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1. Introduction. Let P denote the set of all infinite subsets of the
natural numbers N = {0, 1, . . .}. An element A of P will be identified to
the sequence (an)n∈N∗ of its elements, denoted by the corresponding lower
case letter, indexed by the set N∗ of positive integers and taken in strictly
increasing order, i.e. a1 < a2 < · · · < an < · · · .

For any subset A of N and any n ∈ N, let

r(A,n) = |{(a, b) ∈ A× A : a+ b = n}| = |{(i, j) ∈ N∗ × N∗ : ai + aj = n}|,
where |E| denotes the cardinality of the set E. Further, let

s(A) = sup{r(A,n) : n ∈ N},
considered as an element of N = N ∪ {∞}. We say that A is a basis of N if
r(A,n) ≥ 1 for all n ∈ N, i.e. if the set A + A = {a + b : (a, b) ∈ A × A}
coincides with N.

In 1941, Erdős and Turán [3] made a conjecture which amounts to the
following one.

1.1. The Erdős–Turán conjecture

(ET) If A is a basis of N, then s(A) =∞.

But they only established that r(A,n) cannot become constant for large
enough n and that s(A) ≥ 2.

In 1956, Erdős and Fuchs [2] obtained more results and noted the fol-
lowing stronger conjecture.

1.2. The General Erdős–Turán conjecture

(GET) If A ∈ P is such that an ≤ cn2 for some constant c > 0 and all
n ∈ N∗, then s(A) =∞.
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Indeed, it is well known [4, 5] that if A is a basis of N, then it satisfies
the condition an ≤ cn2 (n ∈ N∗) for some c > 0, so that the validity of
(GET) implies that of (ET).

Clearly, we may assume that the constant c is an integer. Thus (GET)
may be stated as follows: if A is a sequence whose terms are less than or
equal to the corresponding ones in the sequence C = {cn2 : n ∈ N∗}, then
we have s(A) = ∞. This raises the natural and more general question of
determining all the sequences of natural numbers that may replace C in the
latter statement of (GET). We call such sets the Erdős–Turán sets, study
some of their properties and establish several related statements which are
equivalent to (GET).

We define an order relation � in P by A� B if and only if an ≤ bn for
all n ∈ N∗. Then an element C of P is called an Erdős–Turán set if for all
A ∈ P such that A � C, we have s(A) = ∞; the class of all such sets C is
denoted by C(ET). Thus, writing S = {n2 : n ∈ N∗} for the set of squares
in N∗ and writing

c.A = {can : n ∈ N∗}
for the homothetic image of any A ∈ P by any c ∈ N∗, the conjecture (GET)
amounts to asserting that all homothetic images c.S of S lie in C(ET). So,
a more general problem than that of proving or disproving (GET) consists
in determining exactly the class C(ET). Hence the interest of thoroughly
investigating its properties in order to better characterize its members. This
is the essential goal of the present paper.

We first show, by a constructive argument, that the condition s(C) =∞,
which is obviously necessary, is not sufficient for C to lie in C(ET). In passing,
we establish several properties of the important function A 7→ s(A). We then
prove that the class C(ET) is stable under intersection by segments of the
type [t,∞[ in N, under translation and under homothetic transformation.
The latter property is however far from trivial and requires the introduction
and study of some notions of intrinsic interest such as that of two close
elements A and B in P, by which we mean that the sequence (|an−bn|)n∈N∗
is bounded in N. One key result in this respect is that if A lies in C(ET),
then so also does every element of P which is close to A. It then follows
from the stability of C(ET) under homothetic transformation that (GET) is
equivalent to the statement that S lies in C(ET). In other words, to establish
the validity of (GET), it is enough to show that if a set A ∈ P satisfies the
condition an ≤ n2 for all n ∈ N∗, then s(A) = ∞; and the conclusion
will then hold for all the sets A ∈ P satisfying the more general condition
an ≤ cn2 for an arbitrary constant c > 0 and for all n ∈ N∗. Moreover, using
the properties of C(ET), we can replace S by any member of an infinite family
of sets Er = {[n+ rn(n−1)] : n ∈ N∗}, where r is a real number, 0 < r ≤ 1,
and [x] is the integer part of a real number x.
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We then describe a large and significant subclass of C(ET), the restricted
class of Erdős–Turán sets C(RET), by first introducing the caliber of an
element A ∈ P. This notion, which is of intrinsic interest, is defined by

cal(A) = lim inf
n→∞

an
n2 ;

and C(RET) consists precisely of all the sets A ∈ P such that cal(A) = 0. We
establish several properties for it, and use the results to give other equivalent
formulations of the conjecture (GET). For instance, we show that

s(A) ≥ 1
2 cal(A)

for all A ∈ P, and since the caliber is an increasing function with respect
to the order relation � in P, it follows that C(RET) is a subset of C(ET).
Furthermore, (GET) is true if and only if C(RET) is a proper subset of
C(ET). We then establish that for (GET) to be valid, it is enough to prove,
for some (arbitrarily chosen) real numbers a > 0, b ≥ 0 and 0 ≤ ν < 2,
that for any A ∈ P such that an ≤ an2 − bnν for large enough n, we have
s(A) = ∞. In other words, we can replace, in the statement of (GET), the
squares by the integral parts [an2 − bnν ], where ν can be taken as close to
2 (but smaller than 2) as desired. Moreover, the function

θ(A) = 1/
√

cal(A)

is subadditive with respect to the union operation, i.e. it satisfies θ(A∪B) ≤
θ(A)+θ(B) for any A,B ∈ P. It follows that if the union of two setsA,B ∈ P
lies in C(RET), then so does one of them, at least. This raises the question
of the validity of the analogous property for C(ET), about which we show
that if it did not hold then (GET) would be true.

2. The class of Erdős–Turán sets

2.1. Notations and definitions. For any subset A of N and any t ∈ N,
we write A[t] = A ∩ [0, t] for an initial segment of A, and A[t[ = A ∩ [t,∞[
for a terminal segment of A. We also write t + A = {t + a : a ∈ A} for a
translate of A, and when t 6= 0, we set t.A = {ta : a ∈ A} for a homothetic
(image) of A.

For any A,B ∈ P, we write A � B if an ≤ bn for all n ∈ N∗. This
defines a partial order on P. Let S = {n2 : n ∈ N∗}.

2.2. Lemma. For any A,B ∈ P and any t ∈ N, we have

(1) If B ⊂ A, then A� B. In particular , N� A for all A ∈ P.
(2) A� A[t[ and A� t+A. Also, if t > 0, then A� t.A.

Proof. Straightforward.
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2.3. Proposition. For any A ∈ P and any s in the interval [2,∞] of N,
there exists B ∈ P such that A� B and s(B) = s.

Proof. We divide the proof into two parts, according as s = ∞ or s is
an integer ≥ 2.

1. If s = ∞ then, given A, we define B as follows. For any n ∈ N∗, let
m ∈ N be the unique integer such that 2m ≤ n < 2m+1 and let p = n− 2m,
so that n is expressed, uniquely, as n = 2m + p with 0 ≤ p < 2m, and
let bn = a2m+1 + p. Since the sequence (an) is strictly increasing, we have
an+k ≥ an + k for any n ∈ N∗ and k ∈ N, by a simple induction on k.
Now, if n = 2m + p with 0 ≤ p ≤ 2m − 2, then bn = a2m+1 + p and
bn+1 = a2m+1 + p + 1 > bn, while if p = 2m − 1, i.e. if n = 2m+1 − 1, then
bn = a2m+1 + 2m − 1 and bn+1 = a2m+2 ≥ a2m+1 + 2m+1 > bn. Therefore
the sequence (bn) is also strictly increasing. Moreover, for any n = 2m + p
with 0 ≤ p < 2m, we have bn = a2m+1 +p ≥ a2m+1 > a2m+p = an. Therefore
A � B. Finally, if n = 2a2m+1 + p with m, p ∈ N and 0 ≤ p < 2m, then
n = a2m+1 + q + a2m+1 + p − q = b2m+q + b2m+p−q for 0 ≤ q ≤ p, so that
r(B,n) ≥ p+1. In particular, taking p = 2m−1 and letting m vary in N, we
see that r(B, 2a2m+1 +2m−1) ≥ 2m is also unbounded. Therefore s(B) =∞.

2. If s is an integer ≥ 2 then, given A, we define B inductively as follows.
For 1 ≤ k ≤ s, let bk = as+k−1. The first s terms clearly satisfy bk < bk+1

(for 1 ≤ k ≤ s − 1) and ak ≤ as ≤ bk (for 1 ≤ k ≤ s). Now assume by
induction that, for some n ≥ s, the first n terms of B have been constructed
and satisfy bk < bk+1 (for 1 ≤ k ≤ n− 1) and ak ≤ bk (for 1 ≤ k ≤ n). Let
Bn = {b1, . . . , bn}, choose bn+1 to be any integer ≥ an+1 and > 2bn, e.g.
bn+1 = max(an+1, 2bn + 1), and set Bn+1 = Bn ∪ {bn+1}. Then, for m ∈ N,
we have r(Bn+1,m) = r(Bn,m) + d, where d = 2 if m = bn+1 + bk for some
1 ≤ k ≤ n, d = 1 if m = 2bn+1 and d = 0 otherwise. But if m ≥ bn+1 > 2bn,
then r(Bn,m) = 0. Therefore r(Bn+1,m) ≤ max(r(Bn,m), 2) for all m ∈ N.
Thus s(Bn+1) = s(Bn) for all n ≥ s. The resulting sequence (bn) is strictly
increasing, and B = {bn : n ∈ N∗} =

⋃∞
n=sBn satisfies A� B and s(B) =

sup{s(Bn) : n ≥ s} = s(Bs) = s, since Bs is the interval [as, as + s − 1]
of N.

2.4. Remarks. It follows from 2.3, by taking A = N, that the range of
the function P 7→ s(P ) from P into N is the interval [2,∞]. Then it further
follows that for any s, t in the interval [2,∞] of N, there exist A,B ∈ P such
that A� B, s(A) = s and s(B) = t.

The conjecture (GET) is equivalent to the assertion that if an element
A of P satisfies A� c.S for some c ∈ N∗, then s(A) =∞.

This leads to the more general question of characterizing all the sets
C ∈ P which can replace the sets c.S in the previous statement. Hence the
following notion.
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2.5. Definition. An infinite subset C of N is said to belong to the class
C(ET) of Erdős–Turán if, for any A ∈ P, the relation A � C implies that
s(A) =∞.

The conjecture (GET) can thus be restated as follows.

(GET) For any c ∈ N∗, the set c.S lies in C(ET).

2.6. Lemma. Let B,C ∈ P. We have

(1) If C ∈ C(ET), then s(C) =∞. The converse is false, in view of 2.3.
(2) N ∈ C(ET).
(3) If C ∈ C(ET) and B � C, then B ∈ C(ET).
(4) If C ∈ C(ET) and C ⊂ B then B ∈ C(ET).
(5) If C[t[ ∈ C(ET) for some t ∈ N, then C ∈ C(ET).
(6) If t+ C ∈ C(ET) for some t ∈ N, then C ∈ C(ET).
(7) If t.C ∈ C(ET) for some t ∈ N∗, then C ∈ C(ET).

Proof. These properties are direct consequences of those in 2.2.

Our next goal is to establish the converses for the last three properties.
We start with some useful preliminaries.

2.7. Lemma. For any subset A of N and any t ∈ N, we have s(t + A)
= s(A).

Proof. For any n ∈ N, the sets R(A,n) = {(a, b) ∈ A × A : a + b = n}
and R(t+A, 2t+n) = {(c, d) ∈ (t+A)× (t+A) : c+d = 2t+n} are in one-
to-one correspondence under the bijection (a, b) 7→ (t + a, t + b). Therefore
r(A,n) = |R(A,n)| = |R(t+A, 2t+n)| = r(t+A, 2t+n). Moreover, for any
m ∈ N such that m < 2t, we have r(t+ A,m) = 0. Hence

s(t+ A) = sup{r(t+ A, 2t+ n) : n ∈ N} = sup{r(A,n) : n ∈ N} = s(A).

2.8. Lemma. For any subset A of N and any t ∈ N∗, we have s(t.A)
= s(A).

Proof. For any n ∈ N, the sets R(A,n) = {(a, b) ∈ A × A : a + b = n}
and R(t.A, tn) = {(c, d) ∈ (t.A) × (t.A) : c + d = tn} are in one-to-one
correspondence under the bijection (a, b) 7→ (ta, tb). Therefore r(A,n) =
|R(A,n)| = |R(t.A, tn)| = r(t.A, tn). Moreover, for any m ∈ N such that
t -m, we have r(t.A,m) = 0. Hence

s(t.A) = sup{r(t.A, tn) : n ∈ N} = sup{r(A,n) : n ∈ N} = s(A).

2.9. Lemma. For any subsets A,F of N, if F is finite, then s(A) ≤
s(A ∪ F ) ≤ s(A) + 2|F |.

Proof. Since (A∪F )×(A∪F ) = (A×A)∪(F ×(A∪F ))∪((A∪F )×F ),
for any n ∈ N the set R(A∪F, n) = {(a, b) ∈ (A∪F )× (A∪F ) : a+ b = n}
is the union of the three sets R(A,n) = {(a, b) ∈ A × A : a + b = n} and
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R(F,A ∪ F ;n) = {(a, b) ∈ F × (A ∪ F ) : a + b = n} and R(A ∪ F,F ;n) =
{(a, b) ∈ (A ∪ F ) × F : a + b = n}. Moreover the last two sets are in
one-to-one correspondence under the bijection (a, b) 7→ (b, a) and, since e.g.
R(F,A ∪ F ;n) ⊂ {(a, n − a) : a ∈ F}, they satisfy |R(A ∪ F,F ;n)| =
|R(F,A ∪ F ;n)| ≤ |F |. Hence

r(A∪F, n) = |R(A∪F, n)| ≤ |R(A,n)|+ 2|R(F,A∪F ;n)| ≤ r(A,n) + 2|F |.
Therefore

s(A ∪ F ) = sup{r(A ∪ F, n) : n ∈ N}
≤ sup{r(A,n) + 2|F | : n ∈ N} = s(A) + 2|F |.

On the other hand, since A ⊂ A ∪ F , we clearly have s(A) ≤ s(A ∪ F ).

2.10. Example. The inequality s(A ∪ F ) ≤ s(A) + 2|F | is optimal, as
shown by the following example. Let h, s be two positive integers such that
2h ≤ s. Consider, in N, the intervals H = [1, 2h + s] and F = [h + 1, 2h],
and let A = H \F = [1, h]∪ [2h+ 1, 2h+ s]. Then, by simple combinatorial
arguments, we get

r(A,n) =





n− 1 if 1 ≤ n ≤ h+ 1,

2h− n+ 1 if h+ 2 ≤ n ≤ 2h,

2(n− 2h− 1) if 2h+ 1 ≤ n ≤ 3h+ 1,

2h if 3h+ 2 ≤ n ≤ 4h+ 1,

n− 2h− 1 if 4h+ 2 ≤ n ≤ 2h+ s+ 1,

2h+ 2s− n+ 1 if 2h+ s+ 2 ≤ n ≤ 3h+ s,

n− 4h− 1 if 3h+ s+ 1 ≤ n ≤ 4h+ s+ 1,

4h+ 2s− n+ 1 if 4h+ s+ 2 ≤ n ≤ 4h+ 2s,

0 if n ≥ 4h+ 2s+ 1.
In particular, r(A,n) ≤ s for all n ∈ N and r(A, 2h+s+1) = r(A, 4h+s+1)
= s. Thus s(A) = s. On the other hand, it is easy to see that

r(H,n) =





n− 1 if 1 ≤ n ≤ 2h+ s+ 1,

4h+ 2s− n+ 1 if 2h+ s+ 2 ≤ n ≤ 4h+ 2s,

0 if n ≥ 4h+ 2s+ 1.
Therefore s(A ∪ F ) = s(H) = 2h+ s = s(A) + 2|F |.

2.11. Corollary. For any subsets A,F of N such that F is finite, we
have s(A) =∞ if and only if s(A ∪ F ) =∞.

2.12. Remark. A set A ∈ P is called an asymptotic basis of N if
r(A,n) > 0 for all large enough integers n. The original form of the (ET)
conjecture [3] is the following:

(OET) If A is an asymptotic basis then s(A) =∞.
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Corollary 2.11 shows that (OET) is equivalent to (ET), upon replacing the
asymptotic basis A by the basis B = N[n0] ∪A of N.

2.13. Lemma. Let A,Q ∈ P be such that Q � 1 + A and Q 6= N, and
let m be the smallest positive integer such that qm ≥ m. Then there exists
P ∈ P such that P � A and s(P ) ≤ s(Q) + 2(m− 1).

Proof. As noted in 2.2, for all n∈N∗, we have qn≥n−1, and since Q 6=N,
this inequality should be strict for some n∈N∗. Thus {n∈N∗ : qn≥n} is
not empty and has a smallest element m. We then have qn = n − 1 for
1 ≤ n ≤ m−1, and qn ≥ n for n ≥ m. The latter inequality holds inductively,
since the sequence (qn) is strictly increasing; and if m = 1, the former
equality never occurs. Now define P as follows: let pn = qn = n − 1 for
1 ≤ n ≤ m − 1, and pn = qn − 1 for n ≥ m. From the definition of m,
the sequence (pn) is strictly increasing, so that P ∈ P. Since Q � 1 + A,
for n ≥ m we have pn = qn − 1 ≤ an, while for 1 ≤ n ≤ m − 1 we
have pn = n − 1 ≤ an (by 2.2). Thus P � A. Moreover, P = F ∪ R,
where F = {n ∈ N : 0 ≤ n ≤ m − 2} is a finite, possibly empty, set and
R = {qn − 1 : n ≥ m}, so that 1 + R = Q[qm[. Therefore, by 2.9 and 2.7,
we have s(P ) ≤ s(R) + 2|F | and s(R) = s(1 +R) = s(Q[qm[) ≤ s(Q), while
|F | = m− 1. Thus s(P ) ≤ s(Q) + 2(m− 1).

2.14. Proposition. If C ∈ C(ET) then t+ C ∈ C(ET) for all t ∈ N.

Proof. By induction on t, it is enough to show that if C ∈ C(ET) then
1+C ∈ C(ET). By 2.13, for any Q ∈ P such that Q� 1+C, either Q = N or
there exist m ∈ N∗ and P ∈ P such that P � C and s(Q) ≥ s(P )−2(m−1).
Since C ∈ C(ET) and P � C, we have s(P ) = ∞. Therefore s(Q) = ∞ for
all Q� 1 + C. Thus 1 + C ∈ C(ET).

2.15. Lemma. Let A,Q ∈ P and m ∈ N∗ be such that Q� A[am[. Then
there exists P ∈ P such that P � am +A and s(P ) ≤ s(Q) + 2(m− 1).

Proof. Define P as follows: let pn = an for 1 ≤ n ≤ m − 1, and pn =
am + qn−m+1 for n ≥ m. Since the sequences (an) and (qn) are strictly
increasing, and since pm−1 = am−1 < pm = am+q1, the sequence (pn) is also
strictly increasing, so that P ∈ P. Since Q� A[am[, we have qk ≤ am+k−1

for all k ∈ N∗, so that qn−m+1 ≤ an and thus pn = am + qn−m+1 ≤ am + an
for all n ≥ m. But also, pn = an ≤ am + an for 1 ≤ n ≤ m − 1. Therefore
P � am + A. Moreover, P = F ∪ R, where F = {an : 1 ≤ n ≤ m − 1}
is a finite, possibly empty, set and R = am +Q. Therefore, by 2.9 and 2.7,
we have s(P ) ≤ s(R) + 2|F | and s(R) = s(Q), while |F | = m − 1. Thus
s(P ) ≤ s(Q) + 2(m− 1).

2.16. Proposition. If C ∈ C(ET) then C[t[ ∈ C(ET) for all t ∈ N.
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Proof. Let cm = minC[t[, so that C[t[ = C[cm[ with m ∈ N∗. By 2.15,
for any Q ∈ P such that Q � C[t[ = C[cm[, there exists P ∈ P such that
P � cm+C and s(Q) ≥ s(P )−2(m−1). Since C ∈ C(ET), by 2.14 we have
cm +C ∈ C(ET), so that, since P � cm +C, we have s(P ) =∞. Therefore
s(Q) =∞ for all Q� C[t[. Thus C[t[ ∈ C(ET).

2.17. Corollary. Let B,C ∈ P be such that C[t[ = B[u[ for some
t, u ∈ N. Then C ∈ C(ET) if and only if B ∈ C(ET).

Proof. Assume that C ∈ C(ET). Then, by 2.16, C[t[ ∈ C(ET), i.e. B[u[ ∈
C(ET). Hence B ∈ C(ET) by 2.6. The equivalence follows by symmetry.

2.18. Proposition. The following two statements are equivalent :

(1) For any C ∈ C(ET) and any t ∈ N∗, we have t.C ∈ C(ET).
(2) For any C ∈ C(ET), we have 2.C ∈ C(ET).

Proof. Statement (2) is clearly a special case of (1). Now assume that (2)
holds. Then, for any C ∈ C(ET), we have, by induction, 2n.C ∈ C(ET) for
all n ∈ N. Hence, for any t ∈ N∗, we have 2t.C ∈ C(ET) and t.C � 2t.C,
and thus, by 2.6, we conclude that t.C ∈ C(ET). This shows that if (2) holds
then so does (1), which completes the proof.

In order to establish the truth of the statements in 2.18, we will need to
make a detour in the next two sections.

3. Close sequences

3.1. Definition. For A,B ∈ P, we set δ(A,B) = sup{|an−bn| : n ∈ N∗}
in N. If δ(A,B) ≤ d for some d ∈ R+, we say that A and B are d-close.
More generally, if δ(A,B) <∞, we say that A and B are close.

3.2. Proposition. Let A,B ∈ P be d-close for some d ∈ R+. Then, for
any m ∈ N, there exists an n ∈ N such that

r(B,n) ≥ r(A,m)
4d+ 1

.

Proof. Let m ∈ N and E(A,m) = {(i, j) ∈ N∗ × N∗ : ai + aj = m}.
Then r(A,m) = |E(A,m)|. Let σ : E(A,m) → N be the map defined by
σ(i, j) = bi + bj . For every n ∈ σ(E(A,m)), there is a pair (i, j) ∈ N∗ × N∗
such that ai + aj = m and bi + bj = n. Since A and B are d-close, we have
|ai−bi| ≤ d and |aj−bj | ≤ d. Hence ai+aj−2d ≤ bi+bj ≤ ai+aj +2d, i.e.
m−2d ≤ n ≤ m+2d. Thus σ(E(A,m)) ⊂ I where I = [m−2d,m+2d]∩N,
so that E(A,m) =

⋃
n∈I σ

−1(n) is a finite union of pairwise disjoint sets.
Moreover, for every n ∈ I, we have σ−1(n) = {(i, j) ∈ E(A,m) : bi + bj = n}
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⊂ E(B,n), so that |σ−1(n)| ≤ r(B,n). Therefore

r(A,m) = |E(A,m)| =
∑

n∈I
|σ−1(n)| ≤

∑

n∈I
r(B,n)

≤ |I| ·max{r(B,n) : n ∈ I}.
Since I is a set of integers contained in the interval [m − 2d,m + 2d] of
length 4d, we have |I| ≤ 4d + 1 and there exists some n0 ∈ I such that
r(B,n0) = max{r(B,n) : n ∈ I}. Thus r(A,m) ≤ (4d+ 1)r(B,n0), and the
result follows.

3.3. Corollary. Let A,B ∈ P and d ∈ R+. If A and B are d-close,
then

s(A)
4d+ 1

≤ s(B) ≤ (4d+ 1)s(A).

Proof. In view of 3.2, and by the definition of s(B), for every m ∈ N,
there exists some n ∈ N such that

s(B) ≥ r(B,n) ≥ r(A,m)
4d+ 1

.

Thus r(A,m) ≤ (4d + 1)s(B) for all m ∈ N, and therefore s(A) ≤
(4d + 1)s(B). Hence the first inequality. Exchanging A and B, we also get
the second inequality.

3.4. Corollary. Let A,B ∈ P. If A and B are close, then s(A) =∞
if and only if s(B) =∞.

Proof. This follows immediately from 3.3, since A and B are d-close for
some d ∈ R+.

3.5. Corollary. Let A,B ∈ P and d ∈ R+. If A and B are d-close
and s(A) and s(B) are finite, then |s(A)− s(B)| ≤ 4d ·min(s(A), s(B)).

Proof. Assume that s(A) ≤ s(B). Then, by 3.3, we have s(B) ≤
(4d+ 1)s(A), i.e. s(B)− s(A) ≤ 4d · s(A). Hence the result.

3.6. Remark. The inequalities established in 3.3 and 3.5 hold with d =
δ(A,B), and they even hold trivially when δ(A,B) =∞. Hence the following
statements:

(i) For any A,B ∈ P, we have s(B) ≤ (4δ(A,B) + 1)s(A) and s(A) ≤
(4δ(A,B) + 1)s(B).

(ii) For any A,B ∈ P such that s(A) and s(B) are finite, we have

|s(A)− s(B)| ≤ 4 min(s(A), s(B)) · δ(A,B).

3.7. Lemma. Let A,B ∈ P. If A and B are close, then A ∈ C(ET) if
and only if B ∈ C(ET).
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Proof. Assume that A and B are close and that A ∈ C(ET). Then A
and B are d-close for some d ∈ N (e.g. d = δ(A,B)). So, for all n ∈ N∗, we
have |bn − an| ≤ d, i.e. an − d ≤ bn ≤ an + d. Therefore B � d + A. Since
A ∈ C(ET), by 2.14 we have d + A ∈ C(ET); and, since B � d + A, we
conclude, by 2.6(3), that B ∈ C(ET).

We need to extend some of the previous properties to increasing se-
quences in N.

3.8. Definition. We denote by I(N) the set of all sequences x=(xn)n∈N∗
in N such that xn ≤ xn+1 for all n ∈ N∗. For each x ∈ I(N), we write
X = {xn : n ∈ N∗} for the set of terms of the sequence x = (xn). Note that
the set P is identified to a subset of I(N).

For any x = (xn) and y = (yn) in I(N), we write x� y if xn ≤ yn for all
n ∈ N∗. This defines an order relation on I(N) which extends the previously
defined one on P.

For x, y ∈ I(N), we set δ(x, y) = sup{|xn − yn| : n ∈ N∗} in N. If
δ(x, y) ≤ d for some d ∈ R+, we say that x and y are d-close. If δ(x, y) <∞,
we say that x and y are close.

3.9. Remark. For x ∈ I(N), the corresponding set X is finite if and
only if the sequence x = (xn) is bounded. Now, if x and y are d-close in
I(N) for some d ∈ R+, then xn−d ≤ yn ≤ xn+d for all n ∈ N∗, so that (xn)
is bounded if and only if (yn) is bounded. Therefore, for two close elements
x and y of I(N), the corresponding sets X and Y are either both finite or
both infinite.

3.10. Proposition. Let x, y ∈ I(N) be d-close for some d ∈ R+. Then,
for any m ∈ N, there exists an n ∈ N such that

r(Y, n) ≥ r(X,m)
(4d+ 1)3 .

Proof. Let m ∈ N and r = r(X,m). Then there exists a subset E of
N∗ × N∗ such that |E| = r and, for (i, j) ∈ E, we have xi + xj = m and
the pairs (xi, xj) are pairwise distinct. Let σ : E → N be the map defined
by σ(i, j) = yi + yj . For every n ∈ σ(E), there is a pair (i, j) ∈ N∗ × N∗
such that xi + xj = m and yi + yj = n. Since x and y are d-close, we have
|xi − yi| ≤ d and |xj − yj | ≤ d. Hence xi + xj − 2d ≤ yi + yj ≤ xi + xj + 2d,
i.e. m− 2d ≤ n ≤ m+ 2d. Thus σ(E) ⊂ I where I = [m− 2d,m+ 2d] ∩ N.
Consequently, E =

⋃
n∈I Sn is a finite union of the pairwise disjoint sets

Sn = σ−1(n) = {(i, j) ∈ E : yi + yj = n}. Therefore

r = |E| =
∑

n∈I
|Sn| ≤ |I| ·max{|Sn| : n ∈ I}.
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Since I is a set of integers contained in the interval [m − 2d,m + 2d] of
length 4d, we have |I| ≤ 4d + 1 and there exists some n0 ∈ I such that
|Sn0 | = max{|Sn| : n ∈ I}. Hence r ≤ (4d+ 1)|Sn0 |.

Now consider any n ∈ I and let φ : Sn → Y × Y be the map de-
fined by φ(i, j) = (yi, yj). Since |φ(Sn)| gives a count of distinct pairs
(yi, yj) ∈ Y × Y such that yi + yj = n, we see that |φ(Sn)| ≤ r(Y, n).
On the other hand, if we denote by R the equivalence relation on Sn de-
fined by (i, j)R(k, l) if and only if φ(i, j) = φ(k, l), i.e. (yi, yj) = (yk, yl),
then φ induces a bijection from the quotient set Sn/R onto the image set
φ(Sn), so that |Sn/R| = |φ(Sn)| ≤ r(Y, n). Furthermore, if (yk, yl) = (yi, yj)
with (i, j) and (k, l) in E, then, since |xi − yi| ≤ d and |xk − yk| ≤ d
and yi = yk, we get |xi − xk| ≤ 2d, and similarly |xj − xl| ≤ 2d. Thus,
for a given (i, j) ∈ E, the number of possible values for xk, under the
condition (yk, yl) = (yi, yj), does not exceed 4d + 1, and similarly for xl,
so that the number of pairs (xk, xl) does not exceed (4d + 1)2. Since, by
the definition of E, the map (k, l) 7→ (xk, xl), restricted to E, is injec-
tive, for any (i, j) ∈ E the number of (k, l) ∈ E such that (yk, yl) =
(yi, yj) is equal to the number of corresponding pairs (xk, xl), and thus
does not exceed (4d+ 1)2. Therefore the number of elements in any equiv-
alence class modulo R, in Sn, does not exceed (4d + 1)2, and so |Sn/R| ≥
|Sn|/(4d + 1)2. It then follows from what precedes that |Sn|/(4d + 1)2

≤ |φ(Sn)| ≤ r(Y, n), so that |Sn| ≤ (4d+ 1)2r(Y, n), and consequently

r(X,m) = r ≤ (4d+ 1)|Sn0 | ≤ (4d+ 1)3r(Y, n0).

Hence the result.

3.11. Corollary. Let x, y ∈ I(N) and d ∈ R+. If x and y are d-close,
then

s(X)
(4d+ 1)3 ≤ s(Y ) ≤ (4d+ 1)3s(X).

Proof. In view of 3.10, and by definition of s(Y ), for every m ∈ N, there
exists some n ∈ N such that s(Y ) ≥ r(Y, n) ≥ r(X,m)/(4d+ 1)3. Thus
r(X,m) ≤ (4d+ 1)3s(Y ) for all m ∈ N, and therefore s(X) ≤ (4d+ 1)3s(Y ).
Hence the first inequality. Exchanging x and y, we get the second one.

3.12. Corollary. Let x, y ∈ I(N). If x and y are close, then s(X) =∞
if and only if s(Y ) =∞.

Proof. This follows immediately from 3.11, since x and y are d-close for
some d ∈ R+.

3.13. Remark. In order to establish that the homothetic image of an
element of C(ET) is also in C(ET), it is enough, in view of 2.18, to show that
for any C ∈ C(ET), we have 2.C ∈ C(ET). To this end, we need a special
class of increasing sequences in N that we study next.
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4. Two-step sequences and equivalent formulations of (GET)

4.1. Definition. A two-step sequence is an element x = (xn)n∈N∗ of
I(N) such that x2k−1 = x2k < x2k+1 for all k ∈ N∗, i.e. x1 = x2 < x3 =
x4 < · · · < x2k−1 = x2k < · · · .

4.2. Proposition. Let C ∈ P and let c = (cn)n∈N∗ be the strictly in-
creasing sequence of its elements. The following two conditions are equiva-
lent :

(1) 2.C ∈ C(ET).
(2) For any two-step sequence x such that x� c, we have s(X) =∞.

When these conditions are satisfied , we also have C ∈ C(ET).

Proof. (i) Assume that 2.C ∈ C(ET). Let x be a two-step sequence
such that x � c. Define a sequence a = (an)n∈N∗ by a2k−1 = 2x2k−1 and
a2k = 2x2k + 1 for all k ∈ N∗. Then, since x is a two-step sequence, we have

a2k−1 = 2x2k−1 = 2x2k < a2k = 2x2k + 1 < 2(x2k + 1) ≤ 2x2k+1 = a2k+1

for all k ∈ N∗, so that the sequence a is strictly increasing, i.e. the set A of
its terms lies in P. Moreover, since x � c and c is strictly increasing, we
also have a2k−1 = 2x2k−1 ≤ 2c2k−1 and a2k = 2x2k + 1 = 2x2k−1 + 1 ≤
2c2k−1 +1 < 2(c2k−1 +1) ≤ 2c2k for all k ∈ N∗, so that A� 2.C. Therefore,
since 2.C ∈ C(ET), we have s(A) = ∞. Furthermore, from the definition
of a, we have 2xn ≤ an ≤ 2xn + 1 for all n ∈ N∗, so that a = (an) and
2x = (2xn) are 1-close. Thus, in view of 3.12, we also have s(2.X) = ∞.
Hence, by 2.8, we conclude that s(X) = s(2.X) =∞. Thus (1) implies (2).

(ii) Assume that for any two-step sequence x such that x � c, we have
s(X) = ∞. Let A ∈ P be such that A � 2.C. Let u = (un)n∈N∗ be the
sequence defined by un = [an/2] for all n ∈ N∗, where [r] denotes the integral
part of a real number r. For all n ∈ N∗, since an < an+1, we have un ≤ un+1

and, since an+2 ≥ an + 2, we also have

un+2 ≥ [(an + 2)/2] = [an/2] + 1 = un + 1.

Therefore u ∈ I(N) and of any three consecutive terms un, un+1 and un+2

of u, at most two can be equal. Let x = (xn)n∈N∗ be the sequence defined
as follows:

x1 = x2 = u1, x2k+1 = x2k+2 = minU [(x2k + 1)[ for k ∈ N∗.
In other words, x is the two-step sequence which takes as values the consec-
utive elements of U . In particular, X = U . Note that, from the definition,
for any n ∈ N∗, the set {x1, . . . , xn} consists of the first [(n+ 1)/2] dis-
tinct values of U , while since no more than two consecutive terms of u can
be equal, the set {u1, . . . , un} consists of at least the first [(n+ 1)/2] dis-
tinct values of U , so that {x1, . . . , xn} ⊂ {u1, . . . , un}, i.e. xn ≤ un for all
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n ∈ N∗, hence x � u. Moreover, for all n ∈ N∗, since an ≤ 2cn and since
un ≤ an/2, we have un ≤ cn, so that xn ≤ un ≤ cn. Thus x � c, and
therefore, by the assumption, we have s(X) = ∞, i.e. s(U) = ∞. Hence,
by 2.8, s(2.U) = s(U) =∞. Furthermore, from the definition of u, we have
2un ≤ an ≤ 2un+1 for all n ∈ N∗, so that a and 2u are 1-close. Therefore, in
view of 3.12, since s(2.U) =∞, also s(A) =∞. This shows that, under the
given assumption, for any A ∈ P such that A � 2.C, we have s(A) = ∞.
Hence 2.C ∈ C(ET). Thus (2) implies (1).

Finally, in view of 2.6(7), if 2.C ∈ C(ET), then C ∈ C(ET) as well.

4.3. Definition. Let x = (xn) be any sequence of elements of N. The
strict cover of x is the sequence x̂ = (x̂n) defined by

x̂1 = x1, x̂n+1 = max(xn+1, x̂n + 1) for all n ∈ N∗.
The reason for this name lies in the following universal property of x̂.

4.4. Lemma. Let x be any sequence in N and x̂ be the strict cover of x.
Then x̂ is a strictly increasing sequence; it satisfies x � x̂; and for any
strictly increasing sequence y in N, if x � y then x̂ � y. In other words,
x̂ is the least (for the order relation �) strictly increasing sequence y in N
such that x� y.

Proof. From the definition of x̂, for all n ∈ N∗, we have

x̂n+1 = max(xn+1, x̂n + 1),

so that x̂n+1 ≥ x̂n+1 and xn+1 ≤ x̂n+1. Therefore the sequence x̂ is strictly
increasing and, taking into account that x̂1 = x1, we have x � x̂. Now
let y = (yn) be a strictly increasing sequence in N such that x � y. Thus
xn ≤ yn for all n ∈ N∗; in particular, x̂1 = x1 ≤ y1. Assume, by induction,
that x̂n ≤ yn. Then, from the definition, if x̂n ≥ xn+1, we have x̂n+1 =
x̂n + 1 ≤ yn + 1 ≤ yn+1, while if x̂n < xn+1, we have x̂n+1 = xn+1 ≤ yn+1.
Therefore x̂� y.

4.5. Lemma. Let x be a two-step sequence in N and x̂ be its strict cover.
Consider the difference sequence d = x̂− x, defined by dn = x̂n − xn for all
n ∈ N∗. Then the following properties hold for all k, n ∈ N∗:

(1) dn ≥ 0.
(2) d2n = d2n−1 + 1.
(3) d2n+1 = 0, or d2n+1 = d2n−1 + x2n − x2n+2 + 2.
(4) d2n+1 ≤ d2n−1 + 1.
(5) d2n+2k−1 ≤ d2n−1 + k.
(6) If d2n−1 = 0 and d2n+2i−1 > 0 for 1 ≤ i ≤ k, then x2n+2i−x2n < 2i

for 1 ≤ i ≤ k.



94 G. Grekos et al.

Proof. (1) This amounts to x� x̂ and follows from 4.4.
(2) Since x is a two-step, we have x2n−1 = x2n and

x̂2n = max(x2n, x̂2n−1 + 1) = max(x2n−1, x̂2n−1 + 1) = x̂2n−1 + 1,

since x2n−1 ≤ x̂2n−1. Hence d2n = x̂2n−x2n = x̂2n−1+1−x2n−1 = d2n−1+1.
(3) We have x̂2n+1 = max(x2n+1, x̂2n + 1). Thus, either x̂2n+1 = x2n+1

and d2n+1 = 0, or x̂2n+1 = x̂2n + 1 and, since x is two-step,

d2n+1 = x̂2n + 1− x2n+1 = x̂2n + 1− x2n+2

= (x̂2n − x2n) + x2n − x2n+2 + 1 = d2n + x2n − x2n+2 + 1.

Therefore, in view of (2), d2n+1 = d2n−1 + x2n − x2n+2 + 2.
(4) Since x is two-step, we have x2n+2 = x2n+1 > x2n, i.e. x2n − x2n+2

≤ −1. Hence, by (3), either d2n+1 = 0 ≤ d2n−1 < d2n−1 + 1, or d2n+1 =
d2n−1 + x2n − x2n+2 + 2 ≤ d2n−1 + 1. Thus, in all cases, d2n+1 ≤ d2n−1 + 1.

(5) This follows from (4) by induction on k.
(6) Assume that d2n−1 = 0 and d2n+2i−1 > 0 for 1 ≤ i ≤ k. Then,

by (3), for 1 ≤ i ≤ k, we have d2n+2i−1 = d2n+2i−3 + x2n+2i−2 − x2n+2i + 2,
so that x2n+2i−x2n+2i−2 = d2n+2i−3−d2n+2i−1+2. Adding up the equalities
corresponding to j = 1, . . . , i, we get

x2n+2i − x2n =
i∑

j=1

(x2n+2j − x2n+2j−2) =
i∑

j=1

(d2n+2j−3 − d2n+2j−1 + 2)

= 2i− d2n+2i−1 < 2i

for 1 ≤ i ≤ k.

4.6. Proposition. Let x be a two-step sequence in N and x̂ be its strict
cover. Then either s(X) =∞ or x and x̂ are close.

Proof. We use the notations of 4.5 and we distinguish two possible cases.
(i) First we assume that, for any k ∈ N∗, there exists an n ∈ N∗ such

that d2n−1 = 0 and d2n+2i−1 > 0 for 1 ≤ i ≤ k. We set ei = x2n+2i−x2n,
so that, by 4.5(6), we have ei < 2i for 1 ≤ i ≤ k. Moreover, since x2n+2i+2 =
x2n+2i+1 > x2n+2i, we also have 0 < e1 < e2 < · · · < ek. Let E =
{e1, . . . , ek}, and consider the map σ : E ×E → N[2ek] defined by σ(p, q) =
p + q. Then E × E =

⋃2ek
n=0 σ

−1(n), a union of pairwise disjoint sets whose
cardinalities are |σ−1(n)| = r(E,n) for 0 ≤ n ≤ 2ek. Therefore

k2 = |E × E| =
2ek∑

n=0

r(E,n) ≤ (2ek + 1)s(E) ≤ 4ks(E),

since ek < 2k. Thus s(E) ≥ k/4, and since {x2n+2i : 1 ≤ i ≤ k} = x2n+E is
a subset of X, we conclude, using 2.7, that s(X) ≥ s(x2n+E) = s(E) ≥ k/4.
By the assumption made in this case, the inequality holds for all k ∈ N∗.
Hence s(X) =∞.
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(ii) We now assume that there exists some k ∈ N∗ such that for any
n ∈ N∗, there is, in N, some i ≤ k−1 such that d2n−2i−1 = 0. This is always
possible when the assumption in (i) does not hold, since we at least have
d1 = 0. Then, by 4.5(5), we get d2n−1 ≤ d2n−2i−1 + i = i ≤ k − 1 for all
n ∈ N∗. Therefore, in view of 4.5(2), we also get d2n ≤ k for all n ∈ N∗. It
follows, using 4.5 again, that 0 ≤ dn = x̂n − xn ≤ k for all n ∈ N∗, so that
x and x̂ are k-close.

4.7. Corollary. Let C ∈ C(ET) and let x be a two-step sequence in N
such that x� c. Then s(X) =∞.

Proof. Let x̂ be the strict cover of x. By 4.4, the sequence x̂ is strictly
increasing, like c, and since x � c, we also have x̂ � c, i.e. X̂ � C. It
follows, as C ∈ C(ET), that s(X̂) = ∞. Thus, if x and x̂ are close, we
conclude, by 3.12, that s(X) = ∞. Otherwise the same conclusion follows
from 4.6.

4.8. Proposition. If C ∈ C(ET), then t.C ∈ C(ET) for any t ∈ N∗.
Proof. Let C ∈ C(ET). In view of 2.18, it is enough to show that 2.C ∈

C(ET). This condition is, by 4.2, equivalent to asserting that for any two-step
sequence x such that x � c, we have s(X) = ∞. But the validity of the
latter condition follows from 4.7. Hence the result.

4.9. Proposition. For any C ∈ P, the following statements are equiv-
alent :

(1) C ∈ C(ET).
(2) There exists B ∈ C(ET) such that C � B.
(3) There exists B ∈ C(ET) such that B ⊂ C.
(4) There exists t ∈ N such that C[t[ ∈ C(ET) (resp. C[t[ ∈ C(ET) for

all t ∈ N).
(5) There exists t ∈ N such that t+C ∈ C(ET) (resp. t+C ∈ C(ET) for

all t ∈ N).
(6) There exists t ∈ N∗ such that t.C ∈ C(ET) (resp. t.C ∈ C(ET) for

all t ∈ N∗).
(7) There exist B ∈ C(ET) and t, u ∈ N such that C[t[ = B[u[.
(8) There exists B ∈ C(ET) such that δ(B,C) < ∞ (i.e. B and C are

close).

Proof. These equivalences immediately follow from 2.6, 2.14, 2.16, 2.17,
3.7 and 4.8.

4.10. Corollary. The conjecture (GET) is equivalent to the following
simplified form:

(SGET) The set S = {n2 : n ∈ N∗} lies in C(ET).
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4.11. Definition. For a given real number r ∈ ]0, 1], consider the se-
quences (xn) in R and (en) in N defined by xn = n + rn(n − 1) and en =
[xn] = n+ [rn(n− 1)] (integral part), for n ∈ N∗. Let Er = {en : n ∈ N∗}.

In particular, E1 = S; and E1/2 = {n(n+ 1)/2 : n ∈ N∗} = T is the set
of triangular numbers in N∗.

4.12. Lemma. The sequences (xn) and (en) have the following proper-
ties:

(1) e1 = x1 = 1.
(2) xn+1 − xn = 1 + 2rn > 1 for all n ∈ N∗.
(3) en+1 − en = 1 + [rn(n+ 1)]− [rn(n− 1)] ≥ 1 for all n ∈ N∗, so that

the sequence (en) is strictly increasing.
(4) xn + (1− r)n(n− 1) = n2 for all n ∈ N∗.
(5) en ≤ xn ≤ n2 < ten + t for any t ∈ R+ such that tr ≥ 1 and for all

n ∈ N∗.
Proof. Parts (1) to (4) and the first two inequalities in (5) are immedi-

ately verified. For the last inequality in (5), note that since en = [xn], we
have xn < en + 1. Hence

t(en + 1) > txn = tn+ trn(n− 1) ≥ n+ n(n− 1) = n2,

since t ≥ 1/r ≥ 1.

4.13. Corollary. For any real number r ∈ ]0, 1] and any t ∈ N∗ such
that tr ≥ 1, we have Er � S� t+ t.Er.

4.14. Theorem. The following conjectures are equivalent :

(GET) c.S ∈ C(ET) for all c ∈ N∗.
(SGET) S ∈ C(ET).
(EGET) Er ∈ C(ET) for some r ∈ ]0, 1] (resp. for all r ∈ ]0, 1]).
(TGET) T ∈ C(ET), where T = {n(n+ 1)/2 : n ∈ N∗}.

Proof. This follows from 4.10 and the fact that, by 4.13 and 4.9, we have

S ∈ C(ET)⇒ Er ∈ C(ET)⇒ t+ t.Er ∈ C(ET)⇒ S ∈ C(ET).

4.15. Remark. Note that s(S) = ∞, which is a necessary (but not
sufficient) condition for (GET) to hold, follows from well known results
about the number of representations of a positive integer as a sum of two
squares [6, Theorem 278].

5. The caliber function and the restricted class of Erdős–Turán
sets. For any subset A of N and any x ∈ R+, let A(x) = |A[x]| = |A∩[0, x]|.
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5.1. Lemma. Let A = {a1 < a2 < · · ·} be a subset of N.

(1) For any x ∈ R+ and n ∈ N∗, we have A(x) = n if and only if
an ≤ x < an+1.

(2) For any n ∈ N, we have r(A,n) ≤ A(n). For any x ∈ R+, we have
s(A[x]) ≤ A(x).

(3) For A,B ∈ P, we have A � B if and only if B(n) ≤ A(n) for all
n ∈ N. In particular , A = B if and only if A(n) = B(n) for all
n ∈ N.

(4) For any t ∈ N and x ∈ R+, if x ≥ t, then (t + A)(x) =
A(x−t). Moreover , if t ≥ 1, then (t.A)(x) = A(x/t) and (A[t[)(x) =
A(x)− A(t− 1).

(5) For any subsets A,B of N, we have (A∪B)(x) ≤ A(x) +B(x), with
equality holding if A ∩B = ∅.

Proof. The proofs are mostly straightforward. We just prove (3). If
A� B and if B(n) = k ≥ 1, then bk ≤ n < bk+1, so that ak ≤ bk ≤ n and
thus A(n) ≥ k = B(n); the inequality holds trivially if B(n) = 0. Conversely,
if B(n) ≤ A(n) for all n ∈ N, then for k ∈ N∗, we have B(bk) = k ≤ A(bk),
so that a1, . . . , ak ∈ A[bk], i.e. ak ≤ bk; hence A� B.

5.2. Lemma. If A ⊂ N and x ∈ R+, then
∑

0≤n≤x
r(A,n) ≤ A(x)2 ≤

∑

0≤n≤2x

r(A,n).

Proof. Let σ : A × A → N be the function defined by σ(a, b) = a + b.
Then r(A,n) = |σ−1(n)| for all n ∈ N. Since σ(A[x] × A[x]) ⊂ N[2x],
we see that A[x] × A[x] ⊂ ⋃0≤n≤2x σ

−1(n). Moreover the sets σ−1(n) are
pairwise disjoint and, for 0 ≤ n ≤ x, we have σ−1(n) ⊂ A[x]×A[x], so that⋃

0≤n≤x σ
−1(n) ⊂ A[x]× A[x]. Therefore

∑

0≤n≤x
r(A,n) ≤ |A[x]×A[x]| ≤

∑

0≤n≤2x

r(A,n),

which gives the desired inequalities.

5.3. Corollary. For any subset A of N and any x ∈ R+, we have

s(A) ≥ A(x)2

2x+ 1
.

Proof. By 5.2, and since r(A,n) ≤ s(A) for all n ∈ N, we have A(x)2 ≤∑
0≤n≤2x r(A,n) ≤ (2x+ 1)s(A). Hence the inequality.

5.4. Corollary. For any A ∈ P, we have

s(A) ≥ sup
{

n2

2an + 1
: n ∈ N∗

}
.
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Proof. Indeed, if A = {a1 < a2 < · · ·}, then, for any n ∈ N∗ and any
x ∈ N, we have A(x) ≥ n if and only if an ≤ x. In particular, A(an) = n.
Thus, applying 5.3 with x = an, we get s(A) ≥ n2/(2an + 1) for all n ∈ N∗.
Hence the result.

5.5. Definition. For any A ∈ P, the caliber of A is the element of
R+ = R+ ∪ {∞} defined by

cal(A) = lim inf
n→∞

an
n2 .

5.6. Examples. 1. The set Er = {n + [rn(n − 1)] : n ∈ N∗}, defined
in 4.11, where r ∈ ]0, 1], has cal(Er) = r. Indeed, if we let xn = n+rn(n−1),
then the elements of Er are en = [xn], so that xn − 1 < en ≤ xn for all
n ∈ N∗; hence

lim
n→∞

en
n2 = lim

n→∞
xn
n2 = lim

n→∞
xn − 1
n2 = r.

2. Let a, b ∈ N∗ be two relatively prime integers, and denote by P(a, b)
the set of all prime numbers p such that p ≡ b (mod a). We then have
cal(P(a, b)) = 0. Indeed, according to the prime number theorem in arith-
metic progressions [1], the number π(x; a, b) of elements p ≤ x in P(a, b)
satisfies

π(x; a, b) ∼ 1
ϕ(a)

x

log x
as x→∞,

where ϕ is Euler’s totient function. It then follows, upon replacing x by the
nth element pn of P(a, b), that

lim
n→∞

pn
ϕ(a)n log pn

= 1,

which implies that limn→∞(log pn− log n− log log pn) = logϕ(a), and there-
fore

lim
n→∞

log pn
logn

= 1.

Hence pn ∼ ϕ(a)n logn as n→∞, and the result follows.
In particular, when a = 1, we get cal(P) = 0, where P is the set of all

prime numbers. It follows from 5.9 below that s(P) = ∞. But r(P, n) ≤ 2
for odd n ∈ N∗. Hence the number of representations of the even natural
numbers as a sum of two primes is unbounded.

5.7. Lemma. For any A ∈ P, we have

cal(A) = lim inf
n→∞

an
n2 = lim inf

n→∞
n

A(n)2 .
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Proof. The first equality is just the definition of the caliber of A. For an
integer n ≥ a1, if k = A(n), then ak ≤ n < ak+1 and therefore

ak
k2 ≤

n

A(n)2 <
ak+1

k2 .

Since k = A(n) increases to infinity as n→∞, it follows that

lim inf
k→∞

ak
k2 ≤ lim inf

n→∞
n

A(n)2 ≤ lim inf
k→∞

ak+1

k2 .

Moreover, since
ak+1

k2 =
(k + 1)2

k2

ak+1

(k + 1)2

and the sequence ((k + 1)2/k2) is convergent to 1, we have

lim inf
k→∞

ak+1

k2 = lim inf
k→∞

ak+1

(k + 1)2 = lim inf
k→∞

ak
k2 .

Therefore all the inferior limits considered here are equal. Hence the second
equality.

5.8. Proposition. Let A,B ∈ P and t ∈ N.

(1) If A� B then cal(A) ≤ cal(B).
(2) If B ⊂ A then cal(A) ≤ cal(B).
(3) We have cal(A[t[) = cal(A).
(4) We have cal(t+A) = cal(A).
(5) For t > 0, we have cal(t.A) = t. cal(A).
(6) If A[t[ = B[u[ for some t, u ∈ N, then cal(A) = cal(B).
(7) If A and B are close then cal(A) = cal(B).
(8) If an ≤ bn + cnν for some real constants c ≥ 0 and 0 ≤ ν < 2 and

for all n ∈ N∗, then cal(A) ≤ cal(B).
(9) If |an − bn| ≤ cnν for some real constants c ≥ 0 and 0 ≤ ν < 2 and

for all n ∈ N∗, then cal(A) = cal(B).

Proof. These properties follow directly from the definitions, using 2.2 in
some of them.

5.9. Lemma. For any A ∈ P, we have

s(A) ≥ 1
2 cal(A)

.

Proof. By 5.4, we have

s(A) ≥ n2

2an + 1
for all n ∈ N∗. Hence

s(A) ≥ lim sup
n2

2an + 1
.
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Moreover,

lim sup
n2

2an + 1
=

1
lim inf((2an + 1)/n2)

, lim inf
2an + 1
n2 = 2 cal(A).

Hence the result.

5.10. Corollary. For any A ∈ P, if cal(A) = 0 then s(A) =∞.

5.11. Remark. The converse of 5.10 is false. Indeed, for the set S of
the squares in N∗, we have cal(S) = 1 while s(S) = ∞, in view of 4.15.
We may even have cal(A) = ∞ and s(A) = ∞, as in the case of the set
A = {n3 : n ∈ N∗} of the cubes in N∗, in view of a result essentially due to
Fermat [6, Ch. 21]. A natural question is whether this A ∈ C(ET).

5.12. Definition. An infinite subset A of N is said to belong to the
restricted class C(RET) of Erdős–Turán if cal(A) = 0.

5.13. Theorem. Let A,B ∈ P and t ∈ N.

(1) If B ∈ C(RET) and A� B, then A ∈ C(RET).
(2) If B ∈ C(RET) and B ⊂ A then A ∈ C(RET).
(3) We have A ∈ C(RET) if and only if A[t[ ∈ C(RET).
(4) We have A ∈ C(RET) if and only if t+ A ∈ C(RET).
(5) For t > 0, we have A ∈ C(RET) if and only if t.A ∈ C(RET).
(6) If A[t[ = B[u[ for some t, u ∈ N, then A ∈ C(RET) if and only if

B ∈ C(RET).
(7) If A and B are close then A ∈ C(RET) if and only if B ∈ C(RET).
(8) If A ∈ C(RET), then s(A) =∞.
(9) If an = o(n2), then A ∈ C(RET).

(10) For any d ∈ N∗ and any r ∈ N, the arithmetic progression d.N+r ∈
C(RET).

(11) If B ∈ C(RET) and an ≤ bn + cnν for some real constants c ≥ 0
and 0 ≤ ν < 2 and for all n ∈ N∗, then A ∈ C(RET).

(12) If |an− bn| ≤ cnν for some real constants c ≥ 0 and 0 ≤ ν < 2 and
for all n ∈ N∗, then A ∈ C(RET) if and only if B ∈ C(RET).

Proof. These properties follow directly from the ones in 5.8–5.10.

5.14. Lemma. We have C(RET) ⊂ C(ET).

Proof. Indeed, in view of 5.13, if A ∈ C(RET) then, for any B ∈ P
such that B � A, we have B ∈ C(RET) and thus s(B) = ∞, so that
A ∈ C(ET).

5.15. Corollary. Every subset A of N which contains an infinite arith-
metic progression lies in C(ET). More generally , for any A ∈ P, if there is
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a subsequence (ank)k∈N∗ of (an) such that

lim
k→∞

ank/n
2
k = 0,

then A ∈ C(RET) and thus A ∈ C(ET).

The question as to whether C(RET) is a proper subset of C(ET) is an-
swered by the following characterization.

5.16. Theorem. We have C(RET)  C(ET) if and only if the conjecture
(GET) is true.

Proof. By 4.10, (GET) is equivalent to the condition S ∈ C(ET). Thus,
since cal(S) = 1, if (GET) is true then S ∈ C(ET)\C(RET), so that C(RET)
is a proper subset of C(ET).

Conversely, assume that C(RET)  C(ET), i.e. there exists A ∈ C(ET)
such that cal(A) = l > 0. Let t ∈ N∗ be such that tl > 1 and let B = t.A. By
4.8, B ∈ C(ET) and, by 5.8, cal(B) = tl > 1, i.e. lim inf bn/n2 > 1. So there
exists n0 ∈ N∗ such that inf{bn/n2 : n ≥ n0} > 1, i.e. for any n ≥ n0, we
have n2 < bn. Thus S[n2

0[ � B[bn0 [. Since B ∈ C(ET), we conclude, by 2.6
and 2.16, that S ∈ C(ET), i.e. (GET) is true.

5.17. Proposition. If B ∈ C(ET) \ C(RET) and A ∈ P are such that
an ≤ bn+cn2 for some real constant c ≥ 0 and all n ∈ N∗, then A ∈ C(ET).

Proof. Since B 6∈ C(RET), we have lim inf bn/n2 = l > 0. So there exists
n0 ∈ N∗ such that inf{bn/n2 : n ≥ n0} ≥ l/2, i.e. for n ≥ n0, we have
n2 ≤ (2/l)bn. Hence an ≤ bn+cn2 ≤ dbn for all n ≥ n0, where d is any fixed
integer ≥ 1 + 2c/l. Thus A[an0 [� d.B[bn0 [. Since B ∈ C(ET), we conclude,
by 2.6, 2.16 and 4.8, that A ∈ C(ET).

5.18. Corollary. For any A,B ∈ P, if B ∈ C(ET) and an ≤ bn + cnν

for some real constants c ≥ 0 and 0 ≤ ν < 2 and for all n ∈ N∗, then
A ∈ C(ET).

Proof. Assume that B ∈ C(ET) and that an ≤ bn + cnν for all n ∈ N∗,
with ν < 2. Then either B ∈ C(RET) and we conclude by 5.13 that A ∈
C(RET), hence A ∈ C(ET); or else B ∈ C(ET) \ C(RET) and we conclude
by 5.17 (since an ≤ bn + cnν ≤ bn + cn2 for all n) that A ∈ C(ET). Thus
the result holds in any case.

5.19. Corollary. For any A,B ∈ P, if |an − bn| ≤ cnν for some real
constants c ≥ 0 and 0 ≤ ν < 2 and for all n ∈ N∗, then A ∈ C(ET) if and
only if B ∈ C(ET).

5.20. Notations and remarks. Given a, b, ν ∈ R+ such that a > 0
and 0 ≤ ν < 2, let (xn) be the sequence in R defined by xn = an2 − bnν for
n ∈ N∗, and let B(a, b, ν) = {[xn] : n ∈ N∗}∩N∗ be the set consisting of the
positive integral parts [xn] of its terms.
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Note that only finitely many of the reals xn may be negative, since if
n1 is the smallest positive integer ≥ (b/a)1/(2−ν), then xn ≥ 0 for n ≥ n1.
Moreover,

xn+1 − xn = n(2a+ a/n− bnν−1εn),

where εn = (1 + 1/n)ν − 1 ∼ ν/n as n → ∞, so that nν−1εn ∼ νnν−2 has
limit 0, because ν < 2. It follows that limn→∞(xn+1 − xn) =∞. Therefore,
for large enough n, the integers [xn] form a strictly increasing sequence in N.
Hence B(a, b, ν) = {b1 < b2 < · · ·} lies in P, and there exist n0 ∈ N∗ and
t ∈ N such that bn = [xn+t] for n ≥ n0.

5.21. Proposition. For any real numbers a > 0, b ≥ 0 and 0 ≤ ν < 2,
the following two statements are equivalent :

(1) B(a, b, ν) ∈ C(ET).
(2) If A ∈ P is such that an ≤ xn = an2− bnν for large enough n, then

s(A) =∞.

Proof. Assume that the first statement holds and set B = B(a, b, ν). Let
A ∈ P be such that, for large enough n, the integers an ≤ xn, i.e. an ≤ [xn].
Then there exists an N ∈ N∗ such that an+t ≤ [xn+t] = bn for n ≥ N , i.e.
A[aN+t[� B[bN [. Since, by assumption, B ∈ C(ET), by 2.16 it follows that
B[bN [ ∈ C(ET) and therefore s(A[aN+t[) = ∞. Since A[aN+t[ ⊂ A, also
s(A) =∞. This shows that (1) implies (2).

Assume now that the second statement holds. Let A ∈ P be such that
A� B. Then an ≤ bn = [xn+t] ≤ xn+t for n ≥ n0. Thus, setting m = n0 +t,
for n ≥ m we have an−t ≤ xn. If an ≤ m + n for all n ∈ N∗, then we get
A � m + N, and since m + N ∈ C(ET), by 2.6 and 2.14, we conclude that
s(A) = ∞. So we may assume that there exists some k ∈ N∗ such that
ak > m + k, which implies, by induction, that an > m + n for all n ≥ k.
Let N = k + m and define A′ ∈ P by a′n = n − 1 for 1 ≤ n ≤ N − 1, and
a′n = an−t for n ≥ N . This is well defined, since

a′N−1 = N − 2 < m+N − t < aN−t = a′N ,

because N − t ≥ k. Moreover, for n ≥ N ≥ m, we have a′n = an−t ≤ xn.
Therefore, by the assumption, s(A′) = ∞. But A′ = A[aN−t[ ∪ F , where
F = N[N − 2] is a finite set, so that, by 2.11, we also have s(A[aN−t[) =∞
and thus s(A) =∞. Since this is valid for any A ∈ P such that A� B, we
see that B ∈ C(ET). This shows that (2) implies (1).

5.22. Definition. For any real numbers a > 0, b ≥ 0 and 0 ≤ ν < 2,
denote by (GET, a, b, ν) either one of the two equivalent statements in 5.21,
e.g.

(GET, a, b, ν) If A ∈ P is such that an ≤ an2 − bnν for large enough n,
then s(A) =∞.
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5.23. Theorem. The conjecture (GET) is equivalent to any statement
(GET, a, b, ν), where a, b, ν are real numbers such that a > 0, b ≥ 0 and
0 ≤ ν < 2.

Proof. Assume that (GET) is true. Let A ∈ P be such that an ≤ xn =
an2 − bnν for all n ≥ p and some p ∈ N∗. Let c be an integer ≥ a. Then
an ≤ cn2 − bnν ≤ cn2 for all n ≥ p. Hence A[ap[ � c.S[p2[, and since
S ∈ C(ET) by (GET), by 2.16 and 4.8 we obtain c.S[p2[ ∈ C(ET), so that
s(A[ap[) =∞ and thus s(A) =∞. Hence (GET, a, b, ν) holds true.

Assume now that (GET, a, b, ν) is true. Let c ∈ N∗ be such that ac > 1
and let C = c.B, where B = B(a, b, ν). By 5.21, B ∈ C(ET). So, by 4.8,
C ∈ C(ET). Moreover, for n ≥ n0, we have cn = cbn = c[xn+t] ≥ c[xn] >
c(an2−bnν−1), so that cn−n2 > (ac−1)n2−bcnν−c. Since ac−1 > 0 and
ν < 2, it follows that limn→∞((ac − 1)n2 − bcnν − c) = ∞. Consequently,
n2 < cn for large enough n. Therefore there exists some m ∈ N∗ such that
S[m2[ � C[cm[. Since C lies in C(ET), then, by 2.16, so does C[cm[. Thus
S[m2[ ∈ C(ET) and therefore S ∈ C(ET), by 2.6. Hence, by 4.10, (GET)
holds.

5.24. Definition. For A ∈ P, let

θ(A) =
1√

cal(A)
,

defined in R+.
Note that, cal(A) = 1/θ(A)2, so that A∈C(RET) if and only if θ(A) =∞.

5.25. Lemma. For A ∈ P, we have

θ(A) = lim sup
n→∞

n√
an

= lim sup
n→∞

A(n)√
n
.

Proof. In view of 5.7, we have

θ(A) =
1

lim inf
√
an/n2

=
1

lim inf
√
n/A(n)2

.

But, for any sequence (xn) in R+, we have 1/lim inf xn = lim sup(1/xn).
Hence θ(A) = lim sup(n/

√
an) = lim sup(A(n)/

√
n).

5.26. Proposition. For A,B ∈P, we have max(θ(A), θ(B))≤ θ(A∪B)
≤ θ(A) + θ(B). Equivalently ,

cal(A) cal(B)

(
√

cal(A) +
√

cal(B))2
≤ cal(A ∪B) ≤ min(cal(A), cal(B)).

Proof. Let C = A ∪ B. For any n ∈ N, we have C[n] = A[n] ∪ B[n], so
that C(n) ≤ A(n) +B(n), and therefore C(n)/

√
n ≤ A(n)/

√
n+B(n)/

√
n.
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Hence, in view of 5.25,

θ(C) = lim sup
C(n)√
n
≤ lim sup

A(n)√
n

+ lim sup
B(n)√
n

= θ(A) + θ(B).

On the other hand, since A and B are contained in C, in view of 5.8,
cal(C) ≤ min(cal(A), cal(B)), so that

θ(C) =
1√

cal(C)
≥ max

(
1√

cal(A)
,

1√
cal(B)

)
= max(θ(A), θ(B)).

5.27. Corollary. For A,B ∈ P, if A∪B lies in C(RET), then A or B
lies in C(RET).

Proof. Indeed, if neither A nor B is in C(RET), then θ(A) < ∞ and
θ(B) < ∞, hence, by 5.26, θ(A ∪ B) ≤ θ(A) + θ(B) < ∞ and therefore
A ∪B is not in C(RET).

5.28. Theorem. If there exist C ∈ C(ET) and A,B ∈ P \ C(ET) such
that C = A ∪B, then the conjecture (GET) is true.

Proof. Since A and B are not in C(ET), they are not in C(RET) either,
in view of 5.14. Hence, by 5.27, C = A ∪ B is not in C(RET). Thus C ∈
C(ET) \ C(RET). Hence C(RET)  C(ET) and, in view of 5.16, (GET) is
true.

5.29. Remark. An interesting question is whether the converse of 5.28
is true. In particular, if (GET) holds, we would have S ∈ C(ET) \ C(RET).
It is therefore natural to ask whether S is the union of two infinite subsets
A and B, neither of which lies in C(ET) (e.g. such that s(A) < ∞ and
s(B) <∞).

More generally, this raises the question of the truth of the following
statement:

(S?) If C = A ∪ B with A,B ∈ P, and if C ∈ C(ET), then A or B is in
C(ET).

Note that if A and B are arbitrary subsets of N such that A ∪ B ∈
C(ET) and if A is finite, then B ∈ C(ET). Indeed, since A is finite, we have
B[t[ = C[t[ for some t ∈ N, so that, by 2.17, C ∈ C(ET) implies that
B ∈ C(ET).

Also note that if (S?) were true, it would imply an easy proof of 2.18(2).
Indeed, let A ∈ P be such that A � 2.C. For r = 0, 1, let Ir = {n ∈ N∗ :
an ≡ r (mod 2)}, let Ar = {an : n ∈ Ir} and Cr = {cn : n ∈ Ir}, and define
Br = {[an/2] : n ∈ Ir}. Then A = A0 ∪ A1 � 2.C = 2.C0 ∪ 2.C1, with Ar
and Cr indexed by the same set Ir, so that Ar � 2.Cr (for r = 0, 1). We
thus have A0 = 2.B0 � 2.C0 and A1 = 1 + 2.B1 � 2.C1, so that Br � Cr
(for r = 0, 1). Now, since C = C0 ∪ C1 ∈ C(ET), and assuming the answer
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to the above question positive, we should have C0 or C1 in C(ET), which
would imply that s(B0) or s(B1) is∞, i.e. s(A0) = s(2.B0) = s(B0) =∞ or
s(A1) = s(1 + 2B1) = s(B1) =∞ (by 2.8 and 2.7), and therefore s(A) =∞.
Since this is valid for any A� 2.C, in P, we conclude that 2.C ∈ C(ET).
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