.2) S(d2;X)

≥ 1
logX

∑

Xθ2<u0≤Xθ1
u0≡1 (mod 8)

(u0,d)=1
u0≡� (mod d)

µ2(u0)
φ(u0)

∑

m≤Xθ3
(m,2u0d)=1
u0≡� (modm)

µ2(m)
(
X

m
− X

2m

)
.

Thus

(4.3) S(d2;X) ≥ X

2 logX

∑

m≤Xθ3
(m,2d)=1

µ2(m)
m

∑

Xθ2<u0≤Xθ1
u0≡1 (mod 8)
(u0,md)=1

u0≡� (modmd)

µ2(u0)
φ(u0)

� X

logX

∑

m≤Xθ3
(m,2d)=1

µ2(m)
m

∑

Xθ2<U=2j≤Xθ1/2

1
U

∑

U<u0≤2U
u0≡1 (mod 8)
(u0,md)=1

u0≡� (modmd)

µ2(u0)u0

φ(u0)

�
∑

U

X2−ω(d)

U logX

∑

m≤Xθ3
(m,2d)=1

µ2(m)
m2ω(m)

×
∑

χ (modmd)
χ2=χ0

∑

χ′ (mod 8)

∑

U<u0≤2U

µ2(u0)u0χχ
′(u0)

φ(u0)
,

where the constants involved in the �-symbols are absolute.
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From (3.14), we see that, when χχ′ 6= χ0, the innermost sum of (4.3) is
equal to

∑

s≤(logX)10

µ2(s)χχ′(s)
φ(s)

∑

U/s<t≤2U/s
(t,s)=1

µ2(t)χχ′(t) +O(U(logX)−10),

which, from the Pólya–Vinogradov Theorem, is bounded by

∑

s≤(logX)10

(mds)(1+ε3)/2

φ(s)
+ U(logX)−10 � (md)1/2+ε3 + U(logX)−10.

And this contributes to S(d2;X) at most

X(logX)−9 +
∑

U

Xd1/2+ε3

U logX

∑

m≤Xθ3

m1/2+ε3µ2(m)
m

� X1+(1/2+ε3)(1−ε+θ3)−θ2 +X(logX)−9 � X(logX)−9.

Thus, apart from these admissible errors, we have

(4.4) S(d2;X)

�
∑

Xθ2<U=2j≤Xθ1/2

X2−ω(d)

U logX

∑

m≤Xθ3
(m,2d)=1

µ2(m)
m2ω(m)

∑

U<u0≤2U
(u0,2md)=1

µ2(u0)u0

φ(u0)

�
∑

U

Xφ(d)2−ω(d)

d logX

∑

m≤Xθ3
(m,2d)=1

µ2(m)φ(m)
m22ω(m)

�ε 2−ω(d)
(
φ(d)
d

)3/2

·X
√

logX.

And this finishes the proof of the second part of Theorem 1.3.

5. The sum S(a;X). For Theorem 1.1, since the lower bound is trivial,
all we need to show is the upper bound. By a simple change of variables
if necessary, we may assume a is positive. Moreover, for notational conve-
nience, we shall only consider the curves E(a, b) with b positive. The other
part, namely, the sum over the curves E(a, b) with −X ≤ b ≤ −1 can be
treated in exactly the same manner, and the upper bound will be the same
as well.

Every curve under consideration will therefore be of the form E(a, u∆),
where every prime divisor of ∆ is a divisor of a and u is prime to a. We
note that, for a, b, c ∈ Z, c 6= 0, E(a, b) and E(ac2, bc2) are Q-isomorphic
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and have isomorphic 2-Selmer groups over Q. Thus, if one can show that the
partial sum of S(a;X) with (a, b) = ∆ for every squarefree integer ∆ | a is
Oa(X), then one simply has the same upper bound for S(a;X). Therefore,
we can consider only the curves E(a, u∆), with ∆ a fixed squarefree divisor
of a, u prime to a. From Lemma 2.1, we thus need to count the number of
quadratic equation systems

(5.1)





δ1u0V
2 +

a

δα
T 2 = δ2βY

2,

δ1αV
2 +

u∆

δu0
T 2 = δ3βZ

2,

which are everywhere locally solvable, where δ |∆, δ = δ1δ2δ3, |α| | a/∆, and
u0 and β are respectively positive squarefree divisors of u and u−a/∆. Since
the system (5.1) corresponds to the element (a1, b1) of Sel2(E(a, u∆)) given
by

(a1, b1) = (u0δ1δ2β, αδ1δ3β) (modQ×2),

we suppose both u0δ1δ2β and |α|δ1δ3β are squarefree. Let

u− a/∆
β

:= h2ξ,
u

u0
:= j2%,

where ξ and % are squarefree. Then the following conditions are necessary
for the system (5.1) to be everywhere locally solvable:

(5.2)





− αaδ2δ3u0 ≡ � (modβ),

αβaδ1δ3 ≡ � (modu0),

αβδ1δ3 ≡ � (mod %),

αδ2δ3u0 ≡ � (mod ξ).

Since ∆ divides a, there are Oa(1) choices for δ1, δ2 and δ3. Hence it
suffices to show that for each fixed choice of δ1, δ2, δ3 and ∆, the number of
systems (5.2) which are everywhere locally solvable is O(X). Thus, in the
following we shall let ∆ and δi, i = 1, 2, 3, be fixed.

We also note that, in some sense, β and ξ, u0 and % are symmetric in
pairs, so we will just consider the subsum of S(a;X) with β ≤

√
X/∆h2

and u0 ≤
√
X/∆j2 and the resulting upper bound for this subsum serves as

an upper bound of the whole sum. (Following our treatment for this partial
sum, one can easily see that the same upper bound holds for the subsums
left out.)

For simplicity, we write

κ := −αaδ2δ3, µ := αaδ1δ3, % := αδ1δ3, ν := αδ2δ3.

Then, from (5.2) and with our convention, we have
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(5.3) S(a;X)

�
∑

h,j

∑

u0≤
√
X/j

µ2(u0)
∑

β≤
√
X/h

κu0≡� (modβ)
µβ≡� (modu0)

(β,u0)=1

µ2(β)
∑

ξ,%
%β≡� (mod %)
νu0≡� (mod ξ)

µ2(ξ)µ2(%).

We note that, when 2 |βξ or 2 |u0%, we can replace h2 and j2 by 2h2 and
2j2, and this does not affect our upper bound at all. Thus, without loss of
generality, in the following all the variables β, u0, % and ξ will be supposed
to be odd integers and we will not specify this in computations.

We also note that there are at most O(τ(m)) ways to factor an integer
m as m = j2u0% with u0% squarefree. Thus the subsum of (5.3) subject to
h > (logX)2 is bounded by

(5.4)
∑

h>(logX)2

∑

β≤
√
X/∆h2

∑

m≤X/∆
m≡a/∆ (modh2β)

τ(m).

The partial sum of (5.4) with h > X1/7 is simply bounded by

�
∑

h>X1/7

∑

β≤
√
X/∆h2

Xε

(
1 +

X

h2β

)
� X6/7+2ε.

When h ≤ X1/7, we have h2β ≤ (X/∆)2/3−ε. From the well known result
on the distribution of the divisor function over arithmetic progressions (see,
for example, the introductory part of [5]), the partial sum of (5.4) with
(logX)2 < h ≤ X1/7 is bounded by

∑

(logX)2<h≤X1/7

∑

β≤
√
X/∆h2

1
φ(h2β)

· X
∆

logX � X.

Thus the subsum of (5.3) subject to h > (logX)2 is O(X). Similarly, we can
show that the subsum of (5.3) with j > (logX)2 gives a contribution at most
O(X) as well. Thus apart from this error (which is admissible for our esti-
mate), it suffices to sum with respect to h and j up to (logX)2. We will split
the sum on the right hand side of (5.3) into subsums S1(a;X), say, with β =
1 or u0 = 1 and S2(a;X), say, with u0 6= 1 and β 6= 1, respectively, and give
estimates separately. In the next two sections, we shall show that S1(a;X)
and S2(a;X) are both bounded by O(X), and Theorem 1.1 will thus follow.

6. Estimate of S1(a;X). The treatments for the subsums respectively
subject to β = 1 and u0 = 1 are the same, and the same upper bound holds
for the two sums. Thus, without loss of generality, we shall only consider
the subsum with β = 1. In the case β = 1, the first congruence condition
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of (5.2) vanishes, and the last one is non-trivial for ξ (except possibly the
case that αδ2δ3u0 is a square which happens when either αδ2δ3 is a square
and u0 = 1, or a/∆ is a square and u0 = u/j2, both giving an admissible
contribution). The assumption that a is not a perfect square guarantees
that at least one of αδ1δ3 and aαδ1δ3 is not a square, thus at least one of
the congruences is non-trivial. The treatment for the subsum with αδ1δ3

not a square is similar to that for the subsum with aαδ1δ3 not a square.
Hence, without loss of generality, we shall assume that αδ1δ3 is not a square
and shall use the third and fourth congruences as the restrictions on the
variables. (This is actually the more difficult case.) Therefore, we have

S1(a;X)�
∑

u0≤
√
X

µ2(u0)
∑

h,j

∑

ξ,%
%≡� (mod %)
νu0≡� (mod ξ)

µ2(ξ)µ2(%) +X(6.1)

�
∑

h,j≤(logX)2

∑

u0≤
√
X

µ2(u0)
∑

%≤X/u0j
2

%≡� (mod %)
%≡(aν/∆)·� (mod ξ)

µ2(%) +X,

where the innermost sum is also subject to j2u0%− h2ξ = a/∆.
To show S1(a;X) � X, we shall prove that, for some fixed non-zero

integers a, b and c where b is not a perfect square, and any integer d satisfying
|d| ≤ (logX)4, and any N satisfying X/(logX)4 � N � X,

(6.2) ŜI(N) :=
∑

√
N/(logN)2<%≤N

(%,bc)=1
b≡� (mod %)

µ2(%)
∑

ξ≤N
(ξ,a)=1

ξ≡cd (mod %)
%≡a� (mod ξ)

µ2(ξ)� N.

To see that (6.2) implies S1(a;X) � X, we note that the summation over
h and j is negligible and, under the assumption that u0 � h2ξ/j2% ≤

√
X,

the contribution of the terms with % ≤
√
N/(logN)4 is small. Hence, in the

following we shall focus on proving (6.2).
Let

Ê := exp(
√

logN).

Then it is obvious that the subsum of ŜI(N) subject to N/Ê < % ≤ N gives
an upper bound O(N). (We can use a simple bound O(N%−1) for the inner
sum of ŜI(N) from (6.2), and then estimate the sum over % by Perron’s
formula.) Thus,

(6.3) ŜI(N) =
∑

√
N/(logN)2<%≤N/Ê

(%,bc)=1
b≡� (mod %)

µ2(%)
∑

ξ≤N
(ξ,a)=1

ξ≡cd (mod %)
%≡a� (mod ξ)

µ2(ξ) +O(N).
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By dividing the range of % into dyadic intervals, we see that, to prove
(6.2), it suffices to show that, for any

√
N/(logN)2 � R� N/Ê,

(6.4) ŜI(N,R)

:=
∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

µ2(%)
∑

ξ≤N
(ξ,a)=1

ξ≡cd (mod %)
%≡a� (mod ξ)

µ2(ξ)� N√
logN log(N/R)

,

because then we have

ŜI(N)�
∑

R

N√
logN log(N/R)

+N(6.5)

� N√
logN

∑

1
2 logN<i≤ logN−√logN

log 2

1√
logN − i log 2

+N � N.

Next, we write
ξ = kpK,

so that for a fixed positive constant ε < 1/100,

(6.6) P (k) < p < p(K), (N/R)ε < pk ≤ p(N/R)ε.

Then we have

(6.7) ŜI(N,R)�
∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

µ2(%)
∑

p,k
%≡a� (mod k)

µ2(k)
∑

K≤N/pk
p(K)>p

K≡cdpk (mod %)

1.

We split the sum (6.7) into two parts: Σ̂1
I (N,R) with p > (N/R)ε

2
and

Σ̂2
I (N,R) the rest. The methods we shall use to estimate the two sums are

essentially the same, but there will be some minor technical differences. We
estimate Σ̂1

I (N,R) first.

• Estimate of Σ̂1
I (N,R). For this special sum, let p be absorbed by K,

and we take away the Möbius functions and the p-smoothness restriction
on k. Then we find

Σ̂1
I (N,R)�

∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

∑

k≤(N/R)ε

%≡a� (mod k)

∑

K≤N/k
p(K)>(N/R)ε

2

K≡cdk (mod %)

1(6.8)

�
∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

∑

k≤(N/R)ε

%≡a� (mod k)

∑

m≤N/Rk
p(m%+cdk)>(N/R)ε

2

1.
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Since
N

kR
�
(
N

R

)1−ε
,

from a simple upper bound sieve (e.g., [6, Theorem 2.2]), we have

Σ̂1
I (N,R)�

∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

∑

k≤(N/R)ε

%≡a� (mod k)

N%

Rkφ(%) log(N/R)
(6.9)

� N

R log(N/R)

∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

%

φ(%)

∑

k≤(N/R)ε

%≡a� (mod k)

1
k
.

The subsum of the last formula in (6.9) subject to k ≤ exp(
√

log(N/R)) is
bounded by

N

R
√

log(N/R)

∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

%

φ(%)
� N√

logN log(N/R)
,

and from Lemma 2.7, the remainder is bounded by

(6.10)
N

R log(N/R)

∑

exp(
√

log(N/R))<2i≤(N/R)ε

2−i

×
∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

%

φ(%)

∑

2i<k≤2i+1

%≡a� (mod k)

k

φ(k)

� N

R log(N/R)

∑

i

1√
log(2i)

· R√
logR

� N√
logN log(N/R)

.

Therefore, we have shown that

(6.11) Σ̂1
I (N,R)� N√

logN log(N/R)
,

as desired.

• Estimate of Σ̂2
I (N,R). By a simple upper bound sieve, we have

(6.12) Σ̂2
I (N,R)

�
∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

µ2(%)
∑

p≤(N/R)ε2

∑

(N/R)ε/p<k≤(N/R)ε

P (k)<p
%≡a� (mod k)

µ2(k)
∑

K≤N/kp
p(K)>p

K≡ckp (mod %)

1
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� N
∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

µ2(%)
φ(%)

∑

p≤(N/R)ε2

1
p log p

∑

(N/R)ε/p<k≤(N/R)ε

P (k)<p
%≡a� (mod k)

µ2(k)
k

.

For the innermost sum in (6.12), we have

(6.13)
∑

(N/R)ε/p<k≤(N/R)ε

P (k)<p
%≡a� (mod k)

µ2(k)
k

�
(

log
N

R

)−2 ∑

q′<p

log q′

q′
∑

q′′<p

log q′′

q′′
∑

(N/R)ε/pq′q′′<k≤(N/R)ε/q′q′′

P (k)<p
%≡a� (mod k)

µ2(k)
k

�
(

log p
log(N/R)

)2 ∑

(N/R)ε/2<k≤(N/R)ε

%≡a� (mod k)

µ2(k)
k

.

Hence, similar to the estimate of (6.10), an application of Lemma 2.7 yields

(6.14) Σ̂2
I (N,R)

� N

(log(N/R))2

∑

p≤(N/R)ε2

log p
p

∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

µ2(%)
φ(%)

∑

(N/R)ε/2<k≤(N/R)ε

%≡a� (mod k)

µ2(k)
k

� N

log(N/R)

∑

H

∑

R<%≤2R
(%,bc)=1

b≡� (mod %)

µ2(%)
φ(%)

∑

H<k≤2H
%≡a� (mod k)

µ2(k)
k

� N√
logN log(N/R)

.

In view of (6.4) and (6.5), the estimates (6.11) and (6.14) together yield

ŜI(N)� N,

which, along with our discussion at the very beginning of this section, implies
that

(6.15) S1(a;X)� X.

7. Estimate of S2(a;X). We set

(7.1) F̂ := exp((logX)1/6).
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Let S21(a;X) be the subsum of (5.3) subject to u0, β > F̂ and u0β ≤
X/F̂ , and S22(a;X) the rest, both also with the conditions u0 > 1 and
β > 1.

• Estimate of S21(a;X). We divide the ranges of u0 and β into dyadic
intervals. Noting that h and j play a negligible role in the summation, we
will just estimate, for fixed h, j ≤ (logX)2, and F̂ < U,B ≤

√
X/F̂ ,

Σ̂21 :=
∑

U<u0≤2U

µ2(u0)(7.2)

×
∑

B<β≤2B
κu0≡� (mod β)
µβ≡� (modu0)

(β,u0)=1

µ2(β)
∑

ξ,%
%β≡� (mod %)
νu0≡� (mod ξ)

µ2(ξ)µ2(%),

where, in the inner sum, ξ and % also satisfy % ≤ X/u0j
2 and j2u0%−h2βξ =

a/∆.
To show that S21(a;X)� X, it suffices to show that

(7.3) Σ̂21 �a
X

(hj)1+δ
√

logB logU log(X/UB)

for some δ > 0. Now for a fixed 0 < ε < 10−10, we write

(7.4) % = npN, ξ = mqM,

where p and q are prime,

(7.5) P (n) < p < p(N), P (m) < q < p(M),

and

(7.6)
(
X

UB

)ε
< np ≤ p

(
X

UB

)ε
,

(
X

UB

)ε
< mq ≤ q

(
X

UB

)ε
.

Without loss of generality, we may only estimate the subsum subject to
p < q, which will be further divided into two parts: Σ̂211 subject to p >
(X/UB)ε

2
, and Σ̂212 subject to p ≤ (X/UB)ε

2
.

Estimate of Σ̂211. In (7.4), let p and q be absorbed by N and M , re-
spectively; then we have

Σ̂211 �
∑

U<u0≤2U

µ2(u0)(7.7)

×
∑

B<β≤2B
κu0≡� (mod β)
µβ≡� (modu0)

(β,u0)=1

µ2(β)
∑

m,n≤(X/UB)ε

%β≡� (modn)
νu0≡� (modm)

µ2(mn)
∑

M,N

1,
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where, in the innermost sum, M and N are subject to

(7.8) j2u0nN − h2βmM = a/∆,

and

(7.9) p(MN) >
(
X

UB

)ε2
.

From (7.8), we can write M and N as two linear forms l1 and l2 of a
single variable, say k. The two linear forms have leading coefficients j2u0n
and h2βm respectively, and thus the variable k is running up to at most
X/∆(hj)2u0βmn. Applying a 2-dimensional upper bound sieve (e.g., [6,
Theorem 2.2]), we find that the innermost sum of (7.7) is bounded by

X

∆φ((hj)2u0βmn)(log(X/UB))2 ,

and so Σ̂211 is bounded by

(7.10)
X(log(X/UB))−2

∆φ((hj)2)

∑

U<u0≤2U

µ2(u0)
φ(u0)

×
∑

B<β≤2B
κu0≡� (mod β)
µβ≡� (modu0)

µ2(β)
φ(β)

∑

m,n≤(X/UB)ε

%β≡� (modn)
νu0≡� (modm)

µ2(mn)
φ(mn)

.

Thus, in view of (7.3), it suffices to show that

(7.11)
∑

U<u0≤2U

µ2(u0)
φ(u0)

∑

B<β≤2B
κu0≡� (mod β)
µβ≡� (modu0)

µ2(β)
φ(β)

∑

m,n≤(X/UB)ε

%β≡� (modn)
νu0≡� (modm)

µ2(mn)
φ(mn)

� log(X/UB)√
logU logB

.

We see that, by reformulating the congruence restrictions, it suffices to show
that log(X/UB)/

√
logU logB is an upper bound for

(7.12)
∑

U<u1u2≤2U
B<b1b2≤2B

(
κu1u2
b1

)(
µb1b2
u1

)

φ(u1u2b1b2)2ω(u1u2b1b2)

×
∑

m1m2≤(X/UB)ε

n1n2≤(X/UB)ε

(
νu1u2
m1

)(
%b1b2
n1

)

φ(m1m2n1n2)2ω(m1m2n1n2)
,

where all the variables are odd, squarefree and coprime in pairs.
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Let
T := (logX)1000.

Then, from Lemma 2.2, it can be seen that any subsum subject to one of
the following conditions gives a negligible contribution:

(1) range of m1 longer than T ;
(2) range of n1 longer than T ;
(3) both b1 and u2 have ranges longer than T ;
(4) both b2 and u1 have ranges longer than T .

Therefore, to finish estimating Σ̂211, it suffices to show that log(X/UB)/√
logU logB is an upper bound for the two sums Σ̂α

211 and Σ̂β
211, respectively

given by
∑

u1,b1≤T
U/u1<u2≤2U/u1
B/b1<b2≤2B/b1

(
κu1u2
b1

)(
µb1b2
u1

)

φ(u1u2b1b2)2ω(u1u2b1b2)
S

and
∑

u2,b2≤T
U/u2<u1≤2U/u2
B/b2<b1≤2B/b2

(
κu1u2
b1

)(
µb1b2
u1

)

φ(u1u2b1b2)2ω(u1u2b1b2)
S

with

S =
∑

m1,n1≤T
m2≤(X/UB)εm−1

1

n2≤(X/UB)εn−1
1

(
νu1u2
m1

)(
%b1b2
n1

)

φ(m1m2n1n2)2ω(m1m2n1n2)
,

where in both sums, all the variables are odd, squarefree and coprime in
pairs.

To estimate Σ̂α
211, we sum over u2 first. When m1b1 6= 1, Lemma 2.5

implies that the inner sum over u2 is

(7.13)
∑

U/u1<u2≤2U/u1
(u2,2b2m2n1n2u1)=1

µ2(u2)
(

u2
m1b1

)

φ(u2)2ω(u2)
� τ(b2m2n1n2u1)(logX)−4,

which implies that the terms with m1b1 6= 1 contribute to Σ̂α
211 at most

� (logX)−4
∑

u1,b1,b2,m1,m2,n1,n2

1
φ(u1b1b2m1m2n1n2)

(7.14)

� (logX)−4(logX)2(logT )4 � (logX)−1,

which is admissible. Similarly, by summing over b2 first, those terms with
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n1u1 6= 1 contribute negligible errors to Σ̂α
211 too. Therefore, we essentially

have

Σ̂α
211 �

∑

U<u2≤2U
B<b2≤2B

1
φ(u2b2)2ω(u2b2)

( ∑

m≤(X/UB)ε

1
φ(m)2ω(m)

)2

(7.15)

� log(X/UB)√
logU logB

,

as required.
The estimate of Σ̂β

211 is similar. Instead of using Lemma 2.5, we use
Lemma 2.6 and get the same upper bound as for Σ̂α

211.
Thus, from the discussions after (7.10), we have shown that

(7.16) Σ̂211 �
X

∆φ((hj)2)
√

logB logU log(X/UB)
,

which agrees with (7.3).

Estimate of Σ̂212. We closely follow the estimate of Σ̂211. First we have
q absorbed by M in (7.4). Then following the argument from (7.7)–(7.10),
we see that Σ̂212 is bounded by

(7.17)
X

∆φ((hj)2)

∑

U<u0≤2U
B<β≤2B

κu0≡� (modβ)
µβ≡� (modu0)

µ2(u0β)
φ(u0β)

×
∑

p≤(X/UB)ε2

1
p(log p)2

∑

m≤(X/UB)ε

(X/UB)εp−1<n≤(X/UB)ε

P (n)<p
%β≡� (modn)
νu0≡� (modm)

µ2(mn)
φ(mn)

.

Now, by exactly the same methods used from (7.12) through (7.15) and
the idea used in (6.13), apart from some small errors, we see that Σ̂212 is
bounded by

(7.18)
X

∆φ((hj)2)

∑

U<u2≤2U
B<b2≤2B

1
φ(u2b2)2ω(u2b2)

∑

m≤(X/UB)ε

1
φ(m)2ω(m)

×
∑

p≤(X/UB)ε2

1
p(log p)2

∑

(X/UB)εp−1<n≤(X/UB)ε

P (n)<p

1
φ(n)2ω(n)
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� X
√

log(X/UB)
∆φ((hj)2)

· 1√
logB logU

×
∑

p≤(X/UB)ε2

1
p(log p)2

(
log p

log(X/UB)

)3 ∑

n′≤(X/UB)ε

2−ω(n′)

φ(n′)

� X
√

log(X/UB)
∆φ((hj)2)

· 1√
logB logU

· 1
(log(X/UB))3/2

� X

∆φ((hj)2)
√

logB logU log(X/UB)
,

which is what we wanted. Together with the estimate (7.16), this yields

S21(a;X)� X.

• Estimate of S22(a;X). We split S22(a;X) into two parts: S221(a;X)
subject to u0, β >

√
X/F̂ and S222(a;X) subject to u0 or β ≤ F̂ .

For S221(a;X), we simply discard three congruences in (5.3) and, by
comparison with (7.2), we get

S221(a;X)�
∑

h,j

∑
√
X/F̂<u0≤

√
X/j√

X/F̂<β≤
√
X/h

κu0≡� (modβ)

µ2(2u0β)
∑

ξ,%

1(7.19)

�
∑

h,j

∑
√
X/F̂<u0≤

√
X/j√

X/F̂<β≤
√
X/h

κu0≡� (modβ)

µ2(2u0β)
(

1 +
X

∆(hj)2u0β

)

=: Σ′221 +Σ′′221, say,

where the two sums Σ′221 and Σ′′221 correspond to the summands 1 and
X/∆(hj)2u0β. The estimates of these two sums are quite easy. First we
note

(7.20) Σ′221 �
∑

h,j

∑
√
X/F̂<u0≤

√
X/j√

X/F̂<β≤
√
X/h

µ2(2u0β)
2ω(β)

∑

β1|β

(
κu0

β1

)
.

We consider the sum in dependence on the size of β1.

(1) β1 > (logX)100; both of the ranges of u0 and β1 are long enough to
imply a factor (logX)−5 by appealing to Lemma 2.2. Thus the contribution
of this part is at most O(X(logX)−4).

(2) 1 < β1 ≤ (logX)100; summing over u0 first, we see the contribution
is O(X(logX)−c) for any fixed c > 0.
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(3) β1 = 1; this gives the largest contribution, which is

(7.21) �
∑

h,j

∑

u0

∑

β

2−ω(β) �
∑

h,j

X(logX)−1/2

hj
� X(logX)−1/3.

From the above discussion, we thus have

(7.22) Σ′221 � X(logX)−1/3.

For Σ′′221, by dividing the ranges into dyadic intervals and applying the same
argument as that for Σ′221, we can easily see

(7.23) Σ′′221 � X(logX)−1/6.

Therefore, we have shown that

(7.24) S221(a;X)� X(logX)−1/6.

For S222(a;X), we let

(7.25) Ω := exp
(

logX
(log logX)3/2

)
, Φ := Φ(Ω) = Ω100 log logX .

First we note that

(7.26) S222(a;X)�
∑

u0,β
κu0≡� (mod β)
µβ≡� (modu0)

µ2(2u0β)
∑

ξ,%
%β≡� (mod %)
νu0≡� (mod ξ)

µ2(ξ)µ2(%),

where in the inner sum ξ, % also satisfy % ≤ X/u0j
2 and j2u0%−h2βξ = a/∆.

Now we write

(7.27) % := nN, ξ := mM,

with mn being Ω-smooth and p(MN) > Ω. Then, apart from some very
small error terms,

(7.28) S222(a;X)

�
∑

h,j

∑

u0,β
κu0≡� (modβ)
µβ≡� (modu0)

µ2(2u0β)
∑

m,n≤Φ
%β≡� (modn)
νu0≡� (modm)

µ2(mn)
∑

M,N

1,

where in the inner sumM andN satisfy nN ≤ X/u0j
2, j2u0nN−h2βmM =

a/∆ and p(MN) > Ω. By writing M and N in the form of two lin-
ear forms and appealing to a 2-dimensional upper bound sieve, we get,
from (7.28),
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(7.29) S222(a;X)

� X

(logΩ)2

∑

1<u0,β≤
√
X

u0 or β≤F̂
κu0≡� (modβ)
µβ≡� (modu0)

µ2(2u0β)
φ(u0β)

∑

m,n≤Φ
%β≡� (modn)
νu0≡� (modm)

µ2(mn)
φ(mn)

� X(log logX)7

(logX)2

∑

1<u0,β≤
√
X

u0 or β≤F̂
κu0≡� (mod β)
µβ≡� (modu0)

µ2(2u0β)
u0β

∑

m,n≤Φ
%β≡� (modn)
νu0≡� (modm)

µ2(mn)
mn

.

The fixed variables κ, µ, %, ν have no specific effects here, u0 and β are
essentially symmetric. So we shall just consider the subsum with 1 < u0 ≤ F̂ ,
which is bounded by

(7.30)
X(log logX)7

(logX)2

∑

1<β≤(logX)100

1<u0≤F̂

µ2(2u0β)
u0β

∑

m,n≤Φ
%β≡� (modn)

µ2(mn)
mn

+
X(log logX)7

(logX)2

∑

(logX)100<β≤
√
X

1<u0≤F̂
κu0≡� (mod β)

µ2(2u0β)
u0β

∑

m,n≤Φ
%β≡� (modn)
νu0≡� (modm)

µ2(mn)
mn

.

The first sum in (7.30), by applying Perron’s formula and the zero-free region
of L-functions, is simply bounded by

(7.31)
X(log logX)7

(logX)2

∑

1<β≤(logX)100

1<u0≤F̂

µ2(2u0β)
u0β

· (logΦ)3/2

� X(log logX)7

(logX)2 · log F̂ · log logX · (logΦ)3/2 � X(log logX)9

(logX)1/3
,

which is admissible for our requirement.
By reformulating the congruences attached to the innermost sum, the

second sum in (7.30) can be rewritten as

(7.32)
X(log logX)7

(logX)2

∑

(logX)100<β≤
√
X

1<u0≤F̂
κu0≡� (mod β)

µ2(2u0β)
u0β

×
∑

m,n≤Φ

µ2(mn)
mn2ω(mn)

∑

m1|m
n1|n

(
νu0

m1

)(
%β

n1

)
.
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Then from Lemma 2.2 and Perron’s formula, combined with the zero-free
region of L-functions, this is

� X
√

logΦ(log logX)7

(logX)2

∑

(logX)100<β≤
√
X

1<u0≤F̂
κu0≡� (mod β)

µ2(2u0β)
u0β

(7.33)

×
∑

m1m2≤Φ
m1≤(logX)100

1
m1m22ω(m1m2)

� X(log logX)7

logX

∑

1<u0≤(logX)100

1
u0
·
√

logX

+
X(log logX)7

logX

∑

(logX)100<u0≤F̂

1
u0

∑

β1β2≤
√
X

β1≤(logX)100

1
β1β22ω(β1β2)

� X(log logX)8

(logX)1/3
.

Hence, from (7.29)–(7.33), we have shown that

(7.34) S222(a;X)� X(logX)−1/6.

Together with (7.24), this implies that

(7.35) S22(a;X)� X(logX)−1/6.

Therefore, we have proved that

(7.36) S2(a;X)� X.
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