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1. Introduction. Let K be a number field and let OK be its ring of
integers. A finite normal extension L/K with Galois group G has a normal
integral basis (NIB for short) when OL, the ring of integers of L, is free of
rank one over the group ring OK [G]. In this case, if OL = OK [G]ω, we call
ω a generator of the NIB.

A well known result by Noether says that if L/K has a NIB, then it
is a tamely ramified extension. The converse is not true in general and
there are several examples of non-existence of a NIB for tamely ramified
extensions. Even if we restrict to the class of abelian extensions, the general
situation cannot be easily described. On the one hand, by the Hilbert–
Speiser Theorem, in the case when the base field K is the field Q of rational
numbers, every tame abelian extension L/K has a NIB. On the other hand,
Greither et al. [6] proved that Q is the only number field satisfying the
conclusion of the theorem of Hilbert and Speiser. Namely, for any number
field K 6= Q there exists a prime number p and a tame cyclic extension L/K
of degree p without a NIB.

Several authors considered the particular case of Kummer extensions; in
the case when the degree is prime, Gómez Ayala gave an explicit criterion
[5, Thm. 2.1] for the existence of a NIB. More recently the present authors
[3, Thm. 1] proposed a generalization of that result to cyclic extensions of
arbitrary degree.

In this paper we consider the general case of tamely ramified Kummer
extensions and in Theorem 11 we obtain a criterion for the existence of a NIB
which generalizes the previous results. As in the case of cyclic extension, the
methods used in the proof of Theorem 11 also allow us to describe explicitly
the Steinitz class of a tame Kummer extension, giving an easy criterion for
this class to be trivial (Propositions 13 and 29).
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In the second part of the paper we restrict to the particular case of
Kummer extensions generated, over Q(ζm), by mth roots of rational inte-
gers.

Section 3.1 is devoted to a detailed study of the ramification in exten-
sions Q(ζm, m

√
a)/Q(ζm) with a ∈ Z; we find necessary and sufficient explicit

conditions on a for the tameness of these extensions (see Proposition 24 and
Corollary 25).

In Sections 3.2–3.4 we present some results on the existence of integral
bases for tame extensions of the kind Q(ζm, m

√
a1, . . . , m

√
an)/Q(ζm), with

ai ∈ Z. Firstly, we prove that these extensions always have trivial Steinitz
classes, hence an integral basis (see Proposition 29). We also give sufficient
conditions for the existence of a normal integral basis for such extensions
and an example showing that such conditions are sharp in the general case.
This result generalizes the well known result by Kawamoto [10] and a more
recent result by Ichimura [8].

2. Main theorem. In this paper m ≥ 2 will denote a fixed natural
number and ζm a primitive mth root of unity. Let K be a number field and
let OK be its ring of integers; we will always assume that ζm ∈ K. Let L be
a Kummer extension of K of exponent m, denote by OL its ring of integers
and let G := Gal(L/K).

In this section, in Theorem 11, we will give necessary and sufficient con-
ditions for the existence of a normal integral basis for L/K, namely for the
existence of an element ω ∈ OL such that OL = OK [G]ω. To show equality
between these two modules, we will compare their discriminants. We start
by introducing the notation and developing the tools to compute them.

A set of Kummer generators (or of integral Kummer generators, resp.)
of L over K is any set of elements α1, . . . , αn ∈ L (α1, . . . , αn ∈ OL, resp.)
such that, setting mi := [K(αi) : K], we have

1. L = K(α1, . . . , αn);
2. αmi

i ∈ K for i = 1, . . . , n;
3. [L : K] =

∏n
i=1 mi =: N.

By Kummer theory it is clear that for any finite Kummer extension, there
exists a set of Kummer generators; moreover, if α1, . . . , αn is a set of Kummer
generators, then there exist c1, . . . , cn ∈ OK such that c1α1, . . . , cnαn is a
set of integral Kummer generators. We also remark that the exponent of
this kind of extension is the least common multiple of the mi’s, thus we may
set m = lcm(m1, . . . ,mn).

For i = 1, . . . , n, we put ai = αmi ; since mi |m, it is clear that ai ∈ K for
all i and we use the notation L = K(m

√
a), where a = {a1, . . . , an} ∈ Kn

and m
√
a = {m

√
a1, . . . , m

√
an}.
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In the following, for simplicity of notation, we will always assume that
{α1, . . . , αn} = m

√
a is a set of integral Kummer generators of L/K, but we

note that sometimes it would not be necessary to assume property 3.
With the given notation we have the following diagram:

L = K(m
√
a)

K(m
√
a1) K(m

√
a2) . . . . . . K(m

√
an−1) K(m

√
an)

K

and

G = Gal(L/K) =
n⊕
i=1

Gal(K(αi)/K) ∼=
n⊕
i=1

Z/miZ.

Our first step is to compute, in the case when L = K(m
√
a)/K is tame,

the discriminant of the extension, disc(L/K), in terms of a .
Let P ⊂ OK be a prime ideal; we denote by eP its ramification index in

OL and, for any ideal I ⊂ OK , by ordP(I) the exact power of P dividing I.

Lemma 1. Let P be a prime ideal of OK . If P is tamely ramified in OL,
then

ordP disc(L/K) = N −N/eP .
Proof. This follows easily from the theorem of Dedekind on discrimi-

nants.

Lemma 2 ([3, Lemma 3]). Let L = K(m
√
a) with a ∈ OK . Then, for any

prime P ⊆ OK tamely ramified in OL, we have

eP = m/(ordP a,m).

The last lemma can be generalized to any Kummer extension (not nec-
essarily cyclic).

We use the following notation:

ordP a = (ordP a1, . . . , ordP an) ∈ Zn,
(ordP a ,m) = gcd(ordP a1, . . . , ordP an,m),

and, for any vector w = (w1, . . . , wn) and k = (k1, . . . , kn) ∈ Zn,
wk = wk11 · · ·w

kn
n .

Lemma 3. Let L = K(m
√
a) = K(m

√
a1, . . . , m

√
an) with a ∈ OnK . Then,

for any prime P ⊆ OK tamely ramified in OL, we have

eP = m/(ordP a,m).
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Proof. Let d = (ordP a ,m). Then

d = k1 ordP a1 + · · ·+ kn ordP an + km

for some ki, k ∈ Z (we may also suppose ki ≥ 0). Let a = ak = ak11 · · · aknn .
Then ordP a ≡ d (mod m). Thus, by Lemma 2, in the extension K(m

√
a)/K

we have eP = m/d.
Let F = K(m

√
a). We now show that, for i = 1, . . . , n, any prime ideal

Q ⊂ OF , Q |P, is unramified in F (m
√
ai)/F ; this can be proved by localiza-

tion and Abhyankar’s Lemma (see for example [14, p. 229]). Let us prove it
anyway by a direct computation. As d | ordP ai we have ordP ai = jd; thus
ordQ ai = ordP ai ·m/d = mj. Hence, letting eQ be the ramification index
of Q in F (m

√
ai), by Lemma 2 we get

eQ =
m

(ordQ ai,m)
= 1.

Thus the primes over P are unramified in the extension L/K(m
√
a), and

the ramification index of P in L/K is eP = m/d.

Corollary 4. Let L = K(m
√
a) with a ∈ OnK and suppose that L/K is

tamely ramified. Then

disc(L/K) =
∏
P
PN−

N
m
(ordP a,m).

Proof. This follows from Lemmas 1 and 3.

Our next step is to study the discriminant of OK [G]ω for ω ∈ OL. To do
this we introduce the Lagrange resolvents.

We know that

G = Gal(L/K) =
⊕
i

Gal(K(αi)/K) ∼=
⊕
i

Z/miZ;

now, since the global extension has exponent m, it is convenient to view
Gal(K(αi)/K) as a subgroup of Z/mZ, so we choose

Ri =

{
0,
m

mi
, 2
m

mi
, . . . , (mi − 1)

m

mi

}
as a set of representatives of Gal(K(αi)/K), hence

R = R1 × · · · × Rn
is a set of representatives of G. We also define

R̂i = {0, 1, . . . ,mi − 1} and R̂ = R̂1 × · · · × R̂n;

we have
N = |G| = |R| = |R̂|.

For i=1, . . . , nwe define σ
m/mi

i to be the generator ofGi=Gal(K(αi)/K)

sending αi to ζ
m/mi
m αi (we note that σi : αi 7→ ζmαi is not a well defined map
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unless m = mi, but we will always use powers of σi with exponent a multiple
of m/mi; these give well-defined homomorphisms). Let χi be the generator

of Ĝi (the group of characters of Gi) such that χi(σ
m/mi

i ) = ζmi := ζ
m/mi
m .

We can extend σ
m/mi

i to L setting σ
m/mi

i (αj) = αj if i 6= j and we can also

extend χi to G = Gal(L/K) =
⊕

iGi setting χi(σ
m/mj

j ) = 1 if i 6= j. Now
we define σ = (σ1, . . . , σn) and χ = (χ1, . . . , χn); for l ∈ R we set

σl = σl11 ◦ · · · ◦ σ
ln
n ∈ G

and for r ∈ R̂ we set

χr = χr11 · · ·χ
rn
n ∈ Ĝ,

the group of characters of G. It is clear that, since G and Ĝ are abelian
groups, we have G = {σl}l∈R and Ĝ = {χr}r∈R̂.

For l ∈ R and r ∈ R̂ we define

l · r =
n∑
i=1

liri;

moreover, for ω ∈ OL and r ∈ R̂ we recall that the Lagrange resolvent is

ωr = 〈ω,χr 〉 =
∑
σ∈G

σ(ω)χr (σ−1) =
∑
σ∈G

σ(ω)χr (σ)

=
∑
l∈R

σl (ω)χr (σl ) =
∑
l∈R

σl (ω)ζ−l ·rm .

Lemma 5 ([4, (1.3), p. 385]). Let ω ∈ OL be such that the conjugates
{σl(ω)}l∈R are linearly independent over K. Then

discL/K(OK [G]ω) =
∏
r∈R̂

ω2
rOK .

Denoting by [x] the largest integer ≤ x, for any r ∈ Zn we define the
r -ideal associated to a ∈ OnK to be the ideal

Br =
∏
P⊂OK

P [
∑
ri ordP ai/m] =

∏
P⊂OK

P [r · ordP a/m],

that is, the smallest ideal I ⊂ OK such that arI−m is an integral ideal
in OK .

Remark 6. Let r ′ = r + (k1m1, . . . , knmn). Then it is easy to see that

Br ′ =

n∏
i=1

(αmi
i )ki · Br .
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Lemma 7. Let m, mi and N as above. For l ∈ R we have

2
∑
r∈R̂

[
l · r
m

]
=
N

m

(
l1(m1 − 1) + · · ·+ ln(mn − 1)

)
−N +

N

m
(l,m).

Proof. Denoting by {x} the fractional part of x, i.e. {x} = x − [x], we
have

2
∑
r∈R̂

[
l · r
m

]
= 2

∑
r∈R̂

l · r
m
− 2

∑
r∈R̂

{
l · r
m

}
.

Let us evaluate these two sums separately:

2
∑
r∈R̂

l · r
m

=
2

m

(
l1
∑
r

r1 + · · ·+ ln
∑
r

rn

)
=

2

m

(
l1
N

m1

m1(m1 − 1)

2
+ · · ·+ ln

N

mn

mn(mn − 1)

2

)
=
N

m

(
l1(m1 − 1) + · · ·+ ln(mn − 1)

)
.

Let d = (l ,m); the map

ϕ :
⊕
i

Z/miZ→ dZ/mZ, r 7→ [r · l ]m,

is a surjective homomorphism ([r · l ]m indicates the class of r · l modulo m).
In fact, by definition,

d = r1l1 + · · ·+ rnln + rm

for some ri, r ∈ Z (we may also suppose 0 ≤ ri ≤ mi − 1, because l ∈ R);
thus there exists r ∈ R̂ such that [r · l ]m = d. Hence the map

ϕ̃ : R̂ → {0, d/m, 2d/m, . . . , 1− d/m}, r 7→ {r · l/m},

is surjective and every value in {0, d/m, 2d/m, . . . , 1− d/m} is taken Nd/m
times. Hence, setting M = m/d, we obtain

2
∑
r∈R̂

{
l · r
m

}
= 2

N

M

M−1∑
i=0

i

M
= 2

N

M2

M(M − 1)

2
= N − N

m
d.

Corollary 8.∏
r∈R̂

B2r =
∏
P
P

N
m
(ordP a1(m1−1)+···+ordP an(mn−1))−N+N

m
(ordP a,m).

Proof. We note that, since [K(αi) : K] = mi, we have αmi
i ∈ OK , thus

ai := αmi = (αmi
i )m/mi is an m/mith power in OK ; hence ordP a ∈ R.
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Lemma 7 gives∏
r ∈R̂

B2r =
∏
P
P2

∑
r [r ·ordP a/m]

=
∏
P
P

N
m
(ordP a1(m1−1)+···+ordP an(mn−1))−N+N

m
(ordP a ,m).

The following result is a generalization of the orthogonality of roots of
unity, for multi-index exponents.

Lemma 9. Let r ∈ R̂. Then∑
l∈R

ζ l ·rm = Nδr =

{
N if r = 0,

0 if r 6= 0.

Proof. If r = 0 it is clear that
∑

l∈R ζ
l ·r
m = |R| = N. If r 6= 0 there

exists 1 ≤ j ≤ n such that rj 6= 0. Then∑
l∈R

ζ l ·rm =
∑

l1,..., l̂j ,..., ln

∑
lj∈Rj

ζ
∑

i 6=j liri
m ζm

ljrj

=
∑

l1,..., l̂j ,..., ln

ζ
∑

i 6=j liri
m

∑
lj∈Rj

ζm
ljrj ,

and it is clear that∑
lj∈Rj

ζm
ljrj =

mj−1∑
k=0

(
ζ

m
mj
m

)krj =

mj−1∑
k=0

(ζ
rj
mj )

k
= 0

since rj 6= 0.

Proposition 10. Let the notation be as above and let ω ∈ OL,

ω =
∑
k∈R̂

ckα
k, ck ∈ K.

Then for r ∈ R̂ we have ωr = Ncrα
r.

Moreover, let a = αm ∈ OnK and let Br be the ideals associated to a.

Then NcrBr ⊆ OK for any r ∈ R̂.

Proof. We have

ωr =
∑
σ∈G

σ(ω)χr (σ) =
∑
l∈R

σl (ω)χr (σl ) =
∑
l∈R

∑
k∈R̂

ckα
kζ l ·(k−r)m

=
∑
k∈R̂

ckα
k
∑
l∈R

ζ l ·(k−r)m = Ncrα
r ∈ OL.
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Now, Ncrα
r ∈ OL implies that (Ncrα

r )m ∈ K ∩ OL = OK , hence

(Ncrα
r )mOK = (Ncr )marOK = (Ncr )m

∏
P
Pr ·ordP aOK ⊆ OK .

Moreover, as (Ncr )m is an mth power, we also have

(Ncr )m
∏
P
P [r ·ordP a/m]m ⊆ OK ,

that is, (NcrBr )m ⊆ OK , thus NcrBr ⊆ OK .
Theorem 11. Let L/K be a Kummer extension of exponent m and

assume that L/K is tamely ramified. Then L/K has a NIB if and only if
there exists a set of integral Kummer generators α1, . . . , αn of L over K such
that, putting ai = αmi , a = (a1, . . . , an), α = (α1, . . . , αn), N = [L : K], the
following conditions hold:

(i) the ideals Br associated to a are principal for any r;
(ii) the congruence ∑

r∈R̂

αr

xr
≡ 0 (mod N)

holds for some xr ∈ OK , with Br = xrOK .

Further, when this is the case, the integer

ω =
1

N

∑
r∈R̂

αr

xr

generates OL over OK [G].

Proof. Let α1, . . . , αn be a set of integral Kummer generators of L over K
satisfying (i) and (ii). Let ai = αmi , and let xr and ω be as in the statement.
Then, by Proposition 10, ωr = 〈ω,χr 〉 = αr/xr .

It follows from Lemma 5 that

discL/K(OK [G]ω) =
∏
r∈R̂

ω2
rOK =

∏
i α

N(mi−1)
i

(
∏

r xr )2
OK

=

∏
i a

N
m
(mi−1)

i

(
∏

r xr )2
OK =

∏
P
P

N
m
(ordP a1(m1−1)+···+ordP an(mn−1))

∏
r∈R̂

B−2r ,

and, by Corollary 8,

(1) discL/K(OK [G]ω) =
∏
P
PN−

N
m
(ordP a ,m).

The last equation and Corollary 4 show that

disc(L/K) = discL/K(OK [G]ω),

and, since ω is an integer, this ensures that OL = OK [G]ω.
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Assume now that OL = OK [G]ω, for some ω ∈ OL. Let α1, . . . , αn be
a set of integral Kummer generators of L over K and put ai = αmi ∈ OK .
Denote by Br the ideals associated to a = (a1, . . . , an).

The set {αr}r∈R̂ is a K-basis of L, hence we can write ω =
∑

r∈R̂ crα
r

with cr ∈ K, and, from Lemma 5 and Proposition 10, we get

(2) discL/K(OK [G]ω) =
∏
r∈R̂

ω2
rOK =

∏
i

a
N
m
(mi−1)

i

( ∏
r∈R̂

Ncr

)2
OK .

Since OL = OK [G]ω, by comparing the values of the two discriminants given
in (2) and in Corollary 4 we get∏
P
P

N
m
(ordP a1(m1−1)+···+ordP an(mn−1))

( ∏
r∈R̂

Ncr

)2
=
∏
P
PN−

N
m
(ordP a ,m),

or, equivalently,( ∏
r∈R̂

Ncr

)2∏
P
P

N
m
(ordP a1(m1−1)+···+ordP an(mn−1))−N+N

m
(ordP a ,m) = OK ,

and, using Corollary 8, ∏
r∈R̂

NcrBr = OK .

Now, from Proposition 10 we deduce that all the ideals NcrBr are in-
tegral ideals, so we must have NcrBr = OK for all r ∈ R̂, i.e. Br =
(Ncr )−1OK .

Finally, choosing xr = (Ncr )−1 we get∑
r∈R̂

αr

xr
=
∑
r∈R̂

Ncrα
r = Nω ≡ 0 (mod N).

Corollary 12. Let L = K(
√
a) with (ai,m) = 1 for all i, and assume

that conditions (i) and (ii) of Theorem 11 hold for L/K. Then L/K is tame
and has a NIB.

Proof. Let

ω =
1

N

∑
r∈R̂

αr

xr
,

as in the theorem. We note that equation (1) does not depend on tame
ramification; hence, also in this case we have

discL/K(OK [G]ω) =
∏
P
PN−

N
m
(ordP a ,m).

Now, as (ai,m) = 1 for all i, the last equation ensures that discL/K(OK [G]ω)
is coprime to m; since ω ∈ OL it is clear that

disc(L/K) | discL/K(OK [G]ω),
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thus L/K is tamely ramified. The existence of the NIB follows from Theo-
rem 11.

Let L/K be a number field extension, let v1, . . . , vn be a K-basis of L
and let I be the fractional ideal of OK such that

disc(L/K) = I2 discL/K(v1, . . . , vn).

We recall that the Steinitz class of the extension L/K is the class of I in
the ideal class group of K. The following proposition generalizes [5, Prop.
2.5] and [3, Prop. 1].

Proposition 13. Let L/K be a tame Kummer extension of exponent m,
let a ∈ OnK be such that L = K(m

√
a) and let Br be the ideals associated

to a. Then the Steinitz class of L/K is the ideal class of (
∏

r∈R̂ Br)
−1. In

particular, OL is free over OK if and only if the ideal
∏

r∈R̂ Br is principal.

Proof. Since the extension is tamely ramified, by Corollary 4 we have

disc(L/K) =
∏
P
PN−

N
m
(ordP a ,m).

On the other hand, the discriminant discL/K{(m
√
a
r
)r∈R̂} is the square of

the determinant of the matrix {σl(m
√
a
r
)} and this matrix is the tensor

product (or Kronecker product) of the matrices {σlii (m
√
a
ri
i )} for i = 1, . . . , n.

It follows (see for example [1, Prop. 2.14]) that

discL/K(m
√
a
r
)r∈R̂ =

n∏
i=1

[
discK(m

√
ai)/K

(
1, m
√
ai, m
√
ai

2, . . . , m
√
ai
mi−1)]N/mi .

We recall that ãi := a
mi/m
i ∈ K and K(m

√
ai) = K(mi

√
ãi), thus the standard

discriminant calculation gives

discK(m
√
ai)/K

(
1, m
√
ai, m
√
ai

2, . . . , m
√
ai
mi−1) = mmi

i a
mi
m

(mi−1)
i .

Hence we have

discL/K(m
√
a
r
)r∈R̂ =

n∏
i=1

(mmi
i a

mi
m

(mi−1)
i )N/miOK = NN

n∏
i=1

a
N
m
(mi−1)

i OK

= NN
∏
P
P

∑
i
N
m

ordP (ai)(mi−1),

thus

I−2 = NN
∏
P
P

∑
i
N
m

ordP (ai)(mi−1)−N+N
m
(ordP a ,m),

and, by Corollary 8,

I−2 = NN
∏
r∈R̂

B2r .
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If N is even we have

I−1 = NN/2
∏
r∈R̂

Br ;

if N is odd we have

NOK = pa11 · · · p
ar
r OK = (1− ζp1)(p1−1)a1 · · · (1− ζpr)(pr−1)arOK

with pi odd primes, hence

I−1 = (1− ζp1)(p1−1)a1/2 · · · (1− ζpr)(pr−1)ar/2
∏
r∈R̂

Br .

In both cases it is clear that the class of I coincides with the class of(∏
r∈R̂ Br

)−1
.

3. The case Q(ζm, m
√
a). In this section we study the particular case of

extensions Q(ζm, m
√
a) with a = {a1, . . . , an} ⊂ Q. In the first subsection, we

give necessary and sufficient explicit conditions for these kind of extensions
to be tamely ramified, the final result being contained in Proposition 24
and in Corollary 25. In the second subsection, we prove that in the case
of tame ramification, these extensions always have an integral basis; this is
equivalent to the Steinitz class of the extension being trivial (see the end of
Section 2). In the third subsection, we study the problem of the existence of
a normal integral basis in the case when the exponent m of the extension is
square-free and (ai,m) = 1 for all i; we show that, for non-cyclic extensions,
tame ramification is not a sufficient condition. In the last subsection, we
present further examples.

3.1. Tameness conditions. In the following we study the ramification
in extensions Q(ζm, m

√
a)/Q(ζm), with a ∈ Q. The goal is Proposition 24, in

which we give an explicit criterion for tame ramification in such extensions.

Lemma 14 ([12, Ch. 6, Thm. 9.1]). Let F be a field and let n ≥ 2. Let
a ∈ F ∗ and assume that for all prime numbers p such that p |n we have
a 6∈ (F ∗)p, and if 4 |n then a 6∈ −4(F ∗)4. Then xn − a is irreducible in
F [x].

Corollary 15. Let p be an odd prime and let F be a p-adic field such
that ζp 6∈ F . Let b ∈ F ∗ \ (F ∗)p and let β ∈ Q̄p such that βp = b. Then
F (β)/F has degree p and it is not normal.

Proof. This immediately follows from the lemma and the assumption
ζp 6∈ F .

Lemma 16. Let p be an odd prime and let F be a p-adic field such that
ζp 6∈ F . Let k, n ∈ N with k ≤ n, and let b ∈ F and β ∈ F̄ be such that
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βp
k

= b. Then
[F (ζpn , β) : F (ζpn)] = [F (β) : F ].

In particular, if b ∈ F ∗ \ (F ∗)p, then [F (ζpn ,
pk
√
b) : F (ζpn)] = pk.

Proof. Clearly if b ∈ (F ∗)p
k

both extensions are trivial. Assume now

that b 6∈ (F ∗)p
k
. Let r ∈ {0, . . . , k − 1} be such that b ∈ (F ∗)p

r \ (F ∗)p
r+1

,
let c ∈ F \ (F ∗)p be such that cp

r
= b and let s = k− r. With this notation,

we have βp
s

= c, hence [F (β) : F ] = ps.
On the other hand, by Kummer theory, F (ζpn , β) = F (ζpn , ps

√
c) has

degree ps unless γ = p
√
c ∈ F (ζpn); however, the last condition cannot hold

since it would imply that F ⊂ F (γ) ⊂ F (ζpn), but F (ζpn)/F is cyclic,
whereas, by Corollary 15, F (γ)/F is not normal.

Lemma 17. Let p be an odd prime and let F be a p-adic field with rami-
fication index over Qp coprime to p. Let k, n ∈ N with k ≤ n and let b ∈ F ∗.
Then the extension F (ζpn ,

pk
√
b)/F (ζpn) is totally ramified and not trivial if

b 6∈ (F ∗)p
k
, and it is trivial if b ∈ (F ∗)p

k
.

Proof. Clearly if b ∈ (F ∗)p
k

the extension is trivial. Assume now that

b 6∈ (F ∗)p
k
. Let r ∈ {0, . . . , k − 1} be such that b ∈ (F ∗)p

r \ (F ∗)p
r+1

, let
c ∈ F \ (F ∗)p be such that cp

r
= b and let s = k − r. With this notation,

F (ζpn ,
pk
√
b) = F (ζpn , ps

√
c) is a cyclic extension of F (ζpn) and, by Lemma 16,

it has degree ps > 1.
We claim that this extension is totally ramified. If not, its degree p subex-

tension F (ζpn , p
√
c)/F (ζpn) would be unramified. Denote by U the degree p

unramified extension of F ; then U ⊆ F (ζpn , p
√
c). Moreover, our hypothe-

sis on the ramification index of F guarantees that F (ζpn) ∩ U = F and
F (ζpn , p

√
c) = F (ζpn)U , and this implies that F (ζpn , p

√
c)/F is abelian since

it is the compositum of two linearly disjoint abelian extensions of F . This
gives a contradiction since, by Corollary 15, the subextension F ( p

√
c)/F is

not normal.

Corollary 18. Let m, k ∈ N, let p be an odd prime number and assume
pk |m. Let F be a p-adic field with ramification index over Qp coprime to

p, and let b ∈ F ∗. Then the extension F (ζm,
pk
√
b)/F (ζm) is totally ramified

and not trivial if b 6∈ (F ∗)p
k
, and it is trivial if b ∈ (F ∗)p

k
.

Proof. Let m = pnm′ with (m′, p) = 1, then n ≥ k. The corollary follows

from observing that F (ζm,
pk
√
b)/F (ζm) is the translate of F (ζpn ,

pk
√
b)/F (ζpn)

by the unramified extension F (ζm′) and from Lemma 17.

For simplicity of notation the following proposition is stated in the case
when the base field is Q. However, it is easy to extend it to a number field
with ramification index over Q coprime to m.
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Proposition 19. Let m ∈ N be an odd number, let m = pn1
1 · · · pnr

r be
its factorization into prime numbers and let a ∈ Q∗. Then

Q(ζm,
m
√
a)/Q(ζm) is tamely ramified ⇔ a ∈ (Q∗pi)

p
ni
i for all i = 1, . . . , r.

Proof. The extension Q(ζm, m
√
a)/Q(ζm) is a Kummer extension and its

degree is a divisor of m. It follows that it is tamely ramified if and only
if the primes over the pi are tamely ramified. Since ramification is a local
property, this is equivalent to the extensions Qpi(ζm,

m
√
a)/Qpi(ζm) being

tame for i = 1, . . . , r.

Assume that a ∈ (Q∗pi)
p
ni
i for all i = 1, . . . , r; clearly we have Qpi(ζm) =

Qpi(ζm,
p
ni
i
√
a) for all i. It follows that Qpi(ζm,

m
√
a) = Qpi(ζm,

mi
√
bi) (where

bi ∈ Qpi is such that a = bp
ni
i and mi = m/pni

i ), and this extension is tamely
ramified over Qpi(ζm) since its degree is coprime to pi.

Conversely, assume that the extensions Qpi(ζm,
m
√
a)/Qpi(ζm) are tame

for i = 1, . . . , r; then the subextensions Qpi(ζm,
p
ni
i
√
a)/Qpi(ζm) are tamely

ramified: since the degree of each of these extensions is a power of p, these
extensions are tame if and only if they are unramified and, by Corollary 18,

if and only if a ∈ (Q∗pi)
p
ni
i for all i = 1, . . . , r.

In the case p = 2 the situation is a bit different, and this is due to the
fact that ζ2 ∈ Q2.

Lemma 20. Let b ∈ Q∗2 \ ±(Q∗2)2 and let β ∈ Q̄2 be such that β4 = b.
Then Q2(β)/Q2 is not normal.

Proof. By Lemma 14, our choice of b guarantees that the polynomial x4−
b is irreducible, so its splitting field is Q2(β, i). It follows that, if Q2(β)/Qp

is normal, then i ∈ Q2(β) and, by Kummer theory, b is a square in Q2(i).
This cannot occur since b 6∈ ±(Q∗2)2.

Lemma 21. Let b∈Q∗2 and let n≥3. The extension Q2(ζ2n ,
√
b)/Q2(ζ2n)

is unramified or trivial according to whether b ∈ ±5(Q∗2)2 ∪ ±10(Q∗2)2 or
b ∈ ±(Q∗2)2 ∪ ±2(Q∗2)2.

For n = 2, the extension Q2(ζ4,
√
b)/Q2(ζ4) is trivial when b ∈ ±(Q∗2)2,

unramified when b ∈ ±5(Q∗2)2, and totally ramified when b ∈ ±2(Q∗2)2 ∪
±10(Q∗2)2.

Proof. This follows easily by combining the following three facts: −1 and
2 are squares in Q2(ζ8), the maximal abelian extension of exponent 2 of Q2

is Q2(i,
√

2,
√

5), and the unramified extension of degree 2 of Q2 is Q2(
√

5).

Lemma 22. Let b ∈ Q∗2, let k, n ∈ N with n ≥ k ≥ 1 and denote by f the

inertia degree of the extension Q2(ζ2n ,
2k
√
b)/Q2(ζ2n). Then f ≤ 2.
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Proof. Let l ≤ k be such that Q2(ζ2n ,
2l
√
b) is the maximal unramified

subextension of Q2(ζ2n ,
2k
√
b)/Q2(ζ2n); we note that we can assume that

n > l: in fact, otherwise we can translate the extension Q2(ζ2n ,
2l
√
b)/Q2(ζ2n)

by Q2(ζ2n+1) and this does not change the inertia degree. In this case we

have Q2(ζ2n ,
2l
√
b) = Q2(ζ2n ,

2l
√
−b), so, by changing, if necessary, b to −b and

to its square root repeatedly, we can assume b 6∈ ±Q∗22 .

Denote by U the unramified extension of Q2 of degree f . If f ≥ 4 then
necessarily 2l ≥ 4, hence, letting β ∈ Q̄2 be such that β4 = b, we would have
β ∈ Q2(ζ2n)U and its Galois group would be abelian, whereas Q2(β) is not
normal over Q2 by Lemma 20 since b 6∈ ±Q∗22 .

Lemma 23. Let b ∈ Q∗2 and let n ∈ N with n ≥ 3. Then the extension

Q2(ζ2n ,
2n
√
b)/Q2(ζ2n) is tame if and only if b ∈ (Q∗2)2

n−1
.

The extension Q2(ζ4,
4
√
b)/Q2(ζ4) is tame if and only if either b ∈ (Q∗2)4∪

−4(Q∗2)4, in which case the extension is trivial, or b∈25(Q∗2)4 ∪−100(Q∗2)4,
in which case f = 2.

Proof. Let us first consider the case n ≥ 3.

If b ∈ (Q∗2)2
n−1

, then b = c2
n−1

in Q2 and by Lemma 21 the extension
Q2(ζ2n , 2

√
c)/Q2(ζ2n) is always unramified.

Assume now that the extension is tame; in this case the extension is
necessarily unramified and by Lemma 22 it has degree at most 2. It follows
that Q2(ζ2n ,

2n
√
b) is abelian over Q2 since it is a subextension of Q2(ζ2n ,

√
5),

hence Q2(
2n
√
b) and all its subextensions are normal and abelian over Q2; by

Lemma 20 this implies that b ∈ ±Q∗22 .

Case b ∈ Q∗22 : let r ≥ 1 be such that b ∈ Q∗2r2 \Q∗2r+1

2 ; then b = c2
r

with
c 6∈ Q∗22 . We want to show that r ≥ n−1, or, equivalently, that s = n−r ≤ 1.
If s ≥ 2 then 4

√
c ∈ Q2(ζ2n ,

√
5), so Q2( 4

√
c)/Q2 is normal; by Lemma 20 and

our choice of c we have c ∈ −Q∗22 , that is, c = −d2 with d ∈ Q∗2. Now

b = (−d2)2r = d2
r+1

, since r ≥ 1, and this is not possible, so b ∈ (Q∗2)2
n−1

.

Case b ∈ −Q2
2: we want to show that this case is not possible. Let b′ = −b;

then Q2(ζ2n+1 ,
2n
√
b′) = Q2(ζ2n+1 ,

2n
√
b), hence this extension is abelian over

Q2. It follows that Q2(
2n
√
−b)/Q2 is normal, and, taking into account that

b′ ∈ Q∗22 , arguing as before we get b′ ∈ (Q∗2)2
n−1

, so b = −c2n−1
with c ∈ Q∗2.

We want to show that Q2(ζ2n ,
2n
√
−c2n−1) = Q2(ζ2n ,

√
(ζ2nc)) cannot

be contained in Q2(ζ2n ,
√

5). In fact, otherwise we would have ζ2nc5
ε ∈

Q2(ζ2n)∗2 (with ε = 0, 1 depending on the extension being trivial or of degree
2 over Q2(ζ2n)). Now Q∗2 = 〈2〉× 〈−1〉× 〈5〉 so ζ2nc5

ε = ζ2n2g(−1)h5j+ε and
since n ≥ 3 the elements −1 and 2 are squares in Q2(ζ2n), so ζ2nc5

ε can be
a square in Q2(ζ2n) only if at least one of ζ2n , ζ2n5 is a square in Q2(ζ2n),
which is not the case. In fact, this is clear for ζ2n , whereas for ζ2n5 it can
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be seen by noting that ζ2n5 ∈ U1 \ U2 so it cannot belong to U2
1 (here

Ui = Ui(Q2(ζ2n)) = {x ∈ Q2(ζ2n)∗ | x ≡ 1 (mod (ζ2n − 1)i)} and we are
using that for a local field K we have K∗ ∼= Z× F∗qK × U1, see for example
[14, Cor. 1 p. 216]).

The case n = 2 can be easily proved by direct computation or consulting
a database (for example [9]).

Finally it is clear that an analogue of Corollary 18 holds also for p = 2,
hence the previous result allows us to generalize Proposition 19 to all natural
numbers.

Proposition 24. Let m ∈ N and let m = 2npn1
1 · · · pnr

r be its fac-
torization into primes, where n ≥ 0 and ni > 0 for all i. For a ∈ Q∗,
Q(ζm, m

√
a)/Q(ζm) is tamely ramified if and only if a ∈ (Q∗pi)

p
ni
i for all i =

1, . . . , r and, if m is even, one of the following conditions hold:

• n = 1 and a ∈ (Q∗2)2 ∪ 5(Q∗2)2;
• n = 2 and a ∈ (Q∗2)4 ∪ −4(Q∗2)4 ∪ 25(Q∗2)4 ∪ −100(Q∗2)4;

• n ≥ 3 and a ∈ (Q∗2)2
n−1

.

Corollary 25. Let m ∈ N and let m = pn1
1 · · · pnr

r be its factorization
into prime numbers. For any a ∈ Z such that (a,m) = 1,

Q(ζm,
m
√
a)/Q(ζm) is tamely ramified

⇔ api−1 ≡ 1 (mod pni+1
i ) ∀i = 1, . . . , r.

Proof. We have to show that the conditions of Proposition 24 become
those of the statement when a is an integer coprime to m.

Let us first consider the case of an odd prime p such that (a, p) = 1: we
have to prove that a ∈ (Q∗p)p

n ⇔ ap−1 ≡ 1 (mod pn+1).
We recall that Q∗p ∼= 〈p〉 × 〈ω〉 × U1 where ω is a primitive (p − 1)th

root of unity and U1 = {x ∈ Zp | x ≡ 1 (mod p)}. It follows that (Q∗p)p
n ∼=

〈ppn〉 × 〈ω〉 × Up
n

1 . Since (a, p) = 1, in Q∗p we have a = ωiu with u ∈ U1. It

follows that a ∈ (Q∗p)p
n

if and only if u ∈ Up
n

1 , namely if and only if u ≡ 1

(mod pn+1) (this can be easily seen by direct computation or deduced from
general results like [14, Corollary p. 217]). Since ωp−1 = 1 the result follows.

Let us now consider the case p = 2; let n be the exponent of 2 in the
factorization of m. We recall that Q∗2 ∼= 〈2〉 × U1 = 〈2〉 × 〈−1〉 × U2.

If n = 1, from Proposition 24 we see that 2 is tamely ramified if and
only if a ∈ (Q∗2)2 ∪ 5(Q∗2)2. Now a ∈ (Q∗2)2 if and only if a ≡ 1 (mod 8) and
a ∈ 5(Q∗2)2 if and only if a ≡ 5 (mod 8), thus 2 is tamely ramified if and
only if a ≡ 1 (mod 4 = 2n+1).

If n = 2, from Proposition 24 we infer that 2 is tamely ramified if and
only if a ∈ (Q∗2)4 ∪−4(Q∗2)4 ∪ 25(Q∗2)4 ∪−100(Q∗2)4; since (a, 2) = 1 we have
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to consider the case a ∈ (Q∗2)4∪25(Q∗2)4. Now a ∈ (Q∗2)4 if and only if a ≡ 1
(mod 16), and a ∈ 25(Q∗2)4 if and only if a ≡ 25 ≡ 9 (mod 16), thus 2 is
tamely ramified if and only if a ≡ 1 (mod 8 = 2n+1).

If n ≥ 3, from Proposition 24 we conclude that 2 is tamely ramified if
and only if a ∈ (Q∗2)2

n−1
, that is, if and only if a ≡ 1 (mod 2n+1).

3.2. The Steinitz class. In this part we prove that tame extensions of
the kind Q(ζm, m

√
a)/Q(ζm) always have an integral basis.

We begin by recalling the definition of ambiguous ideals: Let K/F be a
Galois extension of number fields. Then a fractional ideal I of K is called
an ambiguous ideal of K/F if it is invariant under the action of Gal(K/F ).
Since the orbit of a prime P of OK under the action of Gal(K/F ) consists of
all the primes of OK lying over P = P ∩OF , using the unique factorization
property it is easy to see that I is an ambiguous ideal of K/F if and only if

(3) I =
∏

P⊆OF
P prime

√
POK

nP
,

where
√
POK denotes the radical of the ideal POK , that is, the product

of all the primes of OK over P , and the nP ’s are integers, all but a finite
number trivial.

Lemma 26. Let m ≥ 2 be a positive integer and a = (a1, . . . , an) ∈
Zn. Then, for all r ∈ R̂, the ideal Br associated to a in the extension
Q(ζm, m

√
a)/Q(ζm) is an ambiguous ideal of Q(ζm)/Q.

Proof. Let K := Q(ζm). For r ∈ R̂ we have

Br =
∏
P⊂OK

P [
r·ordP a

m
] =

∏
p∈Z

p prime

∏
P|p

P [
r·ordP a

m
].

By (3) we have to prove that the number
[
r ·ordP a

m

]
=
[∑n

i=1
ri ordP ai

m

]
does

not depend on P, but only on p = P ∩ Z. Since ai ∈ Z for all i, it is
clear that ordP ai = eP ordp ai but, Q(ζm)/Q being a Galois extension, eP
depends only on the prime p lying under P. Putting eP = ep, we get

(4) Br =
∏
p∈Z

p prime

∏
P|p

P
[
ep(r·ordp a)

m

]
=

∏
p∈Z

p prime

√
pOK

[
ep(r·ordp a)

m

]
,

as required.

Lemma 27. All ambiguous ideals of Q(ζm)/Q are principal.

Proof. Let K := Q(ζm); by (3) it is sufficient to show that
√
pOK is

principal for any rational prime p. If p - m, then p is unramified in OK , thus
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√
pOK = pOK is principal. If p |m, let m = pnpνp with (p, νp) = 1. Then√

pOK = (ζpnp − 1)OK ,

hence also in this case
√
pOK is principal, and the lemma follows.

Corollary 28. Let the notation be as in Lemma 26. For all r ∈ R̂
the ideal Br associated to a is principal; moreover, if (ai,m) = 1 for all
i = 1, . . . , n, all of the Br’s are generated by rational integers coprime to m.

Proof. The first assertion immediately follows from Lemmas 26 and 27.
Moreover, the primes which really appear in the product in (4) are those
dividing ã := a1 . . . an. It follows that, if (ã,m) = 1, then the primes which
appear in the product do not divide m, hence in this case

√
pOK = pOK

and

Br =
∏

p prime
p|ã

p[
r·ordp a

m
]OK

is generated by an integer coprime to m.

Proposition 29. Let m ≥ 2 and let a = (a1, . . . , an) ∈ Zn. If the
extension Q(ζm, m

√
a)/Q(ζm) is tamely ramified, then its Steinitz class is

trivial.

Proof. By Proposition 13, if the extension Q(ζm, m
√
a)/Q(ζm) is tamely

ramified, then its Steinitz class is (
∏

r∈R̂ Br )−1, where the Br ’s are the ideals
associated to a , and these ideals are principal by Corollary 28.

A similar result for cyclic Kummer extension of degree pn generated by
roots of rational integers, not necessarily tame, can be found in [2].

3.3. Normal integral bases. Recently Ichimura [8], generalising Ka-
wamoto’s result [10] on cyclic extensions of prime degree, showed that tame
ramification is a sufficient condition for the existence of a NIB for any cyclic
extension Q(ζm, m

√
a)/Q(ζm) with m square-free and (a,m) = 1. Below,

we give a different proof of Ichimura’s result, based on our Theorem 11.
Moreover, we consider the question whether for the more general case of
extensions Q(ζm, m

√
a)/Q(ζm) with m square-free and (ai,m) = 1 for all i,

tame ramification is still a sufficient condition for the existence of a NIB.
We show that the answer is negative in general (see Example 1); moreover,
in Proposition 35 we collect some cases with positive answer.

Lemma 30. Let m ≥ 2 be a positive square-free integer. For any integer
a ∈ Z with (a,m) = 1, there exists a unit u ∈ Z[ζm]∗ such that u ≡ a
(mod m).
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Proof. This is a special case of the general principal ideal theorem given
by Miyake [13, Thm. 1].

Proposition 31 (Kawamoto’s Theorem). Let p be an odd prime number
and let a ∈ Z be such that ap−1 ≡ 1 (mod p2). Then Q(ζp, p

√
a)/Q(ζp) has a

NIB.

Proof. For the case when a is p-power free see [10]. If a = bp · ã, then
Q(ζp, p

√
a) = Q(ζp,

p
√
ã) and

ap−1 = bp(p−1)ãp−1 ≡ ãp−1 (mod p2),

thus the proposition easily follows.

Remark 32. Thanks to Corollary 25, the previous result tells that
Q(ζp, p

√
a)/Q(ζp) has a NIB whenever it is tamely ramified (as already

pointed out by Kawamoto).

Proposition 33. Let m ≥ 2 be a positive square-free integer and let
a ∈ Z be such that (a,m) = 1. Then the extension Q(ζm, m

√
a)/Q(ζm) has a

NIB whenever it is tame.

We remark that this result is contained in [8]; we give a different proof,
based on our Theorem 11.

Proof. We set L = Q(ζm, m
√
a) and K = Q(ζm).

Let m = p1 · · · pk, with pi pairwise distinct prime numbers, and (possibly
rearranging the indices) let {p1, . . . pn} be the primes dividing m such that
pi
√
a 6∈ K.

We define

a = {a1 . . . , an} := {am/p1 , . . . , am/pn},
α = {α1, . . . , αn} := m

√
a = {p1

√
a, . . . , pn

√
a}.

Thus we have

L = K(m
√
a) = K( p1

√
a, . . . , pn

√
a) = K(α1, . . . , αn) = K(m

√
a).

By Kawamoto’s Theorem, for 1 ≤ i ≤ n, there exists a NIB ωi of the
extension Q(ζpi , αi)/Q(ζpi). This NIB translates to K(αi)/K: in fact, K
and Q(ζpi , αi) are linearly disjoint over Q(ζpi), since a is coprime to m.

For each i = 1, . . . , n, consider the ideals Bi,r associated to ai; by Corol-
lary 28 these ideals are generated by rational integers bi,r, and by Theorem
11 (case n = 1) we have

piωi =

pi−1∑
r=0

ui,r
αri
bi,r

,
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with ui,r ∈ Z[ζpi ]
∗ ⊂ Z[ζm]∗. Then

n∏
i=1

( pi−1∑
r=0

ui,r
αri
bi,r

)
=

n∏
i=1

piωi = m
n∏
i=1

ωi ≡ 0 (mod m),

or equivalently, letting R̂ be as in Section 2,∑
r∈R̂

αr
n∏
i=1

ui,ri
bi,ri

≡ 0 (mod m).

By Lemma 30 we know that bi,ri ≡ vi,ri (mod m) with vi,ri ∈ Z[ζm]∗; setting
εr =

∏n
i=1 (ui,ri/vi,ri) ∈ Z[ζm]∗ we get

(5)
∑
r∈R̂

εrα
r ≡ 0 (mod m).

For each r ∈ R̂, let br be the rational integer given by Corollary 28
which generates the ideal Br associated to a ; it is clear that condition (i) of
Theorem 11 is satisfied by a . Let us show that also condition (ii) is satisfied,
so that we get a NIB for the extension we are considering.

For each r ∈ R̂, we are looking for units ur such that∑
r∈R̂

ur
αr

br
≡ 0 (mod m).

By Lemma 30, we know that br ≡ vr (mod m) with vr ∈ Z[ζm]∗; setting
ur = εrvr we get∑

r∈R̂

ur
αr

br
=
∑
r∈R̂

εrvr
αr

br
≡
∑
r∈R̂

εrα
r ≡ 0 (mod m),

where the last congruence is due to (5).

Corollary 34. Let m ≥ 2 be a positive square-free integer and let
m = p1 · · · pr be its factorization into prime factors. Let a ∈ Z be such that
(a,m) = 1. Then the extension Q(ζm, m

√
a)/Q(ζm) has a NIB if and only if

api−1 ≡ 1 (mod p2i ) for all i = 1, . . . , r.

Proof. This follows from Proposition 33 and Corollary 25.

Consider now the case of an abelian extension Q(ζm, m
√
a)/Q(ζm) gener-

ated by mth roots of n integers a1, . . . , an coprime to m where m is a square-
free integer. Also in this case, the tameness condition can be made com-
pletely explicit; in fact, the extension Q(ζm, m

√
a1, . . . , m

√
an)/Q(ζm) is tamely

ramified if and only if its subextensions Q(ζm, m
√
ai)/Q(ζm) are tamely ram-

ified for all i = 1, . . . , n, hence if and only if ai satisfies the conditions of
Corollary 34 for all i.
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We can ask whether the result of Proposition 33 can be generalised to
this case, namely if the tameness of the extension is sufficient to ensure the
existence of a NIB.

The following example shows that, in general, the answer is negative.

Example 1. Q(ζ3,
3
√

10, 3
√

46)/Q(ζ3) is tamely ramified but has no nor-
mal integral basis.

Proof. Let K = Q(ζ3), and let L = K( 3
√

10, 3
√

46); since 10 ≡ 1 (mod 9),
and 46 ≡ 1 (mod 9) the extension L/K is tamely ramified.

Let α be any root of x3 − 10 and let β be any root x3 − 46. With the
notation of Theorem 11, L/K has a normal integral basis if and only if there
exist units uij ∈ O∗K such that the element

ω =
1

9

(
1 + u10α+ u20α

2 + u01β + u02β
2 + u11αβ

+
u21
2
α2β +

u12
2
αβ2 +

u22
2
α2β2

)
is an integer. We want to show that this is not the case.

Since O∗K = {±1,±ζ3,±ζ23}, the computation can be easily performed
by a computer program. Anyway, to make it clear to the reader, we sketch
an easy pen-and-paper proof.

First, we note that if u, v ∈ O∗K and γ ∈ {α, β, αβ, α2β} then

(6) 1 + uγ + vγ2 ≡ 0 (mod 3) ⇔ (u, v) ∈ {(1, 1); (ζ3, ζ
2
3 ); (ζ23 , ζ3)}

(For ⇐ see [7, Lemma 7]; and ⇒ is easily seen by explicit computation.)
The idea now is to use the integrality of the traces of integral elements

over intermediate fields to get a restriction on the uij .

• trL/K(α)(ω) = 1
3(1 + u10α + u20α

2); as this element is an integer, we
must have

1 + u10α+ u20α
2 ≡ 0 (mod 3).

Using (6) and possibly replacing α with one of it conjugates we can
assume u10 = 1, hence u20 = 1.
• trL/K(β)(ω) integral⇒ 1 + u01β + u02β

2 ≡ 0 (mod 3): we may choose
β such that u01 = 1, then u02 = 1.
• trL/K(αβ)(ω) integral ⇒ 1 + u11αβ − u22α2β2 ≡ 0 (mod 3): this, ac-

cording to (6), gives two cases:

(A) u11 = 1, hence u22 = −1,
(B) u11 = ζ3, hence u22 = −ζ23 ;

the case u11 = ζ23 is identical to case (B).

• trL/K(α)(β
2ω) integral⇒ u01 + u11α− u21α2 ≡ 0 (mod 3),

trL/K(β)(α
2ω) integral⇒ u10 + u11β − u12β2 ≡ 0 (mod 3):
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(A) u21 = u12 = −1,
(B) u21 = u12 = −ζ23 .

• trL/K(α2β)(ω) integral⇒ 1− u12αβ2 − u21α2β2 ≡ 0 (mod 3): case (B)
gives a contradiction with (6), whereas case (A) is possible.

It remains to test the single element

ω = 1
9

(
1 + α+ α2 + β + β2 + αβ − 1

2α
2β − 1

2αβ
2 − 1

2α
2β2
)
;

we can now compute the norm of ω over K, which is −1604800/9, so ω is
not an integer.

Proposition 35. Let m ≥ 2 be a positive square-free integer and a ∈ Zn
such that (ai,m) = 1 for all i. Moreover, assume that (ai, aj) = 1 for all
i 6= j. Then the extension Q(ζm, m

√
a)/Q(ζm) has a NIB whenever it is tame.

Proof. The first step is to show that, up to replacing the elements ai with
adii for suitable di |m, we may suppose that the extensions Q(ζm, m

√
ai) are

all linearly disjoint over Q(ζm), namely that, if we put N = [Q(ζm, m
√
a) :

Q(ζm)] and mi = [Q(ζm, m
√
ai) : Q(ζm)], then N =

∏
imi. In fact, we observe

that we can reduce to the case when m is a prime, since if m = p1 · · · pr, then
Q(ζm, m

√
a) is the compositum of the extensions Q(ζm, pj

√
a) for j = 1, . . . , r

which are clearly linearly disjoint over Q(ζm). In the case when m = p is a
prime it is easy to see that, if [Q(ζp, p

√
a) : Q(ζp)] = pn−k, we can omit k of

the n generators { p
√
a1, . . . , p

√
an }. We also note that this substitution does

not affect the conditions (ai, aj) = 1.
We now note that, thanks to the previous proposition, for any i the

extension Q(ζm, m
√
ai)/Q(ζm) has a NIB ωi.

Since the extensions Q(ζm, m
√
ai)/Q(ζm) are linearly disjoint, it follows

that ω =
∏n
i=1 ωi generates a normal integral basis for Q(ζm, m

√
a)/Q(ζm).

Remark 36. We note that each extension L = Q(ζm, m
√
a) can be em-

bedded in a Kummer extension E = Q(ζm,
m
√
a′1, . . .

m
√
a′t) with (a′i, a

′
j) = 1

for all i 6= j: for example, this can be obtained by choosing as generators
the mth roots of all primes dividing

∏
i ai (in a concrete case one can often

find a smaller extension with the same property).
In the case when the extension E/K is tame, the extension L/K has a

normal integral basis: in fact, E/K has a NIB ω by Proposition 35, hence
trE/L(ω) is a generator for a normal integral basis of L/K.

However, the extension E/K obtained from L might no longer be tame.

3.4. A special case. In this last section we recall a result by Ichimura
showing that, under particular hypotheses on m and a, a generator of a
NIB of Q(ζm, m

√
a)/Q(ζm) can be explicitly given, and we verify moreover

that this explicit element, multiplied by ζm, generates a NIB of Q(ζm, m
√
a)

over Q.
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Proposition 37. Let m be a positive integer, set m̃ = m
∏
p|mp and let

a ∈ Z be a square-free integer such that a ≡ 1 (mod m̃). Then

ω =
1

m

m− 1∑
i=0

m
√
a
i

is a NIB generator for the extension Q(ζm, m
√
a)/Q(ζm).

Proof. See [7, Corollary 3]. The explicit generator can be found in the
proof.

Proposition 38. Let m ≥ 2 and a be square-free integers such that
a ≡ 1 (mod m2) and let ω be the NIB of the extension Q(ζm, m

√
a)/Q(ζm)

given in Proposition 37. Then ωζm is a NIB for the non-abelian extension
Q(ζm, m

√
a)/Q.

Proof. Let G = Gal(Q(ζm, m
√
a)/Q), and H = Gal(Q(ζm)/Q). For any

h ∈ H there exists g ∈ G such that g|Q(ζm) = h and g(m
√
a) = m

√
a, denote

this g by gh. We also denote by ḡ ∈ G the generator of the cyclic subgroup
Gal(Q(ζm, m

√
a)/Q(ζm)) such that ḡ(m

√
a) = ζm m

√
a. Then

G = {ḡigh | 0 ≤ i ≤ m− 1, h ∈ H}.
Setting L = Q(ζm, m

√
a) and K = Q(ζm), from Proposition 37 we have

(7) OL =
m−1⊕
i=0

OK ḡi(ω).

It is well known that

(8) OK =
⊕
h∈H

Zh(ζm).

Equations (7) and (8) together give

OL =
m−1⊕
i=0

⊕
h∈H

Zḡi(ω)h(ζm).

But ḡi(ω)h(ζm) = ḡigh(ωζm), i.e. OL = Z[G]ωζm.
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