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1. Introduction. In this paper we study the sums of multiplicative
functions restricted to integers whose prime factors are small. Define the
classM∗ of nonnegative multiplicative functions by the following conditions:
h belongs to M∗ if

• there exist constants δ, 0 < δ < 1, and κ > 1 such that

(Ω∗1)
∑

p≤z
h(p) log p = κz +O(z(log z)−δ), z ≥ 2,

• there exists a fixed constant ε, 0 < ε < 1/2, and a constant b > 0 such
that

(Ω∗2)
∑

p,k≥2

h(pk)
pk(1−ε) ≤ b.

Let P (n) denote the largest prime divisor of a positive integer n, with
P (1) = 1. Our goal is to estimate the sum

M(x, y) :=
∑

n≤x
P (n)≤y

h(n)

for h ∈ M∗. We achieve this using a functional equation that is analogous
to that of (1.4) and (3.6) of [S] (see (3.10) below) and using an inductive
method originated in [Hi] and used also in [GM] and [S]. We express the
estimate using a class of solutions to the differential difference equation
(DDE) with delayed argument, namely,

(u%κ(u))′ = κ%κ(u)− κ%κ(u− 1), u > 1,(1.1)

with initial conditions

%κ(u) =
{

0, u ≤ 0,
κBκu

κ−1, 0 < u ≤ 1,(1.2)
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where Bκ = e−γκ/Γ (κ+ 1), with γ Euler’s constant, and Γ Euler’s Gamma
function. The function %κ generalizes Dickman’s function %. Also, through-
out the paper, we write

u =
log x
log y

.

Main Theorem. Suppose h ∈M∗. Then for all sufficiently large y and
for u satisfying

1 < u < (log y)δ/2/log log y,(1.3)

we have

M(x, y) =
x

log y
V (y)%κ(u)

{
1 +O

(
log(u+ 1)
(log y)δ/2

)}
,(1.4)

where

V (y) =
∏

p≤y

(
1 +

∞∑

k=1

h(pk)
pk

)
.

The Main Theorem is related to the Main Theorem of [dBvL], II. By
imposing a stronger set of conditions on the class of nonnegative multiplica-
tive functions, an asymptotic estimate of M(x, y) with error term is obtained
here.

It is not hard to show that M∗ is contained in a larger class M of
multiplicative functions where for each h ∈M,

• there exist constants δ, 0 < δ < 1, and κ > 0 such that

(Ω1)
∑

p≤z

h(p)
p

log p = κ log z +O((log z)1−δ), z ≥ 2,

• there exists a constant b > 0 such that

(Ω2)
∑

p,k≥2

h(pk)
pk

log pk ≤ b.

Previously, we established in [S] the estimate for the sum

m(x, y) :=
∑

n≤x
P (n)≤y

h(n)
n

.

Theorem 1. Suppose h ∈ M. Then for all sufficiently large y,

m(x, y) = V (y)
{
jκ(u) +O

(
log(u+ 1)

(log y)δ

)}
(1.5)

uniformly for

1 ≤ u ≤ exp
(

1
c

(log y)δ
)
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with c a suitable positive constant , and jκ satisfying the DDE

uj′κ(u) = κjκ(u)− κjκ(u− 1), u > 1,

and

jκ(u) =
{

0, u ≤ 0,
Bκu

κ, 0 < u ≤ 1,

with Bκ defined as in (1.2).

It was also shown in [S] that

V (y) =
Cκ
Bκ

(log y)κ
{

1 +O

(
1

(log y)δ

)}
,(1.6)

where

Cκ =
1

Γ (κ+ 1)
lim

s→1+0

∏

p

(
1 +

∞∑

k=1

h(pk)
pks

)(
1− 1

ps

)κ
.

We note that
%k(u) = j′κ(u), u > 0.

Theorem 1 was proved using the same inductive argument as in the proof
of the Main Theorem, and was based on the following mean value theorem
by H. Halberstam for h ∈ M.

Theorem 2. For all sufficiently large x, and h ∈ M,

m(x) :=
∑

n≤x

h(n)
n

= Cκ(log x)κ +O((logx)κ−δ).(1.7)

In Section 3 we deduce the following consequence of Theorems 1 and 2.

Proposition 1. Suppose h ∈ M∗. Then for all sufficiently large y,

M(x, y) =
x

log y
V (y)

{
%κ(u) +O

(
log(u+ 1)
u(log y)δ

)}
(1.8)

uniformly for the range of u in Theorem 1.

It is easily seen that Proposition 1 is a much weaker version of the
Main Theorem: It implies the validity of (1.4) for the range

1 < u ≤ D log log y
log log log y

,(1.9)

with a suitable constant D. The reason for the short u-range here is the
faster-than-exponential-decrease in %κ(u) (see Section 2). Nevertheless, (1.8)
acts as the start of an iterative process that is the heart of the proof of the
Main Theorem: Proposition 1 implies the Main Theorem for some initial
range of u. In the proof of the Main Theorem, it is shown that the size of
the error term cannot be reduced much further than stated. This is due also
to the fast decrease of %κ(u) as u increases.
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2. About %κ. The solutions of differential difference equations of type
(1.1) have been studied extensively by many authors (see for example [AO],
[GR], [Hs], and [Wh]). In this section, we look at several properties of %κ(u)
which will be crucial to proving the Main Theorem.

Lemma 1. For κ > 1, we have the following properties of %κ(u):

(i) %κ(u) = exp
{
−u log u

(
1 +O

(
log log u

log u

))}
as u→∞.

(ii) −%′κ(u)/%κ(u) is an increasing function for u > 0.
(iii) −%′κ(u)/%κ(u) ≤ log(2u log u) (u ≥ e2 + 1).
(iv) %κ(u−t)/%κ(u) ≤ (2u log u)t, uniformly for u > e2+1 and 0 < t ≤ u.
(v) For any positive number σ, we have

x−σ � %κ(u)

for sufficiently large y and u0 < u < yσ/C , where u0 depends on C, which
derives from the O-constant in (i).

Remarks. (1) In the proofs, we assume (i) and (ii): (i) is given (in
different, but much stronger forms) in various places, for example in [Hs],
and in [Sm], but for our present purpose this weak form suffices. In [Hs]
Hensley gave an elementary proof of (ii) without using (i).

(2) Parts (iii) and (iv) are proved below with the same argument used
in the proof of Lemma 1 in [Hi]. We remark that the lemma generalizes
some of the properties of Dickman’s % function. (The reader is referred
to P. Moree’s thesis [M] for much more information about the generalized
Dickman function.)

(3) In (iv), the right side is replaced by a constant if 1 < u < e2 + 1.
(4) We note that using a stronger form of (i) and Lemmas 4.3 and 4.4

of [Sm], one easily obtains

%κ(u)� u−2u, u > κ,

which implies (v).

Proof. First, we prove (iii). We have, for all κ > 1,

u%κ(u) = κ

1�

0

%k(u− v) dv, u > 1,(2.1)

so that

u = κ

1�

0

%κ(u− v)
%κ(u)

dv = κ

1�

0

exp
( u�

u−v

−%′κ(s)
%κ(s)

ds

)
dv.
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For convenience, let f(s) = −%′κ(s)/%κ(s). Since f(s) is nondecreasing for
s > 0 by (iii), we have

u ≥ κ
1�

0

exp{vf(u− 1)} dv = κ
ef(u−1) − 1
f(u− 1)

.(2.2)

The rest of the proof relies on the fact that

φκ(x) := κ
ex − 1
x

is an increasing function of x for all x ∈ R. We have, on the one hand,

u ≥ φκ(f(u− 1)), u > 1,

by (2.2). On the other hand, we have

φκ(log{2(u− 1) log(u− 1)}) = κ
2(u− 1) log(u− 1)− 1
log(2(u− 1) log(u− 1))

>
2(u− 1) log(u− 1)− 1
log(2(u− 1) log(u− 1))

for κ > 1. If we show that the expression on the right of the last inequality
is at least u, and thus, at least φκ(f(u−1)), then we have the desired result
by the monotonicity of φκ(·). Indeed, setting x = u− 1, we observe that

2x log x− 1 ≥ (x+ 1) log(2x log x)(2.3)

for x ≥ e2, since at x = e2, we have

4e2 − 1 ≥ (e2 + 1) log(4e2),

and the left hand side of (2.3) grows faster than the right hand side for
x ≥ e2.

Now we use (iii) to prove (iv). First, suppose u− t ≥ e2 + 1. We have

%κ(u− t)
%κ(u)

= exp
{ u�

u−t
f(s) ds

}

≤ exp
{ u�

u−t
log(2s log s) ds

}
≤ (2u log u)t,

by (iii). If u ≥ e2 + 1 and 0 ≤ u− t < e2 + 1, then

%κ(u− t)
%κ(u)

= exp
{ u�

u−t
f(s) ds

}

= exp
{ e2+1�

u−t
f(s) ds+

u�

e2+1

f(s) ds
}
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≤ exp
{ u�

e2+1

log(2s log s) ds
}

exp
{ e2+1�

u−t
f(s) ds

}

≤ (2u log u)u−e
2−1 exp

{ e2+1�

u−t
f(s) ds

}
,

by (iii). Since f(·) is increasing, the last expression is at most

(2u log u)u−e
2−1 · (2u log u)e

2+1−(u−t) = (2u log u)t.

Part (v) is deduced using (i). Since

log %κ(u) = −u log u
{

1 +O

(
log log u

log u

)}
≥ −Cu log u

for a suitable constant C and u ≥ u0, we have

%κ

(
log x
log y

)
≥ x−C

log(log x/log y)
log y ≥ x−σ

for any σ > 0, provided
log x
log y

< yσ/C .

Lemma 1(i) implies that %κ(u)→ 0 as u→∞. Also, from the definition
we see that %κ(u) increases on the range 0 < u < 1 (for κ > 1) and thus,
there is at least one point u > 1 at which %κ achieves a maximum.

Proposition 2. Let κ > 1. Then %′κ(u) has one and only one zero uκ,
and it lies between 1 and κ.

The proof was first given in [AO] using an elementary argument.

3. Proof of Proposition 1. In the current section we derive the func-
tional equation under the conditions of M∗. We prove several lemmas to
express relationships between sums m(x, y) and M(x, y), and these will be
used in the proof of Proposition 1.

3.1. Preliminary lemmas. By evaluating (Ω∗1) at p and p−1 respectively
and taking the difference we deduce that

h(p)� p(log p)−1−δ(3.1)

for h ∈M∗. By Abel summation we get
∑

p≤z

h(p)
p

(log p)1−δ � (log z)1−δ,(3.2)

∑

p>z

h(p)
p(log p)δ

� (log z)−δ.(3.3)



Sums of multiplicative functions 111

From (3.3) we see that
∑

p

h(p)
p(log p)δ

<∞.(3.4)

We observe that (Ω∗2) implies not only (Ω2), but also the following lemma.

Lemma 2. If h ∈ M∗ then
∑

pk>x
p,k≥2

h(pk)
pk

log pk �ε x
−ε/2.(3.5)

Proof. We prove that
∑

pk>x
p,k≥2

h(pk)
pk

log pk ≤ bx−ε/2

for b and ε as in (Ω∗2), for all sufficiently large values of x, depending only
on ε. Indeed, we have

xε/2
∑

pk>x
p,k≥2

h(pk)
pk

log pk <
∑

pk>x
p,k≥2

h(pk)
pk

p(ε/2)k log pk

≤
∑

pk>x
p,k≥2

h(pk)
pk

pk(ε/2+log log pk/log pk)

≤
∑

p,k≥2

h(pk)
pk(1−ε) (if log log x/log x ≤ ε/2)

≤ b,
by (Ω∗2).

Lemma 3. Let h ∈M∗. Then

M(x, y) ≤ Dx m(x, y)
log(ex)

, x ≥ 1,(3.6)

where D is a suitable constant. In particular (taking y ≥ x),

M(x) :=
∑

n≤x
h(n) ≤ Dx m(x)

log(ex)
,(3.7)

where

m(x) :=
∑

n≤x

h(n)
n

.(3.8)

Remark. Inequality (3.7) is a little sharper than an exercise in [HaT],
Chapter 0.
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Proof. All we need here is the following weak consequence of (Ω∗1): There
exists a constant a such that

∑

p≤z
h(p) log p ≤ az, z ≥ 1.(3.9)

We have the equation

M(x, y) logx =
∑

n≤x
P (n)≤y

h(n) log
x

n
+

∑

n≤x
P (n)≤y

h(n) logn = T + S,(3.10)

say. Since log z ≤ z − 1 for all z > 0, we have

0 ≤ T ≤ xm(x, y)−M(x, y).

Also,

S =
∑

mpk≤x
p-m

P (mp)≤y

h(m)h(pk) log pk

≤
∑

mp≤x
P (mp)≤y

h(m)h(p) log p+
∑

mpk≤x
k≥2

P (mp)≤y

h(m)h(pk) log pk

≤
∑

m≤x
P (m)≤y

h(m)
∑

p≤x/m
h(p) log p+

∑

p,k≥2
p≤y

M

(
x

pk
, y

)
h(pk) log pk

≤ axm(x, y) +
∑

p,k≥2
p≤y

x

pk
m

(
x

pk
, y

)
h(pk) log pk,

by (3.9) and the obvious inequalityM(x, y) ≤ xm(x, y) applied to the second
sum. Hence, by (Ω2),

S ≤ axm(x, y) + bxm(x, y).

Therefore,

M(x, y) log(ex) ≤ (1 + a+ b)xm(x, y)

and this proves (3.6) with D = 1+a+b. Inequality (3.7) restates (3.6) when
y ≥ x.

The above estimate of M(x, y) is somewhat crude, nevertheless, it proves
to be helpful for later use. More precisely, we can estimate M(x, y) with an
error term involving m(x, y) as in the following lemma:
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Lemma 4. If h ∈ M∗, then

M(x, y) logx =
∑

m≤x
P (m)≤y

h(m)
∑

p≤min(x/m,y)

h(p) log p(3.11)

+O(xm(x, y)(logx)−δ), x, y ≥ 2.

In particular , when y ≥ x ≥ 2, we have

M(x) log x =
∑

m≤x
h(m)

∑

p≤x/m
h(p) log p+O(xm(x)(logx)−δ).(3.12)

Proof. We start again from the identity (3.10). Suppose 2 ≤ y ≤ x. We
have

S =
∑

n≤x
P (n)≤y

h(n) logn =
∑

mpk≤x
p-m

P (mp)≤y

h(m)h(pk) log pk,

and the main contribution to the sum S comes from the terms corresponding
to k = 1, namely,

∑

mp≤x
P (mp)≤y
p-m

h(m)h(p) log p =
∑

m≤x
P (m)≤y

h(m)
∑

p≤min(x/m,y)
p-m

h(p) log p

=
∑

m≤x
P (m)≤y

h(m)
∑

p≤min(x/m,y)

h(p) log p−
∑

mp≤x
p|m

P (mp)≤y

h(m)h(p) log p.

This gives

(3.13)
∣∣∣M(x, y) logx−

∑

m≤x
P (m)≤y

h(m)
∑

p≤min(x/m,y)

h(p) log p
∣∣∣

≤ T +
∑

mp≤x
p|m

P (mp)≤y

h(m)h(p) log p+
∑

mpk≤x
p,k≥2

P (mp)≤y

h(m)h(pk) log pk

= T +
∑

lpk+1≤x
p-l

P (lp)≤y

h(l)h(pk)h(p) log p+
∑

mpk≤x
p,k≥2

P (mp)≤y

h(m)h(pk) log pk

≤ T +
∑

pk+1≤x
p≤y

M

(
x

pk+1 , y

)
h(pk)h(p) log p+

∑

p,k≥2
p≤y

M

(
x

pk
, y

)
h(pk) log pk.



114 J. M. Song

Denote the two sums on the right side of (3.13) by S ′ and S′′ respectively.
We shall show that S′, S′′, and also T , have order of magnitude

xm(x, y)(logx)−δ.

The terms in S′ corresponding to k = 1 contribute, by (3.6) and then (3.1),
at most

xD
∑

p≤√x

m(x/p2, y)
log(ex/p2)

· h(p)
p(log p)δ

� xm(x, y)
log(ex1/3)

∑

p≤x1/3

h(p)
p(log p)δ

+ xm(x, y)
∑

p>x1/3

h(p)
p(log p)δ

� xm(x, y)(logx)−δ

by (3.4) and (3.3). The remaining terms of S ′ are, again by (3.6) and then
(3.1), at most of order

xm(x, y)
log(e

√
x)

∑

p,k≥2
pk+1≤√x

h(pk)
pk+1 h(p) log p+xm(x, y)

∑

p,k≥2√
x<pk+1≤x

h(pk)
pk+1 ·

h(p) log p
log(ex/pk+1)

� xm(x, y)
log(e

√
x)

∑

p,k≥2
pk+1≤√x

h(pk)
pk

(log p)−δ + xm(x, y)
∑

p,k≥2
pk+1>

√
x

h(pk)
pk

(log p)−δ

� xm(x, y)
log x

+ xm(x, y)
∑

p,k≥2
pk>x1/3

h(pk)
pk

(log p)−δ

� xm(x, y)
log x

+
xm(x, y)
xε/6

� xm(x, y)
log x

by (Ω∗2) (and thus, by (Ω2)) and Lemma 2. The second sum S ′′ is, for the
same reasons, at most of order

x

log(e
√
x)

∑

p,k≥2
pk≤√x

m

(
x

pk
, y

)
h(pk)
pk

log pk + x
∑

p,k≥2
pk>
√
x

m

(
x

pk
, y

)
h(pk)
pk

log pk

� xm(x, y)
log x

+
xm(x, y)
xε/4

� xm(x, y)
log x

.

Finally, we estimate T . We see that, by Lemma 3,
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T =
∑

n≤x
P (n)≤y

h(n) log
x

n
=

x�

1

M(t, y)
dt

t
�

x�

1

m(t, y)
log(et)

dt

≤ m(x, y)
x�

1

dt

log(et)
� x

m(x, y)
log x

.

This proves the lemma.

3.2. Deduction of Proposition 1 from Theorem 1. The proof of Propo-
sition 1 is obtained by combining Lemmas 3, 4 and Theorem 1. It is quite
surprising that Proposition 1 is a rather straightforward consequence of
Theorem 1.

From Lemma 4 we obtain

M(x, y) log x =
∑

m≤x/y
P (m)≤y

h(m)
∑

p≤y
h(p) log p(3.14)

+
∑

x/y<m≤x/2
P (m)≤y

h(m)
∑

p≤x/m
h(p) log p+O

(
x
m(x, y)
(logx)δ

)
.

Note that in the second sum on the right the outer index m runs only up
to x/2 since p ≥ 2. We look at each of the three terms on the right side
assuming, for the moment, u ≥ 2. Consider the first sum on the right. By
(Ω∗1), it is equal to

∑

m≤x/y
P (m)≤y

h(m){κy +O(y(log y)−δ)} = κyM

(
x

y
, y

)
{1 +O((log y)−δ)}.

By Lemma 3, it is of order

yM

(
x

y
, y

)
� x

m(x/y, y)
log y

� x
V (y)
log y

, u ≥ 2,

since
m(x, y) ≤ V (y).

Applying (Ω∗1) again to the second sum on the right of (3.14) we get

(3.15)
∑

x/y<m≤x/2
P (m)≤y

h(m)
{
κ
x

m
+O

(
x

m

(
log

x

m

)−δ)}

= κx{m(x/2, y)−m(x/y, y)}+O

( ∑

x/y<m≤x/2
P (m)≤y

h(m)
x

m

(
log

x

m

)−δ)
.

The error term is at most of order
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∑

x/y<m≤x/2
P (m)≤y

h(m)
x/m�

3/2

dt

(log t)δ
�

y�

2

M

(
x

t
, y

)
dt

(log t)δ
,

and by Lemma 3 it is, in turn, at most of order

x

y�

2

m(x/t, y)
t log(x/t)

dt

(log t)δ
� x

V (y)
log(x/y)

y�

2

dt

t(log t)δ

� x
V (y)
log y

(log y)1−δ � xV (y)(log y)−δ, u ≥ 2.

The main term on right side of (3.15) is equal to, by Theorem 1,

κV (y)x
(
jκ

(
u− log 2

log y

)
− jκ(u− 1)

)
+O

(
xV (y)

log(u+ 1)
(log y)δ

)

= κxV (y)(jκ(u)− jκ(u− 1))

+O

(
xV (y)

(
jκ(u)− jκ

(
u− log 2

log y

)
+

log(u+ 1)
(log y)δ

))

= κxV (y)(jκ(u)− jκ(u− 1)) +O

(
xV (y)

log(u+ 1)
(log y)δ

)
,

since

jκ(u)− jκ
(
u− log 2

log y

)
=

u�

u−log 2/log y

j′κ(t) dt� (log y)−1.

Thus, we get

(3.16) M(x, y) logx = κxV (y){jκ(u)−jκ(u−1)}+O

(
xV (y)

log(u+ 1)
(log y)δ

)
,

which reduces, after division by log x, to

M(x, y) = x
V (y)
log y

{
j′κ(u) +O

(
log(u+ 1)
u(log y)δ

)}
.

Now suppose 1 ≤ u < 2. Again, (3.14) becomes

M(x, y) logx =
∑

m≤x/y
h(m)

∑

p≤y
h(p) log p+

∑

x/y≤m≤x/2
P (m)≤y

h(m)
∑

p≤x/m
h(p) log p

+O

(
x
m(x, y)
(log x)δ

)

=
∑

m≤x/y
h(m){κy +O(y(log y)−δ)}
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+
∑

x/y<m≤x/2
P (m)≤y

h(m)
{
κ
x

m
+
(
x

m

(
log

x

m

)−δ)}
+O

(
x
m(x, y)
(log x)δ

)

= κx

(
m

(
x

2
, y

)
−m

(
x

y
, y

))
+ κyM

(
x

y

)
(1 +O((log y)−δ))

+O

(
x
m(x, y)
(logx)δ

)
+O

( ∑

x/y<m≤x/2
P (m)≤y

h(m)
x

m

(
log

x

m

)−δ)

by (Ω∗1). We note that the last error term on the right side is at most of the
same order as the error term on the right side of (3.15). Since 1 < x/y ≤ y,
Theorem 2 gives

m

(
x

y
, y

)
= m

(
x

y

)
= Cκ log

(
x

y

)κ
+O

((
log
(
x

y

))κ−δ)

= V (y)Bκ(u− 1)κ +O((log y)κ−δ)

= V (y)jκ(u− 1) +O((log y)κ−δ)

= V (y)
{
jκ(u− 1) +O

(
1

(log y)δ

)}

in the first term on the right, for 0 ≤ u − 1 < 1. Together with Theorem 1
we can now deduce, as before, that

(3.17) M(x, y) log x

= κxV (y){jκ(u)− jκ(u− 1)}+O

(
xV (y)

{
jκ(u)− jκ

(
u− log 2

log y

)})

+ κyM

(
x

y

)
(1 +O((log y)−δ)) +O

(
xV (y)

{
log(u+ 1)

(log y)δ

})

= xV (y)
{
uj′κ(u) +O

(
log(u+ 1)

(log y)δ
+

1
log y

)}

+ κyM

(
x

y

)
(1 +O((log y)−δ)).

To estimate the sum M(·) we use equations (3.12) and (Ω∗1):

M(w) logw =
∑

m≤w
h(m)

{
κ
w

m
+O

(
w

m

(
log

ew

m

)−δ)}
+O

(
w

m(w)
(logw)δ

)

= κw
∑

m≤w

h(m)
m

+O

(
w

m(w)
(logw)δ

)
+O

(w�

2

M

(
w

t

)
dt

(log et)δ

)
.
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The integral above is at most of order

w

w�

2

m(w/t)
t log(ew/t)

dt

(log t)δ
� w(logw)κ−δ

1�

0

(1− v)κ−1v−δ dv

by (3.7) and Theorem 2. Thus,

M(w) logw = wm(w)(κ+O((logw)−δ)),

and so
M(w) = κCκw(logw)κ−1 +O(w(logw)κ−1−δ).(3.18)

This gives

yM

(
x

y

)
� x log

(
x

y

)κ−1

� xV (y)
(u− 1)κ−1

log y
,

and thus (3.17) reduces to

M(x, y) logx = xV (y)
{
uj′κ(u) +O

(
(u− 1)κ−1

log y
+

log(u+ 1)
(log y)δ

)}
.

After division by log x and recalling that 1 ≤ u < 2, we get

M(x, y) = x
V (y)
log y

{
j′κ(u) +O

(
log(u+ 1)
u(log y)δ

)}
.

Since j′κ(u) = %κ(u), this completes the proof of Proposition 1.

4. Proof of the Main Theorem

4.1. In this subsection, we establish the lemmas that will help us in
proving the Main Theorem by an inductive method. For the remainder of
the section, we assume

max(e2 + 2, κ) < u ≤ (log y)δ/2

log log y
.(4.1)

We have seen in Section 2 that in this range %κ is monotonically decreasing.

Lemma 5. For h ∈ M∗, and for a fixed θ, 1/2 ≤ θ ≤ 1, we have

(4.2)
∑

p≤yθ
%κ

(
u− log p

log y

)
h(p)
p

log p

= κ log y ·
θ�

0

%κ(u− v) dv +O(%κ(u)(log y)1−δ/2),

uniformly in u satisfying (4.1).
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Proof. We introduce the sum

H(t) :=
∑

p≤t
h(p) log p = κ(t− 2) +O(t(log t)−δ), t ≥ 2,(4.3)

by (Ω∗1). We can write the sum on the left of (4.2) as

(4.4)
yθ�

2−
t−1%κ

(
u− log t

log y

)
dH(t)

=
yθ�

2−
t−1%κ

(
u− log t

log y

)
d(H(t)− κ(t− 2)) + κ

yθ�

2

t−1%k

(
u− log t

log y

)
dt.

Using (4.3), we integrate the first integral on the right by parts to get

(4.5)
yθ�

2−
t−1%κ

(
u− log t

log y

)
dH(t)

= κ

yθ�

2

t−1%κ

(
u− log t

log y

)
dt

+O

(
%κ(u− θ)
(log y)δ

+
yθ�

2

{
%κ
(
u− log t

log y

)

t2
+

∣∣∣∣
%′κ
(
u− log t

log y

)

t2 log y

∣∣∣∣
}

t dt

(log t)δ

)
.

By Lemma 1(iii), the integral in the error term on the right of (4.5) is at
most of order
yθ�

2

%κ
(
u− log t

log y

)

t(log t)δ

{
1 +

log(2u log u)
log y

}
dt� (log y)1−δ

θ�

log 2/log y

%κ(u− v)
vδ

dv

uniformly on the interval (4.1). Using Lemma 1(iv), we have

(log y)1−δ
θ�

log 2/log y

%κ(u− v)
vδ

dv � (log y)1−δ%κ(u)(2u log u)θ
θ�

0

dv

vδ
(4.6)

� (log y)1−δ/2%κ(u)

on the range (4.1). Also,

%κ(u− θ)
(log y)δ

� %κ(u)
(2u log u)θ

(log y)δ
� %κ(u),(4.7)

if u satisfies (4.1), by Lemma 1(iv). Therefore, from (4.5)–(4.7), we obtain

(4.8)
yθ�

2−
t−1%κ

(
u− log t

log y

)
dH(t)− κ

yθ�

2

t−1%κ

(
u− log t

log y

)
dt

� (log y)1−δ/2%κ(u).



120 J. M. Song

Now we look at the second integral on the left of (4.8). Again using v =
log t/log y, we get

κ

yθ�

2

t−1%κ

(
u− log t

log y

)
dt = κ log y ·

θ�

log 2/log y

%κ(u− v) dv

= κ log y ·
θ�

0

%κ(u− v) dv

+O

(
log y · %κ

(
u− log 2

log y

) log 2/log y�

0

dv

)

= κ log y ·
θ�

0

%κ(u− v) dv +O(%κ(u)).

Therefore we arrive at
yθ�

2−
t−1%κ

(
u− log t

log y

)
dH(t) = κ log y ·

θ�

0

%κ(u− v) dv +O(%κ(u)(log y)1−δ/2)

on the range (4.1). This completes the proof of the lemma.

Lemma 6. Suppose h ∈ M∗. Then for y sufficiently large we have
∑

pk+1≤x
p≤y

%κ

(
u− log pk+1

log y

)
h(pk)
pk
· h(p)
p

log p� %κ(u)(u log u),(4.9)

uniformly in u satisfying (4.1).

Proof. By Lemma 1(iv), we note that the sum is at most

%κ(u)
∑

pk+1≤x
p≤y

h(pk)
pk
· h(p)
p

log p · (2u log u)log pk+1/log y.(4.10)

First, consider the sum of terms with k = 1. It is at most of order

%κ(u)
∑

p≤min(
√
x,y)

h(p)
p

(log p)−δ(2u log u)log p2/log y

� %κ(u)u log u
∑

p≤√y

h(p)
p

(log p)−δ +%κ(u)(u log u)2
∑

√
y<p≤y

h(p)
p

(log p)−δ

� %κ(u)(u log u) + %κ(u)(u log u)2(log y)−δ

� %κ(u)(u log u),
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by (3.1), (3.3), and by (3.4) on the range (4.1). Now we look at the sum of
terms in (4.10) with k ≥ 2. They contribute at most

(4.11) %κ(u)(u logu)
∑

pk+1≤x
p≤y

h(pk)
pk

(log p)−δ(2u log u)klog p/log y

= %κ(u)(u log u)
∑

pk+1≤x
p≤y

h(pk)(log p)−δp−k{1−log(2u logu)/log y}.

Since
log(2u log u) = log 2 + log u+ log log u

≤ log 2 +
δ

2
log log y + log log log y,

we have
log(2u log u)

log y
≤ δ log log y

log y
< ε

in the range (4.1), and for all sufficiently large y. Thus, the sum in (4.11) is
at most %κ(u)(u log u) by (Ω∗2), and this completes the proof of the lemma.

Lemma 7. For h ∈ M∗, we have

∑

p,k≥2
pk≤x
p≤y

h(pk)
pk

log pk · %κ
(
u− log pk

log y

)
� %κ(u)(u log u)

for u satisfying (4.1) and for all sufficiently large y.

Proof. We observe that

1
%κ(u)

∑

p,k≥2
pk≤x
p≤y

h(pk)
pk

log pk ·%κ
(
u− log pk

log y

)
�

∑

p,k≥2
pk≤x
p≤y

h(pk)
pk

log pk ·pkα,(4.12)

where
α = log(2u log u)/log y

by Lemma 1(iv). We separate the sum on the right side into two parts: one
corresponding to pk ≤ log y, and the other to pk > log y. The first part is at
most of order

∑

p,k≥2
pk≤log y

h(pk)
pk

log pk · (log y)α ≤ b(2u log u)log log y/log y � u log u
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by (Ω2), for all sufficiently large values of y. For the part that corresponds
to the condition pk > log y we have

α+ log log pk/log pk < α+ log log y/log y < ε

for sufficiently large y, thus
∑

p,k≥2
pk>log y
p≤y

h(pk)
pk

log pk · pkα �
∑

p,k≥2

h(pk)
pk(1−ε) .

By (Ω∗2) this is at most O(1) and therefore,
∑

p,k≥2
pk≤x
p≤y

h(pk)
pk

log pk · pkα � u log u,

giving us the claim.

Lemma 8. We have
x�

1

%κ

(
log t
log y

)
dt� x%κ(u),

uniformly for
1 < u ≤ √y.(4.13)

Proof. Once again, if we let v = log t/log y, the integral in the lemma
becomes

log y ·
u�

0

%κ(v)yv dv = x log y ·
u�

0

%κ(u− v)y−v dv

= %κ(u)x log y ·
u�

0

%κ(u− v)
%κ(u)

y−v dv

� %κ(u)x log y ·
u�

0

(
2u log u

y

)v
dv,

by Lemma 1(iv). If u satisfies (4.13), this is � x%κ(u).

4.2. Proof of the Main Theorem. The proof of the Main Theorem is
analogous to that of Theorem 1 (see [S]), but is more delicate because of the
rapid decline of %κ(u) as u→∞.

For u ≥ 1, define ∆(u, y) by the following formula:

M(x, y) =
x

log y
V (y) %κ(u){1 +∆(u, y)}.(4.14)

We have, a priori,
∆(u, y) = o(1)
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as y →∞ for the small range (1.9), by virtue of Proposition 1; in particular,
for any positive fixed u0, there exists K = K(u0) such that we have

|∆(u, y)| ≤ K log(u+ 1)
(log y)δ/2

, 1 < u ≤ u0,(4.15)

from the fact that the function %κ is bounded from below for small values
of u. This proves the Main Theorem in the range 1 ≤ u ≤ u0. Let

∆∗(u, y) := sup
1<u′≤u

|∆(u′, y)|.

Then our goal here is to prove

∆∗(u, y)� log(u+ 1)
(log y)δ/2

for all sufficiently large values of y and for a range of u greater than (1.9).
Here, we again use (3.13), and estimate each of T , S ′ and S′′ as well as the
term on the left side of (3.13) for all

u ≥ u0 = max(e2 + 2, κ+ 2),

with ∆(u, y) defined by (4.14). Suppose we are in the range (4.1). First, we
write

T =
∑

n≤x
P (n)≤y

h(n) log
x

n
=

x�

1

M(t, y)
dt

t
=

y�

1

M(t)
dt

t
+
x�

y

M(t, y)
dt

t
.

We deduce that the first integral on the right is at most of order
y�

1

(log t)κ−1 dt� y(log y)κ � yV (y) =
x

log y

(
x

y log y

)−1

V (y)

� xV (y)
log y

x−1/2 � xV (y)
log y

%κ(u),

by (3.18), (1.6), and Lemma 1(v), for the range (4.1). The second integral
is equal to, with (4.14),
x�

y

t

log y
V (y)%κ

(
log t
log y

)(
1 +∆

(
log t
log y

, y

))
dt

t

≤ V (y)
log y

x�

y

%κ

(
log t
log y

)
dt (1 +∆∗(u, y))� xV (y)

log y
%κ(u)(1 +∆∗(u, y))

by Lemma 8. Thus,

T � xV (y)
log y

%κ(u) (1 +∆∗(u, y)).
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Now turn to S′′. We have

S′′ =
∑

pk≤x
p≤y
k≥2

M

(
x

pk
, y

)
h(pk) log pk

=
∑

pk≤x/y
p≤y
k≥2

M

(
x

pk
, y

)
h(pk) log pk +

∑

x/y<pk≤x
p≤y
k≥2

M

(
x

pk

)
h(pk) log pk.

The first sum is at most of order
xV (y)
log y

∑

pk≤x/y
p≤y, k≥2

h(pk)
pk

log pk · %κ
(
u− log pk

log y

)
(1 +∆∗(u, y))

� xV (y)
log y

%κ(u)(2u log u)(1 +∆∗(u, y))

by Lemma 7. The second sum in S ′′ is at most

xm(y)
∑

x/y<pk≤x
p≤y
k≥2

h(pk)
pk

log pk � xV (y)
(
x

y

)−ε/2
,

first by Lemma 3, then by Lemma 2. Since x/y >
√
x,

(
x

y

)−ε/2
� x−ε/4 � x−ε/5

log y
� %κ(u)

log y
,

for all y sufficiently large due to Lemma 1(v). Similarly, we see that

(4.16) S′ =
∑

pk+1≤x/y
p≤y

M

(
x

pk+1 , y

)
h(pk)h(p) log p

+
∑

x/y<pk+1≤x
p≤y

M

(
x

pk+1

)
h(pk)h(p) log p

� xV (y)
log y

∑

pk+1≤x
p≤y

h(pk)
pk
· h(p)
p

log p · %κ
(
u− log pκ+1

log y

)
(1 +∆∗(u, y))

+ xV (y)
∑

pk+1>x/y
p≤y

h(pk)
pk
· h(p)
p

log p.
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By Lemma 6, we see that the first sum on the right side of (4.16) is of the
order

x
V (y)
log y

%κ(u)(u logu)(1 +∆∗(u, y))� x
V (y)
log y

%κ(u)(log y)δ/2(1 +∆∗(u, y)).

Also, the second sum is, by (3.1), at most

xV (y)
∑

pk+1>x/y
p≤y

h(pk)
pk

(log p)−δ ≤ xV (y)
∑

pk≥x/y2

p≤y, k≥2

h(pk)
pk

(if u ≥ 3)

� xV (y)
(
x

y2

)−ε/2
(by Lemma 2)

� xV (y)(log y)−δ/2%κ(u),

again by Lemma 1(v). Therefore, from (3.13) we have

M(x, y) logx =
∑

m≤x
P (m)≤y

h(m)
∑

p≤min(x/m,y)

h(p) log p(4.17)

+O

(
xV (y)
log y

%κ(u) (log y)1−δ/2(1 +∆∗(u, y))
)
.

Denote the sum on the right side of (4.17) by SM . By changing the order of
summation, we come to

SM =
∑

p≤y

( ∑

m≤x/p
P (m)≤y

h(m)
)
h(p) log p =

∑

p≤y
M

(
x

p
, y

)
h(p) log p

= x
V (y)
log y

∑

p≤y

h(p)
p

log p · %κ
(
u− log p

log y

){
1 +∆

(
u− log p

log y
, y

)}
.

The main term in the summation equals, by Lemma 5 with θ = 1,

κ log y ·
1�

0

%κ(u− v) dv +O(%κ(u)(log y)1−δ/2).

Thus,

SM = κxV (y)
1�

0

%κ(u− v) dv

+ x
V (y)
log y

{ ∑

p≤y1/2

h(p)
p

log p · %κ
(
u− log p

log y

)
∆

(
u− log p

log y
, y

)
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+
∑

y1/2<p≤y

h(p)
p

log p · %κ
(
u− log p

log y

)
∆

(
u− log p

log y
, y

)

+O(%κ(u)(log y)1−δ/2)
}
.

Applying Lemma 5 with θ = 1/2 and θ = 1 respectively to the two sums on
the right side, we get from (4.17),

(4.18)
∣∣∣M(x, y) logx− κxV (y)

1�

0

%κ(u− v) dv
∣∣∣

≤ xV (y)
log y

{
κ log y ·

1/2�

0

%κ(u− v) dv ∆∗(u, y)

+ κ log y ·
1�

1/2

%κ(u− v) dv ∆∗(u− 1/2, y)

+O(%κ(u)(1 +∆∗(u, y))(log y)1−δ/2)
}
.

Dividing both sides of the equation (4.18) by xV (y)%κ(u)u, and using (2.1)
we infer that

|∆(u, y)|

≤ κ

u%κ(u)

{ 1/2�

0

%κ(u− v) dv ∆∗(u, y) +
1�

1/2

%κ(u− v) dv∆∗(u− 1/2, y)
}

+O

(
1 +∆∗(u, y)
u(log y)δ/2

)
,

and we write the right side as

I(u)∆∗(u, y) + (1− I(u))∆∗(u− 1/2, y) +O

(
1 +∆∗(u, y)
u(log y)δ/2

)
,

where

I(u) :=
κ

u%κ(u)

1/2�

0

%κ(u− v) dv.

We note that since %κ is decreasing on the range (4.1), we have

1/2�

0

%κ(u− v) dv <
1�

1/2

%κ(u− v) dv,
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and hence

I(u) ≤ κ

2u%κ(u)

( 1/2�

0

%κ(u− v) dv +
1�

1/2

%κ(u− v) dv
)

= 1/2.(4.19)

Using (4.19), we observe that

1
2

(∆∗(u, y) +∆∗(y, u− 1/2))− (I(u)∆∗(u, y) + (1− I(u))∆∗(u− 1/2, y))

= (1/2− I(u))(∆∗(u, y)−∆∗(u− 1/2, y)) ≥ 0,

by the monotonicity of ∆∗(u, y), for all

u0 ≤ u ≤ (log y)δ/2/log log y.

From this we deduce the inequality

(4.20) |∆(u, y)| ≤ 1
2

(∆∗(u, y) +∆∗(u− 1/2, y)) +O

(
1 +∆∗(u, y)
u(log y)δ/2

)
,

u0 ≤ u ≤ (log y)δ/2/log log y.

Next, we show that (4.20) still holds if we replace ∆(u, y) on the left side
by ∆∗(u, y): Suppose u− 1/2 ≤ u′ ≤ u. Then (4.20) gives

|∆(u′, y)| ≤ 1
2

(∆∗(u′, y) +∆∗(u′ − 1/2, y)) +O

(
1 +∆∗(u′, y)
u′(log y)δ/2

)

≤ 1
2

(∆∗(u, y) +∆∗(u− 1/2, y)) +O

(
1 +∆∗(u, y)
u(log y)δ/2

)
,

by the monotonicity of ∆∗(u, y), where the O constant changes at most by
a factor of 3/2. On the other hand, if u0 ≤ u′ < u− 1/2, then

|∆(u′, y)| ≤ ∆∗(u− 1/2, y) ≤ 1
2

(∆∗(u, y) +∆∗(u− 1/2, y)).

Thus, it follows that uniformly for u0 ≤ u ≤ (log y)δ/2/(2 log log y), we have

∆∗(u, y) ≤ 1
2

(∆∗(u, y) +∆∗(u− 1/2, y)) +O

(
1 +∆∗(u, y)
u(log y)δ/2

)
.

We rearrange terms to arrive at

∆∗(u, y) ≤ ∆∗(u− 1/2, y) +O

(
1 +∆∗(u, y)
u(log y)δ/2

)
,

and iterate with respect to u to get

∆∗(u, y) ≤ ∆∗(v0, y) +O

(
(1 +∆∗(u, y)) logu

(log y)δ/2

)
,

where
u0 − 1/2 ≤ v0 ≤ u0.
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By (4.15), we have

∆∗(u, y)� (1 +∆∗(u, y)) logu
(log y)δ/2

, u ≥ u0.

Thus, there exists a constant B such that

∆∗(u, y) ≤ B (1 +∆∗(u, y)) logu
(log y)δ/2

,

and

∆∗(u, y)
(

1− B log u
(log y)δ/2

)
≤ B log u

(log y)δ/2
.

This yields

∆∗(u, y)� log u
(log y)δ/2

(
1 +B′

log u
(log y)δ/2

)
,

for an appropriate B′, and therefore

∆∗(u, y)� log u
(log y)δ/2

in the range (4.1). This completes the proof of the theorem.
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