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1. Introduction. Let d > 1, k ≥ 3, n ≥ 1 be integers with gcd(n, d)
= 1. We set

∆0 = ∆0(n, d, k) = n(n+ d) . . . (n+ (k − 1)d).

For an integer ν > 1, we write ω(ν), P (ν) and Q(ν) for the number of distinct
prime divisors of ν, the greatest prime factor of ν and the greatest square-free
factor of ν, respectively. Further we put ω(1) = 0 and P (1) = Q(1) = 1.

Sylvester [11] proved that

P (∆0) > k if n ≥ d+ k

and Langevin [5] improved it to

P (∆0) > k if n > k.

In fact, Sylvester and Langevin proved the above estimates also for a product
of k consecutive positive integers. Shorey and Tijdeman [10] showed that

(1) P (∆0) > k unless (n, d, k) = (2, 7, 3).

In a recent result, Saradha and Shorey [8] showed that for k ≥ 4, ∆0 is
divisible by at least 2 distinct primes exceeding k except when (n, d, k)
∈ {(1, 5, 4), (2, 7, 4), (3, 5, 4), (1, 2, 5), (2, 7, 5), (4, 7, 5), (4, 23, 5)}. As to the
number of prime factors of ∆0, Shorey and Tijdeman [9] proved that

(2) ω(∆0) ≥ π(k).

A conjecture of Schinzel, known as Hypothesis H, implies that there are
infinitely many d for which both 1 + d and 1 + 2d are primes. Thus (2) is
likely to be best possible when k = 3. Moree [6] sharpened (2) to

(3) ω(∆0) > π(k) if k ≥ 4 and (n, d, k) 6= (1, 2, 5).
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We observe that (3) implies (1) for k ≥ 4. If k = 4 or 5, then as above,
Hypothesis H implies that ω(∆0) = π(k) + 1 for infinitely many d. If k ≥ 6,
we give a sharpening of (3). For this, we introduce the following notation.
For any set of distinct positive integers {a1, . . . , ar} and an integer i ≥ 1
we denote by {a1, . . . , ar}i the set of distinct integers obtained by taking
products of i integers from {a1, . . . , ar}. Let Vi be the set of quadruples
(n, d, k, δ) where n, d, k equals the values in Table 1 and δ takes values from
the sets {}i mentioned therein.

Table 1

n d k δ = δi

1 2 6 {5, 7, 11}i
1 3 6 {7, 10, 13}i
1 2 7 {5, 7, 11, 13}i
1 3 7 {7, 10, 13, 19}i
1 4 7 {13, 17, 21}i ∪ {9, 21}i
2 3 7 {11, 14, 17}i
2 5 7 {7, 17, 22}i
3 2 7 {7, 11, 13}i
1 2 8 {7, 11, 13}i
1 2 11 {11, 13, 17, 19}1+i

1 3 11 {13, 19, 22, 31}1+i

1 2 13 {11, 13, 17, 19, 23}1+i

3 2 13 {11, 13, 17, 19, 23}1+i

1 2 14 {11, 13, 17, 19, 23}1+i

In this paper, we show

Theorem 1. Let k ≥ 6. Then

(4) ω(∆0) >
6
5
π(k) + 1

except when

(n, d, k) ∈ {(1, 2, 6), (1, 3, 6), (1, 2, 7), (1, 3, 7), (1, 4, 7),

(2, 3, 7), (2, 5, 7), (3, 2, 7), (1, 2, 8), (1, 2, 11),

(1, 3, 11), (1, 2, 13), (3, 2, 13), (1, 2, 14)}.
We see that Theorem 1 includes (1)–(3) with k ≥ 6 and the result of

Saradha and Shorey stated above. In Theorem 1 and the subsequent results
of this paper, we observe that the statements are not valid for the exceptions
mentioned therein. As a consequence of Theorem 1, we derive

Corollary 1. Let k ≥ 3 and

(n, d, k) 6∈ {(1, 3, 3), (2, 3, 3), (2, 7, 3), (1, 5, 4), (3, 5, 4)}.
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Then
Q(∆0) ≥

( ∏

p<k
gcd(p,d)=1

p
)
k2+[ 1

5π(k)].

We observe that the second factor on the right hand side of the above
inequality is > ek/5. Corollary 1 is related to a generalised version of a
problem of Erdős and Woods (see [2]). The inequality (4) of Theorem 1 is a
consequence of the following result with t = k. To state this result, we need
some notation. Let t ≥ 2 and d1, . . . , dt be distinct integers in the interval
[0, k). We define

∆ = (n, d, k, d1, . . . , dt) = (n+ d1d) . . . (n+ dtd)

and
δ = ∆0/∆.

We observe that ∆ = ∆0 if t = k. We define πd(k) to be the number of
primes ≤ k and coprime to d.

Theorem 2. Let k ≥ 6 and t ≥ k − 6
5π(k) + πd(k) − 1. If there exist

integers d1 < . . . < dt in the interval [0, k) such that

(5) ω(∆) ≤ πd(k),

then
(n, d, k, δ) ∈ V2.

Further, from Theorem 2 we get the following result.

Corollary 2. Let k ≥ 6, t ≥ k − 1
5π(k)− 1 and ω(∆) ≤ π(k). Then

(n, d, k, δ) ∈
{
V1 if (n, d, k) 6= (1, 4, 7),
(1, 4, 7, {13, 17, 21}1) otherwise.

Moree [6] showed that all solutions (n, d, k) of ω(∆0(n, d, k)) ≤
π(2k− 1)− 2 can be explicitly determined, and conjectured that (n, d, k) =
(1, 3, 10) is the only solution. Note that ω(∆0(1, 2, k)) = π(2k−1)−1. Thus
there exist distinct integers d1, . . . , dt in [0, k) with t ≥ k−π(2k−1)+π(k)+1
and ω(∆) = ω(∆(1, 2, d1, . . . , dt)) ≤ π(k). Therefore we observe that the
constant 1

5 in Corollary 2 cannot be replaced by any number χ > 1 when
d = 2. For d > 2 and k exceeding a sufficiently large effectively computable
absolute constant we show that the constant 1

5 in Corollary 2 cannot be
replaced by log(2d) + 5.2 log log(2d) + 5.02. More precisely, we prove

Theorem 3. There exist effectively computable absolute constants C1

and C2 such that for every triple (n, d, k) satisfying

(6) n/k ≤ d ≤ log k, k ≥ C1,
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we can find distinct integers d1, . . . , dt in [0, k) satisfying

P ((n+ d1d) . . . (n+ dtd)) ≤ k
and

t ≥ k − k

log k
d− C2

k log log k
(log k)2 d

with
d = log(2d) + 5.2 log log(2d) + 5.02.

We observe that there are infinitely many triples (n, d, k) satisfying (6).
A version similar to Theorem 3 was proved by Balasubramanian and Shorey
[1,Theorem 2]. The proof of Theorem 2 is elementary whereas the proof of
Theorem 3 depends on the Prime Number Theorem for arithmetic progres-
sions with error term. Throughout the paper we shall follow the notation
introduced in this section. The computations are carried out using MATH-
EMATICA.

2. Lemmas for the proof of Theorem 2. We begin with the fol-
lowing fundamental result of Sylvester and Erdős (see [3, Lemma 2] and [8,
Lemma 1]).

Lemma 1. For 1 ≤ i ≤ t, let n + did = BiB
′
i, where Bi and B′i are

positive integers such that P (Bi) ≤ k. Let S = {B1, . . . , Bt}. For every
prime p ≤ k with gcd(p, d) = 1, choose Bi ∈ S such that p does not appear
to a higher power in the factorisation of any other element of S. Let S1 be the
subset of S obtained by deleting from S all Bip with p ≤ k and gcd(p, d) = 1.
Then

(7)
∏

Bi∈S1

Bi ≤ (k − 1)!
∏

p|d
p− ordp(k−1)!.

In the next lemma, we state estimates for π(x) and a lower bound for
ordp(k − 1)! for applying (7).

Lemma 2. (a) We have

π(x) ≤ x

log x
+

1.5x

log2 x
for x > 1,

π(x) >
x

log x
for x ≥ 17.

(b) For a prime p,

ordp(k − 1)! ≥ k − p− 1
p− 1

− log(k − 1)
log p

.
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Proof. The estimates on π(x) in Lemma 2(a) are due to Rosser and
Schoenfeld [7, p. 69]. For Lemma 2(b), we have

ordp(k − 1)! =
[
k − 1
p

]
+ . . .+

[
k − 1
pr

]

where pr ≤ k − 1 < pr+1. Thus

ordp(k − 1)! ≥ k − 1
p− 1

(
1− 1

pr

)
− r ≥ k − p− 1

p− 1
− log(k − 1)

log p
.

The next result is a key lemma for computations in the proof of Theo-
rem 2.

Lemma 3. Let the assumptions of Theorem 2 be satisfied. Let p1, . . . , pr1
be a non-empty set of primes dividing ∆. For 0 ≤ i < k define

G1(i) = ω(n+ id)− r2(i)

where r2(i) is the number of primes from {p1, . . . , pr1} dividing n+ id. Let

G2 = max
0≤i<k

(G1(i))

and r3 be the number of i’s with 0 ≤ i < k such that G2 = G1(i). Let
R =

[
1
5π(k)

]
+ π(k)− πd(k) + 1 and

G3 = ω(∆0)−RG2, G′3 = ω(∆0)−RG2 +R− r3.

Then

G3 ≤ πd(k),(8)

G′3 ≤ πd(k) if r3 ≤ R.(9)

Proof. Let ∆ be obtained from ∆0 by deleting r ≤ R terms n + i1d,
. . . , n+ ird, say. For 1 ≤ i ≤ r1, set αi = ordpi(∆0) and αih = ordpi(n+ ihd)
with 1 ≤ h ≤ r. Further let ∆0 = γγ′ and n + ihd = γhγ

′
h for 1 ≤

h ≤ r where γ = pα1
1 . . . p

αr1
r1 , γh = pα1h

1 . . . p
αr1h
r1 and gcd(γ′, p1 . . . pr1)

= gcd(γ′h, p1 . . . pr1) = 1. We have

∆ =
∆0∏r

h=1(n+ ihd)
= p

α1−
∑r
h=1α1h

1 . . . p
αr1−

∑r
h=1αr1h

r1

γ′∏r
h=1γ

′
h

.

We observe that αi >
∑r
h=1 αih for 1 ≤ i ≤ r1, since each prime pi divides

∆. Thus

(10) ω(∆) ≥ r1 + ω(γ′)−
r∑

h=1

ω(γ′h).

We note that r1 + ω(γ′) = ω(∆0) and ω(γ′h) = G1(ih). Hence from (10) we
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get

(11) ω(∆) ≥ ω(∆0)−
r∑

h=1

G1(ih).

Hence
ω(∆) ≥ ω(∆0)− rG2 ≥ ω(∆0)−RG2 = G3.

Now the first assertion follows by (5). Let now r3 ≤ R. Then we see that
r∑

h=1

G1(ih) ≤ (R− r3)(G2 − 1) + r3G2,

which, together with (11), gives the result by (5).

3. Proof of Theorem 2. We observe from (5) that πd(k) > 0. Let R
be as in Lemma 3 so that t ≥ k−R. For every prime p dividing ∆, we delete
a term n + did of ∆ in which p appears to the maximum power. Then, by
(5), we are left with a set T of n+ did having at least t− πd(k) terms of ∆.
Hence by Lemma 1,

t−πd(k)−1∏

i=0

(n+ id) ≤
∏

n+did∈T
(n+ did) ≤ (k − 1)!

∏

p|d
p− ordp(k−1)!.

On the other hand,
t−πd(k)−1∏

i=0

(n+ id)

≥
{

(t− πd(k)− 1)!dt−πd(k)−1,
α(α+ 1) . . . (α+ t− πd(k)− 1)dt−πd(k) if n ≥ αd with α > 0.

Therefore

(12) dt−πd(k)−1 ≤ (k − 1) . . . (t− πd(k))
∏

p|d
p− ordp(k−1)!

and for any integer α > 0 with α ≤ k − t− 1 + πd(k), we have

dt−πd(k) ≤ (α− 1)!(k − 1) . . . (α+ t− πd(k))(13)

×
∏

p|d
p− ordp(k−1)! if n ≥ αd.

Thus by (12) we have,

(14) dt−πd(k)−1 ≤ (k − 1) . . . (t− πd(k))

and

(15) d ≤ (k − 1)(1.2π(k)+1)/(k−1.2π(k)−2)
∏

p|d
p− ordp(k−1)!/(k−1.2π(k)−2).
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By Lemma 2 and (15), it follows that for k ≥ 17,

d ≤ exp
[ 1.2

(
1 + 1.5

log k

)
+ log k

k

1− 1.2
(

1
log k + 1.5

log2k

)
− 2

k

]
(16)

×
∏

p|d
p−( k−p−1

p−1 −
log(k−1)

log p )/(k−1.2 k
log k−2)

which implies

(17) d ≤ exp
[ 1.2

(
1 + 1.5

log k

)
+ log k

k

1− 1.2
(

1
log k + 1.5

log2 k

)
− 2

k

]
.

We use the inequalities (12)–(17) at several places. While using the inequal-
ities (12)–(14), for a given (d, k) we take the minimal value of t, that is,
t = k − R. We observe that if any inequality (12)–(14) is not valid for
t = k −R, then it is not valid for any t > k −R.

First we restrict to k ≥ 14. If k ≥ 42 then by (17), we find that d ≤ 34.
We use (14) to check that d ≤ 34 for 14 ≤ k < 42. Thus d ≤ 34 for k ≥ 14.
For a given d with 3 ≤ d ≤ 34, we proceed as follows. We first use (16) to get
a bound for k, say k0(d). Then for 14 ≤ k ≤ k0(d), we apply (12) with actual
values of πd(k) to find that k ∈ Ud where Ud is the set of integers k ≥ 14
which are given in Table 2 whenever it is not empty. Let k ∈ Ud. We use
(13) for this k with suitable choice of α satisfying 0 < α ≤ k− t− 1 + πd(k)
to get n ≤ αd − 1 =: nd(α). We list in Table 2 those values of d for which
Ud is not empty, k0(d), the set Ud, α and nd(α).

Note that each d in Table 2 is a prime or prime power whence π(k) −
πd(k) ≤ 1. We check that 2 |∆ if gcd(d, 2) = 1, k ≥ 14; 3 |∆ if gcd(d, 3) = 1,
k ≥ 14 and 5 |∆ if gcd(d, 5) = 1, k ≥ 20. Thus for the values of d in Table
2 we take in Lemma 3,

r1 = 3, (p1, p2, p3) = (2, 3, 5) if k ≥ 20 and d ∈ {7, 11, 13},
r1 = 2, (p1, p2) = (2, 5) if k ≥ 20 and d = 3,

r1 = 2, (p1, p2) = (3, 5) if k ≥ 20 and d = 4,

r1 = 2, (p1, p2) = (2, 3) if k ≥ 14 and d = 5 and if

14 ≤ k ≤ 19 and d ∈ {7, 11, 13, 17, 19, 23, 29, 31},
r1 = 1, p1 = 2 if 14 ≤ k ≤ 19 and d = 3, 9,

r1 = 1, p1 = 3 if 14 ≤ k ≤ 19 and d = 4, 8.

For any given tuple (n, d, k), we first compute G3 and check (8). For
example, let (n, d, k) = (1, 31, 14). We find that ω(∆0) = 14, G2 = 2, R = 2
and πd(k) = 6. Then G3 = 10 > πd(k). Thus (8) does not hold and the tuple
(1, 31, 14) is excluded. Likewise, we exclude all the tuples given by Table 2
except about 50 tuples satisfying (8). Now we compute r3 for each of these
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Table 2

d k0(d) Ud α nd(α)

3 2900 14–28 4 11
29–341, 349–370,373–375, 8 23
379–405, 409–414, 419–424,
433, 434, 439–459, 461–489,
491–495,499–514, 523–525,

619, 659–666, 691–693

4 200 14–24, 29–32, 47, 48 2 7

5 330 14–26, 29–55, 59, 61, 62, 4 19
71–75, 79, 80, 83, 113–116

7 170 14–25, 29–34, 47–49 3 20

8 70 14 1 7

9 70 14, 17 1 8

11 100 14–21, 31 1 10

13 90 14, 15, 17, 19, 20, 23 1 12

17 70 14, 15, 17, 19 1 16

19 70 14, 15, 17, 19 1 18

23 55 14, 17, 19 1 22

29 50 14 1 28

31 46 14 1 30

remaining tuples. If r3 ≤ R, we compute G′3 and check (9). For example,
let (n, d, k) = (1, 4, 17). We find ω(∆0) = 12, G2 = 2, R = 3, πd(k) = 6
and r3 = 1 < R. Hence G′3 = 8 > πd(k). Thus (9) does not hold and the
tuple (n, d, k) = (1, 4, 17) is excluded. Likewise all the remaining tuples are
excluded except (n, d, k) = (1, 3, 19). In this case 2 |∆,ω(∆0) = 11, G2 = 2,
R = 3, r3 = 1, πd(k) = 7 and hence G3 = 5 < G′3 = 7 = πd(k). Thus both
(8) and (9) hold. But we observe that 5 divides 4 terms in ∆0 and R < 4.
Hence 5 |∆. Thus in Lemma 3, we take r1 = 2, (p1, p2) = (2, 5). We find
G2 = 1. G3 = 11− 3 = 8 > πd(k), a contradiction to (8). Thus all tuples in
Table 2 are excluded.

Now we consider d = 2. By (5), we have

(18) π(n+ 2k − 2)− π(n− 1) ≤ R+ πd(k) ≤ 6
5
π(k) + 1.

Hence

(19) π(2k − 1) ≤ π(n− 1) +
6
5
π(k) + 1.
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Suppose n < 2
(
π(k) +

[
1
5π(k)

])
. We use Lemma 2(a) in (19) to find

k ≤ 6056. Then we check that (19) is not valid for 322 ≤ k ≤ 6056 using
exact values of π(x). Thus we may assume that k ≤ 321. For these values of
n and k, we first observe that

15 |∆ if k ≥ 20 and 3 |∆ if 14 ≤ k ≤ 19.

Hence we take r1 = 2, (p1, p2) = (3, 5) if k ≥ 20 and r1 = 1, p1 = 3 if
14 ≤ k ≤ 19. All the tuples other than

(n, d, k) ∈ {(1, 2, 14), (3, 2, 17), (1, 2, 18), (1, 2, 19), (3, 2, 19)}
are excluded as above by checking (8) and (9). Now we consider the tuples
mentioned above other than (1, 2, 14). We find that 5 |∆ in all these cases
and we use this additional property to check that (9) does not hold. Hence
the only tuple which remains is (n, 2, k) = (1, 2, 14) and we check that
δ ∈ {11, 13, 17, 19, 23}3.

Thus we may assume that n ≥ 2
(
π(k) +

[
1
5π(k)

])
≥ 2(k− t− 1 +πd(k)).

Now we use (13) with α = k − t− 1 + πd(k). We get

(20) 2k−π(k)−[ 1
5π(k)]−1 ≤

(
π(k) +

[
1
5
π(k)

]
− 1
)

!(k − 1)2− ord2(k−1)!.

Now we use Lemma 2(a) to derive

2 ≤ exp
[(1.2 + 1.8

log k

)(
1 + 1

log k log
(

1.2
log k + 1.8

log2 k

))
+ log k

k

1− 1.2
log k − 1.8

log2 k
− 1

k

]

× 2−(k−3− log(k−1)
log 2 )/(k−1.2 k

log k )

for concluding k ≤ 491. Then we use (20) to find that k < 14. This is a
contradiction. This completes the proof of Theorem 2 for k ≥ 14.

Finally, we consider 6 ≤ k ≤ 13. Let k = 6. Then t ≥ 2 + πd(k). Now we
apply an argument of Lemma 1. By (5), the product of the t terms n+ did
of ∆ are composed of at most πd(k) primes. Corresponding to each prime,
we remove a term of ∆ in which the prime appears to the maximum power.
Then we are left with at least 2 terms say, n1 and n2. If a prime p divides n1

or n2, then p ∈ {2, 3, 5}. Further we observe that either 5 -n1 or 5 -n2. Thus
we get n ≤ 22 ·3 = 12 and n+d ≤ 22 ·3 ·5 ≤ 60. By similar argument, we see
that n ≤ 12, n+d ≤ 60 for k = 7. Now we use (12) to exclude several values
of d. Thus we obtain d ∈ Vk (see Table 3). Let now 8 ≤ k ≤ 13. For each k,
we use (14) to bound d. Then we use (12) as before to exclude several values
of d. Finally, we use (13) for a suitable α to show that n < αd =: nk,d.

We list, in Table 3 below, the set Vk and the bound n < nk,d for each
value of k with 6 ≤ k ≤ 13.
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Table 3

k Vk nk,d

13 2, 3 5d
5, 7 4d
13 3d

4, 11, 17, 19 2d
8, 9, 25, primes in [23, 61] d

12 2 4d
3 3d

4, 5, 7 2d
8, 9, primes in [11, 31] d

11 2 5d
3 4d

5, 7, 11, 13 3d
4, 17, 19 2d

8, 9, 25, primes in [23, 83] d

10 2, 3, 5, 11 d

9 3 2d
2, 5, 7, 9, 11, 13, 17 d

8 2 3d
3, 5 2d

4, 7, 8, 9,primes in [11, 47] d

7 d ∈ [2, 59] 13
d 6∈ {6, 10, 12, 18, 20, 24, 30, 36,

40, 42, 45, 46, 48, 50, 52, 54, 56, 58}

6 Primes in [2, 59], 4, 8, 9, 14, 13
21, 27, 33, 39, 49

For the values of (n, d, k) with d ∈ Vk, n < nk,d mentioned in Table 3,
we check that

6 |∆ if k = 6, d prime ≥ 7 and d = 49,

if k = 7, d prime ≥ 11,

if k = 8, d prime ≥ 11,

if k = 9, d = 11, 13, 17,

if k = 10, d = 5, 11,

if k = 11, d prime ≥ 13,

if k = 12, d prime ≥ 5,

if k = 13, d prime ≥ 5 and d = 25.
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Further, we get

2 |∆ if k = 6, d ∈ {3, 5, 9, 21, 27, 33, 39},
if k = 7, d ∈ {3, 5, 7, 9, 25, 27, 33, 39, 49, 51, 55, 57},
if k = 8, d ∈ {3, 5, 7, 9},
if k = 9, d ∈ {3, 5, 7, 9},
if k = 10, d = 3,

if k = 11, d ∈ {3, 5, 7, 9, 11, 25},
if k = 12, d ∈ {3, 9},
if k = 13, d ∈ {3, 9},

and
3 |∆ if k = 9, d = 2,

if k = 10, d = 2,

if k = 12, d = 2, 4, 8,

if k = 13, d = 2, 4, 8.

We do not have any such divisibility property for k = 6, d ∈ {2, 4, 8, 14};
k = 7, d ∈ {2, 4, 8, 14, 15, 16, 21, 22, 26, 28, 32, 34, 35, 38, 44}; k = 8, d ∈
{2, 4, 8}; k = 11, d ∈ {2, 4, 8}. For any given (n, d, k) from Table 3, we
proceed as earlier. There are tuples for which both (8) and (9) hold. For
these tuples we derive from (5) that 2 |∆ if 2 - d, 3 |∆ if 3 - d and 5 |∆ if 5 - d.
Using this we check now that either (8) or (9) does not hold. We exclude all
the tuples but 13 of them. These are listed in Table 1.

4. Proofs of Theorem 1 and Corollaries 1, 2. We begin with the
proof of Theorem 1. Assume that k ≥ 6 and (4) does not hold. We observe
that the number of primes ≤ k and dividing ∆0 is exactly πd(k). Hence
there are at most R = π(k)− πd(k) +

[
1
5π(k)

]
+ 1 primes > k dividing ∆0.

Each of these primes divides at most one term of ∆0. Deleting these terms
we find distinct integers d1, . . . , dt in [0, k) such that t ≥ k −R and

ω(∆(n, d, k, d1, . . . , dt)) ≤ πd(k).

Hence by Theorem 2, we conclude that (n, d, k) equals one of the tuples
listed in Theorem 1. This completes the proof of Theorem 1.

Suppose that the assumptions of Corollary 2 are satisfied. Then there
are at most π(k)−πd(k) primes > k dividing ∆. We obtain a product ∆′ by
omitting a term in ∆ for each of these primes as in the proof of Theorem 1
such that ω(∆′) ≤ πd(k). Now we apply Theorem 2 to ∆′. We conclude
that the tuples (n, d, k) take values as in Table 1. For each of these tuples
(n, d, k), we determine all the possible choices of δ such that ω(∆) ≤ π(k)
and t ≥ k −

[
1
5π(k)

]
− 1. We find that (n, d, k, δ) ∈ V1.
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Now we turn to the proof of Corollary 1. Let 4 ≤ k < 11. Then the
assertion follows by the result of Saradha and Shorey [8] mentioned in the
introduction. For k ≥ 11, we derive from Theorem 1 that either there are
at least

[
1
5π(k)

]
+ 2 primes ≥ k dividing ∆0 or (n, d, k) is one of the tuples

in {(1, 2, 11), (1, 3, 11), (1, 2, 13), (3, 2, 13), (1, 2, 14)} which are excluded by
direct checking. Thus it remains to consider the case k = 3. Now we take
k = 3. Then we may assume that ∆0 = 2apb where p ∈ {3, 5, 7}. Suppose
n is odd; then n + 2d is odd. Hence n = 1, n + 2d = pb and n + d = 2a,
which implies 2a+1 − pb = 1. Thus p = 3, a = b = 1 and p = 7, a = 2,
b = 1. The first possibility implies d = 1, which is a contradiction, and
the second possibility gives (n, d, k) = (1, 3, 3), which is excluded. Let n be
even. Then n = 2α1 , n + d = pb, n + 2d = 2a−α1 with a > 2α1 > 0. Hence
pb = 2α1−1 + 2a−α1−1, implying α1 = 1, (p, b, a) = (3, 1, 3), (3, 2, 5), (5, 1, 4).
If (p, b, a) = (3, 1, 3), then d = 1, which is not possible. Thus (n, d, k) ∈
{(2, 7, 3), (2, 3, 3)}, which are excluded.

5. Proof of Theorem 3. The proof depends on the following two re-
sults. The first one is the well known Prime Number Theorem for arithmetic
progressions (see Estermann [4, Chapter 2]). The second one is an explicit
version of [1, Lemma 2]. For x ≥ 3 and positive integers D and M with
gcd(D,M) = 1, let π(x;D,M) denote the number of primes p not exceed-
ing x such that p ≡M (modD). For any positive integer n, let φ(n) denote
Euler’s totient function.

Lemma 4. Let A > 0 and B > 0. For x ≥ 3, D ≤ (log x)A and h ≥
x(log x)−B, we have

π(x+ h;D,M)− π(x;D,M) ≤ h

log(x)φ(D)

(
1 + C3

(
log log x

log x

))

where C3 is an effectively computable positive number depending only on A
and B.

Lemma 5. For x ≥ 2 and positive integer D with 2 < D < x, we have
∑

m≤x
gcd(m,D)=1

1
m
≤ φ(D)

D
(log x+ 5.2 log logD + 5.02).

Proof. For odd D, it is clear that ω(D) ≤ logD/log 3 and this implies
that

ω(D) ≤ 1.12 logD for all D.

It is well known by a classical convexity argument that∣∣∣∣
∑

m≤x

1
m
− log x− γ

∣∣∣∣ ≤
2
x
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with γ = .5772156649 . . . (Euler’s constant), and we proceed as in [1, Lemma
2] to obtain

(21)
∑

m≤x
gcd(m,D)=1

1
m
≤ (log x+ γ)

φ(D)
D

+
∣∣∣∣
∑

d|D

µ(d) log d
d

∣∣∣∣+ 2.

Further

(22)
∑

d|D

µ(d) log d
d

= −φ(D)
D

∑

p|D

log p
p− 1

and

(23)
D

φ(D)
< eγ log logD + 2

(see [6, Lemma 7 and Remark 2]) and

(24) pi > i log i

(see [7, p. 69]). Also we derive from the second inequality in Lemma 2(a)
that pi ≤ i3/2 for i ≥ 3. We understand that an empty sum is equal to zero.
Thus, since p− 1 ≥ 12

13p for p ≥ 13, we have

∑

p|D

log p
p− 1

≤
ω(D)∑

i=1

log pi
pi − 1

≤ 2.21 +
ω(D)∑

i=6

log pi
pi − 1

(25)

≤ 2.21 +
39
24

ω(D)∑

i=6

1
i

≤ 2.21 +
39
24

( ω(D)∑

i=1

1
i
−
(

1 +
1
2

+
1
3

+
1
4

+
1
5

))

≤ 39
24

(logω(D) + γ + .5)− 1.5

≤ 39
24

log logD + .44.

By combining (21)–(25) we obtain the assertion of the lemma.

Now we turn to the proof of Theorem 3. We proceed as in [1, Proof of
Theorem 2]. Let n, d, k be positive integers satisfying (6). We may assume
that k ≥ C1 with C1 sufficiently large. Let J = [k/(log k)10]. We put S1 =
{n + Jd, . . . , n + (k − 1)d}. Let S2 denote the set of elements of S1 whose
greatest prime factor exceed k. We observe that every element of S2 can be
written as pλ where prime p > k, p ≡ nλ (mod d) with nλ = nλ, λλ ≡ 1
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(mod d) and

λ ≤ n+ (k − 1)d
p

≤ 2d ≤ 2 log k

by (6). Further we see that

|S2| ≤
∑

gcd(λ,d)=1
λ≤2d

{
π

(
n+ (k − 1)d

λ
; d, nλ

)
− π

(
n+ Jd

λ
; d, nλ

)}
.

Now we apply Lemma 4 with A = 2, B = 1, D = d,M = nλ, x = (n+Jd)/λ,
x+ h = (n+ (k − 1)d)/λ. We observe that

n+ Jd

λ
≥ k

4(log k)10

since J = [k/(log k)10], which together with n/k ≤ d implies that

(k − 1− J)d log
(
n+ Jd

λ

)
≥ n+ Jd.

Therefore, the assumptions of Lemma 4 are satisfied and we get

|S2| ≤
k

log k
· d

φ(d)

(
1 + C4

log log k
log k

) ∑

gcd(λ,d)=1
λ≤2d

1
λ

where C4 is an effectively computable absolute constant. Now the assertion
of Theorem 3 follows from Lemma 5.
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