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A remark on Tate’s algorithm and Kodaira types
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Tim Dokchitser (Bristol) and Vladimir Dokchitser (Cambridge)

Let R be a complete discrete valuation ring with perfect residue field,
fraction field K and valuation v = vK . If E/K is an elliptic curve in Weier-
strass form,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (ai ∈ K),

the celebrated algorithm of Tate ([3], [2, §IV.9]) determines the minimal
model and the local invariants of E. In this paper we gently tweak the
resulting models so that the Kodaira type can be simply read off from the
valuations of the ai:

Theorem 1. An elliptic curve E/K with additive reduction has a mini-
mal Weierstrass model over R which depends on its Kodaira type as follows:

II III IV I∗0 I∗n>0 IV∗ III∗ II∗

min
v(ai)

i

1

6

1

4

1

3

1

2

1

2

2

3

3

4

5

6

extra condition v(b6) = 2 v(d) = 6
v(d) > 6

v(a22 − 3a4) = 2
v(b6) = 4

Here

b6 = a23 + 4a6 = Disc(y2 + a3y − a6), d = Disc(x3 + a2x
2 + a4x+ a6).

Conversely, a Weierstrass model satisfying one of these conditions is mini-
mal, with the corresponding Kodaira type.

There is a refinement for type I∗n that recovers n as well:

Proposition 2. An elliptic curve E/K with Kodaira type I∗n, n > 0,
has a minimal model with

v(a2) = 1, v(ai) ≥
i

2
+

⌊
i− 1

2

⌋
n

2
,

{
v(d) = n+ 6, v(b6) ≥ n+ 3 if 2 |n,
v(d) ≥ n+ 6, v(b6) = n+ 3 if 2 - n.
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Conversely, a Weierstrass equation satisfying these conditions is minimal
and defines an elliptic curve with Kodaira type I∗n.

As an application, we deduce the behaviour of minimal discriminants
and Kodaira types in tame extensions of local fields; our motivation came
from Iwasawa theory of elliptic curves, where it is necessary to control local
invariants of elliptic curves in towers of number fields (see [1]).

Theorem 3. Let F/K be a tame extension of ramification degree e, and
let E/K be an elliptic curve.

(1) If E/K has Kodaira type In, then E/F has type Ien.
(2) If E/K has Kodaira type I∗n, then E/F has type I∗en if e is odd and

type Ien if e is even.
(3) In all other cases, the type of E/F is determined by

ðE/F ≡ eðE/K mod 12,

where ð=0, 2, 3, 4, 6, 8, 9, 10 if E has Kodaira type I0, II, III, IV, I∗0,
IV∗, III∗, II∗ respectively.

The valuations of minimal discriminants for E/K and E/F are related by

vF (∆E/F ) = e vK(∆E/K)− 12beðE/K/12c,
where ðE/K = 0 for I0 and In, 6 for I∗n and is as in (3) otherwise.

Remark. If the residue characteristic is at least 5 and E/K has po-
tentially good reduction, the fraction in the table in Theorem 1 is just
v(∆E/K)/12, and ðE/K = v(∆E/K) in Theorem 3. The conclusion of Theo-
rem 3 is then equivalent to the standard fact that vF (∆E/F ) < 12. The point
is that ð gives the correct replacement for v(∆) in residue characteristics
2 and 3. Note, however, that in residue characteristics 2 and 3 neither the
Kodaira type nor the minimal discriminant behave as in Theorem 3 in wild
extensions.

Example 4. The curve E : y2 = x3 − 2x over K = Q2 has Kodaira
type III (as min v(ai)/i = 1/4) and v(∆) = 9. By Theorem 3, over the
tame extensions Fn = Q2(

5n
√

2) the reduction remains of Type III, and the
valuations are

vFn(∆E/Fn
)9 · 5n − 12

⌊
3 · 5n

12

⌋
= 6 · 5n + 3 = 33,153,753, . . . .

In particular, they are not bounded by 12 (or by anything) as they would
be in residue characteristics ≥ 5. Over the wild quartic extensions Q2(

4
√

2),
Q2(

4
√
−2), Q2(ζ8), the Kodaira types of E are III∗, I∗3, I∗4, and the valuations

of the minimal discriminants are 12, 12, 24, respectively. So these cannot be
recovered just from E/Q2 and the ramification degree.
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In the proofs below we follow the steps of Tate’s algorithm, numbered
as in [3] and [2, §IV.9].

1. Proof of Theorem 1. Let π be a uniformiser of K.
By Steps 1–2 of Tate’s algorithm, an elliptic curve with additive reduc-

tion over K has an integral model with π | a3, a4, a6, π | b2 = a21 + 4a2. If K
has residue characteristic 2, this means π | a1, and, shifting y 7→ y − αx for
any α ∈ R with α2 ≡ a2 mod π, we can get π | a2 as well. Similarly, if K has
odd residue characteristic, the substitution y 7→ y − (a1/2)x makes both a1
and a2 divisible by π. Now we run Tate’s algorithm through this equation,
and inspect the model that comes out of it:

Type II (Step 3): Here π2 - a6 and the valuations of the ai are ≥ 1, ≥ 1,
≥ 1, ≥ 1, = 1, so min v(ai)/i = 1/6.

Type III (Step 4): Here π2 | a6 and

π3 - b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24 ≡ −a24 mod π3.

So π2 - a4, the valuations of the ai are ≥ 1, ≥ 1, ≥ 1, = 1, ≥ 2 and
min v(ai)/i = 1/4.

Type IV (Step 5): Here π2 | a6, π3 | b8 ⇒ π2 | a4, and π3 - b6 = a23 + 4a6.
The valuations of the ai are ≥ 1,≥ 1,≥ 1,≥ 2,≥ 2, and either v(a3) = 1 or
v(a6) = 2 since π3 - a23 + 4a6. So min v(ai)/i = 1/3.

Type I∗0 (Step 6): Here π2 | a3, π2 | a4, π3 | a6, v(d) = 6, the valuations of
the ai are ≥ 1,≥ 1,≥ 2,≥ 2,≥ 3, so min v(ai)/i ≥ 1/2. Because

6 = v(d) = π6 Disc

(
x3 +

a2
π
x2 +

a4
π2
x+

a6
π3

)
,

at least one of a2/π, a4/π
2 and a6/π

3 is a unit, so the minimum is exactly
1/2.

Type I∗n, n ≥ 1 (Step 7): Here π2 | a3, π2 | a4, π3 | a6, v(d) > 6 and
π2 - a2, so min v(ai)/i = 1/2, attained for i = 2. Moreover, the cubic
x3 + (a2/π)x2 + (a4/π

2)x+ (a6/π
3) has a double root which is not a triple

root. A cubic polynomial x3 + ax2 + bx + c has a triple root if and only if
its discriminant is 0 and a2 − 3b = 0, and this gives the two extra stated
conditions (1).

Type IV∗ (Step 8): Here π2 | a2, π2 | a3, π3 | a4, π4 | a6 and π5 - b6 =
a23 + 4a6. The valuations of the ai are ≥ 1,≥ 2,≥ 2,≥ 3,≥ 4, and either
v(a3) = 2 or v(a6) = 4 since π5 - a23 + 4a6. So min v(ai)/i = 2/3.

(1) If the roots of x3 + ax2 + bx + c are α, β, γ, then the discriminant condition is
equivalent to two of them being equal, say α = β, in which case a2 − 3b = (α − γ)2

measures whether it is a triple root.
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Type III∗ (Step 9): Here π2 | a2, π3 | a3, π3 | a4, π5|a6 and π4 - a4. The
valuations of the ai are ≥ 1,≥ 2,≥ 3,= 3,≥ 5, so min v(ai)/i = 3/4.

Type II∗ (Step 10): Here π2 | a2, π3 | a3, π4 | a4, π5|a6 and π6 - a6. The
valuations of the ai are ≥ 1,≥ 2,≥ 3,≥ 4,= 5, so min v(ai)/i = 5/6.

Conversely, any model satisfying one of the conditions in the table is
minimal with the right Kodaira type, which is immediate from the corre-
sponding step of Tate’s algorithm. (The steps do not change such a model.)

2. Proof of Proposition 2. From Step 7 of Tate’s algorithm it follows
readily that a curve E/K of type I∗n has a minimal model with

v(a2) = 1, v(ai) ≥
i

2
+

⌊
i− 1

2

⌋
n

2
,

{
v(D) = n+ 4, v(b6) ≥ n+ 3 if 2 |n,
v(D) ≥ n+ 4, v(b6) = n+ 3 if 2 - n,

where D = Disc(a2x
2 + a4x+ a6). Because n ≥ 1,

d = −4a32a6 + a22a
2
4 − 4a34 − 27a26 + 18a2a4a6 ≡ a22D mod πn+7,

the conditions on D are equivalent to those on d in the proposition.

Conversely, such a model has v(a22 − 3a4) = 2, and so the polynomial
x3 + (a2/π)x2 + (a4/π

2)x+ a6/π
3 has a double root, but not a triple root.

Step 7 of Tate’s algorithm shows the model to be minimal of type I∗n.

3. Proof of Theorem 3. (1) If E has good or multiplicative reduction
(types I0, In>0), the minimal model stays minimal in all extensions, and the
reduction stays good, respectively multiplicative. In the multiplicative case,
−n is the valuation of the j-invariant of E, so it gets scaled by e in F/K;
cf. [2, §IV.9, Table 4.1].

(2), (3) Fix a uniformiser π of F , and write l for the residue characteristic.
As F/K is tame, l - e.

Assume that E/K has additive reduction, and is in Weierstrass form as
in Theorem 1 (and as in Proposition 2 for type I∗n). Then min vK(ai)/i =
ðE/K/12 and min vF (ai)/i = eðE/K/12. Over F this model can be rescaled

beðE/K/12c times with the standard substitution y 7→ π3y, x 7→ π2x; call
the new Weierstrass coefficients A1, A2, A3, A4, A6. So now

min
i

vF (Ai)

i
∈
{
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}
.

We proceed to show that the resulting equation satisfies the ‘extra condi-
tons’ of Theorem 1, and, if min vF (Ai)/i = 0, that E/F has good reduction
(Type I0). This implies all the claims in Theorem 3.

It is a simple consequence of the fact that the tame inertia is cyclic
that tame extensions can be built up from unramified ones and ramified
extensions of prime degree. If F/K is unramified (e = 1), there is nothing
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to prove. So for simplicity we may and will assume that [F : K] = e = p is
prime, p 6= l.

We first deal with the cases when E acquires good reduction:

Type IV, IV∗, p = 3, l 6= 3: the valuations of the ai are > 1/3, > 2/3,≥
1, > 4/3,≥ 2 for Type IV and > 2/3, > 4/3,≥ 2, > 8/3,≥ 4 for Type IV∗.
The valuations of the Ai are therefore > 0, > 0,≥ 0, > 0,≥ 0, so the model
reduces to y2 + αy = x3 + β over the residue field of F . It has discriminant
−27(α2 + 4β)2, which is non-zero, since l 6= 3 and α2 + 4β 6= 0 from the b6
condition for E/K. So E/F has good reduction.

Type I∗0, p = 2, l 6= 2: In the same manner, the valuations of the Ai are
> 0, ≥ 0, > 0, ≥ 0, ≥ 0, the model reduces to y2 = x3 + αx2 + βx+ γ and
this has non-zero discriminant since l 6= 2 and vK(d) = 6 for E/K.

Now we look at the remaining cases, all entirely similar.

Type IV, IV∗, p 6= 3: The extra condition in the table for E/K auto-
matically rescales to give the one for E/F .

Type I∗0, p 6= 2: The condition for E/K rescales to give the one for E/F .

Type II, p = 2, l 6= 2: vK(a3) ≥ 1, vK(a6) = 1 gives vF (A3) ≥ 2,
vF (A6) = 2. So π3 - A2

3 + 4A6 = B6, which is the condition for type IV.

Type II∗, p = 2, l 6= 2: vK(a3) ≥ 3, vK(a6) = 5 gives (after one rescaling)
vF (A3) ≥ 3, vF (A6) = 4. So π5 - A2

3 + 4A6 = B6, which is the conditon
for IV∗.

Type II, p = 3, l 6= 3: vK(a2) ≥ 1, vK(a4) ≥ 1, vK(a6) = 1 gives
vF (A2) ≥ 3, vF (A4) ≥ 3, vF (A6) = 3, so

x3 +
A2

π
x2 +

A4

π2
x+

A6

π3
≡ x3 + unit modπ,

which has non-zero discriminant as l 6= 3. So vF (Disc(x3 + A2x
2 + A4x +

A6)) = 6 as required for type I∗0. Type II∗, p = 3 is similar.

Type III, p = 2, l 6= 2: vK(a2) ≥ 1, vK(a4) = 1, vK(a6) ≥ 2 gives
vF (A2) ≥ 2, vF (A4) = 2, vF (A6) ≥ 4, so

x3 +
A2

π
x2 +

A4

π2
x+

A6

π3
≡ x3 + unit · x modπ,

which has non-zero discriminant as l 6= 2. So vF (Disc(x3 + A2x
2 + A4x +

A6)) = 6 as required for type I∗0. Type III∗, p = 2 is similar.

Type I∗n, p = 2, l 6= 2: E has non-integral j-invariant ([2, §IV.9, Table
4.1]), and so acquires multiplicative reduction over F ([2, Thm. V.5.3]).
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Comparing the valuations of the j-invariants and the discriminants, we find
that E/F has type I2n, and the Ai define a minimal equation.

Type I∗n, p 6= 2: The valuations of a1, . . . , a6, b6, d are ≥ 1, = 1,
≥ (n+ 3)/2, ≥ (n+ 4)/2, ≥ n+ 3, ≥ n+ 3, ≥ n + 6 with equality for
one of the last two (depending on whether n is even or odd). Over F they
become ≥ p, = p, ≥ pn+3

2 , ≥ pn+4
2 , ≥ p(n+3), ≥ p(n+3), ≥ p(n+6). After

rescaling the model b6e/12c = (p− 1)/2 times, we see that the valuations
of A1, . . . , A6, B6, D for the new model are ≥ (p+ 1)/2, = 1, ≥ (pn+ 3)/2,
≥ (pn+ 4)/2, ≥ pn+ 3, ≥ pn+ 3, ≥ pn+ 6, again with equality for one of
the last two. In other words, the model satisfies the conditions of Proposi-
tion 2 for Type I∗pn.
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