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1. Introduction. In an old paper [7] on diophantine approximation,
Erdős, Szüsz and Turán considered the set of real numbers S(m, α, c) defined
by

S(m, α, c) = {ξ : 0 ≤ ξ ≤ 1, there exist integers a, q for which

m ≤ q ≤ mc, gcd(a, q) = 1, |qξ − a| ≤ α/q},

where m∈N, α>0, c≥1. They studied the Lebesgue measure µ(S(m, α, c))
of S(m, α, c), and showed that

(1) lim
m→∞

µ(S(m, α, c)) =
12α

π2
log c,

provided α ≤ c/(1 + c2). Then they raised the following problem:

Problem. For α > 0, c ≥ 1, does the limit

(2) lim
m→∞

µ(S(m, α, c))

exist , and if so, what is its explicit form? (See also [6].)

The topic was later developed by Kesten [18], who, building on previous
work of Friedman and Niven [9], proved that the limit (2) exists in the wider
range αc ≤ 1 and obtained the following formulas for the limit:

If c ≥ 1 and c/(1 + c2) ≤ α ≤ min(1/2, 1/c), then

lim
m→∞

µ(S(m, α, c)) =
12α

π2
log c −

12

π2

(

αc +
α

c
− αβ −

α

β
(3)

+ α

(

1

β
− β

)

log
c

β
−

1

2

(

log
c

β

)2)

,
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where

β =
1 + (1 − 4α2)1/2

2α
.

If 1/2 ≤ α ≤ 1/c, then

(4) lim
m→∞

µ(S(m, α, c)) =
12α

π2
log c −

12

π2

(

αc − 2α +
α

c
−

1

2
(log c)2

)

.

Finally, the problem was solved by Kesten and Sós [19], who, based on
a result concerning another problem posed by Erdős, Szüsz and Turán in
the same paper ([7]), proved that the limit (2) exists for any α > 0, c ≥ 1
without actually finding explicit formulas in the general case. Our approach
below relies on the development in recent years of the theory of local spacing
distribution of visible lattice points and related objects, which equips one
with enough tools to attack this problem directly. The first goal for us is to
give another proof of the existence of the limit (2) for all α > 0, c ≥ 1, and
along the way obtain explicit formulas to compute it. This is Theorem 2 in
Section 4.

Second, once the limit (2) is established, call it ̺(α, c), a natural question
that arises is the following: How is this positive mass of measure ̺(α, c)
distributed inside the interval [0, 1]? Is it uniformly distributed? In other
words, for any subinterval I ⊂ [0, 1], if we let

SI(m, α, c) = {ξ : ξ ∈ I, there exist integers a, q for which

m ≤ q ≤ mc, gcd(a, q) = 1, |qξ − a| ≤ α/q},

is it true that the limit limm→∞ µ(SI(m, α, c)) exists and equals |I|̺(α, c)?
We will prove that this is the case.

Theorem 1. For any α > 0, c ≥ 1 and any subinterval I ⊂ [0, 1], the

limit limm→∞ µ(SI(m, α, c)) exists and

lim
m→∞

µ(SI(m, α, c)) = |I|̺(α, c).

As is the case for other distribution problems where Farey fractions play
a central role, such as the problem raised by Hall and investigated in [2], if
one wants to understand the distribution in subintervals I of [0, 1], the key
is to establish a connection between the given problem and the distribution
of visible lattice points with congruence constraints. This in turn allows one
to relate the problem to the distribution of inverses in residue classes, which
further enables one to bring in a decisive way the Kloosterman machinery
into play and ultimately solve the problem.

2. Farey fractions, visible points and Kloosterman sums. We
start by recalling some results on Farey fractions. For an exposition of their
basic properties, the reader is referred to [14]. Let FQ = {γ1, . . . , γN(Q)}
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denote the Farey sequence of order Q with 1/Q = γ1 < · · · < γN(Q) = 1. It
is well known that

N(Q) =

Q
∑

j=1

φ(j) =
3Q2

π2
+ O(Q log Q).

Write γi = ai/qi in reduced form, i.e., ai, qi ∈ Z, 1 ≤ ai ≤ qi ≤ Q, gcd(ai, qi)
= 1. For any two consecutive Farey fractions ai/qi < ai+1/qi+1, one has
ai+1qi − aiqi+1 = 1 and qi + qi+1 > Q. Conversely, if q and q′ are two
coprime integers in {1, . . . , Q} with q + q′ > Q, then there are unique a ∈
{1, . . . , q} and a′ ∈ {1, . . . , q′} for which a′q − aq′ = 1, and a/q < a′/q′

are consecutive Farey fractions of order Q. Therefore, the pairs of coprime
integers (q, q′) with q + q′ > Q are in one-to-one correspondence with the
pairs of consecutive Farey fractions of order Q. Moreover, the denominator
qi+2 of γi+2 can be expressed (cf. [13]) by means of the denominators of γi

and γi+1 as

qi+2 =

[

Q + qi

qi+1

]

qi+1 − qi,

where [·] denotes the integer part function. By induction, for any j ≥ 2, the
denominator qi+j of γi+j can be expressed in terms of the denominators of
γi, γi+1. More precisely, let T denote the Farey triangle

T = {(x, y) ∈ [0, 1]2 : x + y > 1},

and consider, for each (x, y) ∈ T , the sequence (Li(x, y))i≥0 defined by
L0(x, y) = x, L1(x, y) = y and recursively, for i ≥ 2,

Li(x, y) =

[

1 + Li−2(x, y)

Li−1(x, y)

]

Li−1(x, y) − Li−2(x, y).

Then for all i, j ≥ 0 with i + j ≤ N(Q), we have

qi+j

Q
= Lj

(

qi

Q
,
qi+1

Q

)

.

Such formulas prove to be useful in the study of various questions on the
distribution of Farey fractions (see, for example [1]–[5], [10]–[13], [16], [17]).
The bijective, piecewise smooth and area preserving map T : T → T

defined by ([2])

T (x, y) =

(

y,

[

1 + x

y

]

y − x

)

also plays an important role in recent developments of the subject. The set
T decomposes as a disjoint union of convex polygons

Tk =

{

(x, y) ∈ T :

[

1 + x

y

]

= k

}

, k ∈ N,
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and

T (x, y) = (y, ky − x), (x, y) ∈ Tk.

For any integer i ≥ 0,

T

(

qi

Q
,
qi+1

Q

)

=

(

qi+1

Q
,
qi+2

Q

)

and

T i(x, y) = (Li(x, y), Li+1(x, y)).

We need some more notation. Define

Z
2
pr = {(a, b) ∈ Z

2 : gcd(a, b) = 1}.

For each region Ω in R
2 and each C1 function f : Ω → C, we define

‖f‖∞,Ω = sup
(x,y)∈Ω

|f(x, y)|,

‖Df‖∞,Ω = sup
(x,y)∈Ω

(∣

∣

∣

∣

∂f

∂x
(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂f

∂y
(x, y)

∣

∣

∣

∣

)

.

We need the following variations of results from [2].

Lemma 1. Let Ω ⊂ [1, R] × [1, R] be a convex region and let f be a C1

function on Ω. Then
∑

(a,b)∈Ω∩Z2
pr

f(a, b) =
6

π2

\\
Ω

f(x, y) dx dy + ER,Ω,f ,

where

ER,Ω,f ≪ ‖f‖∞,ΩR log R + ‖Df‖∞,Ω Area(Ω) log R.

This is Corollary 1 in [2].

For any subinterval J = [t1, t2] of [0, 1], set Ja = [(1 − t2)a, (1 − t1)a].

Lemma 2. Let Ω ⊂ [1, R] × [1, R] be a convex region and let f be a C1

function on Ω. For any subinterval J ⊂ [0, 1] one has

∑

(a,b)∈Ω∩Z
2
pr

b̄∈Ja

f(a, b) =
6|J|

π2

\\
Ω

f(x, y) dx dy + FR,Ω,f,J,

where

FR,Ω,f,J ≪δ mf‖f‖∞,ΩR3/2+δ + ‖f‖∞,ΩR log R

+ ‖Df‖∞,ΩArea(Ω) log R

for any δ > 0, where b̄ denotes the multiplicative inverse of b (mod a), i.e.,
1 ≤ b̄ ≤ a− 1, bb̄ ≡ 1 (mod a), and mf is an upper bound for the number of

intervals of monotonicity of each of the functions y 7→ f(x, y).
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This is Lemma 8 in [2], where Weil type estimates ([20], [15], [8]) for
certain weighted incomplete Kloosterman sums play a crucial role in the
proof.

3. Two lemmas. We first explain the strategy we will employ in inves-
tigating Erdős, Szüsz and Turán’s problem, which may also be useful in the
study of other problems.

For α > 0, c ≥ 1, m ∈ N, let Q = [mc] and FQ = {γ1, . . . , γN(Q)} be
the Farey sequence of order Q with 1/Q = γ1 < · · · < γN(Q) = 1. Write
γi = ai/qi in reduced form. For every γi ∈ FQ, let

J(γi) =

[

ai

qi
−

α

q2
i

,
ai

qi
+

α

q2
i

]

.

We have
S(m, α, c) =

⋃

γi∈FQ; qi≥m

J(γi).

By restating the problem in the language of Farey fractions, one realizes
the importance of the local spacing distribution of Farey fractions. In order
to understand the limit (2), one needs to control the statistic behavior of
long chains of consecutive Farey points. We want to emphasize that as h
increases it becomes more difficult to keep under control the behavior of
an entire h-tuple of consecutive Farey fractions. From this point of view,
Lemma 3 below, which establishes a bound for the length of any chain of
consecutive Farey fractions that contribute to the measure of the given set
S(m, α, c), is a simple, yet crucial ingredient in our proof.

Lemma 3. For any α > 0, c ≥ 1, there exists an integer K = K(α, c) ≥ 0
such that for any integer m > 0 and any γi, γj ∈ FQ with Q = [mc], qi ≥ m,
qj ≥ m and J(γi) ∩ J(γj) 6= ∅, we have |i − j| ≤ K.

Proof. Assume i < j and write j = i+k. The relation J(γi)∩J(γi+k) 6= ∅
implies that

ai+k

qi+k
−

α

q2
i+k

≤
ai

qi
+

α

q2
i

,

and since mc ≥ Q ≥ qi, qi+k ≥ m,
k

Q2
≤

1

qi+kqi+k−1
+

1

qi+k−1qi+k−2
+ · · · +

1

qi+1qi

=
ai+k

qi+k
−

ai

qi
≤

α

q2
i+k

+
α

q2
i

≤
2α

m2
.

Therefore

k ≤
2αQ2

m2
≤ 2αc2,

and choosing K = [2αc2] completes the proof.
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A concept that plays an important role in questions of local distribution
of Farey points is that of the index of a Farey fraction, recently introduced by
Hall and Shiu [12]. In the language of visible points, the index is intrinsically
related to the position of consecutive visible points in terms of their distance
to the origin and the angle between the corresponding rays from the origin
to these points, and in this way it naturally appears in some applications
to questions originating in mathematical physics (billiards, periodic Lorentz
gas).

Definition. For 1 < i < N(Q), the index of the fraction γi in FQ is
defined by

vQ(γi) =

[

Q + qi−1

qi

]

.

We remark that the existence of an upper bound for the length of any
chain does not imply any bound for the index. For a suggestive example, the
reader is referred to Figure 2 from [1]. The idea of trying to understand an
entire distribution by understanding each individual piece of it that corre-
sponds to a fixed value of the index is very valuable in dealing with questions
relating to the local spacing distribution of Farey points, and we will also
make use of it in this paper. Another aspect worth mentioning is the follow-
ing: Fractions with large index, or h-tuples of consecutive Farey fractions for
which at least one of the fractions has a large index, are hard to control. The
reason for this is that it is hard to control the regions inside the so-called
Farey triangle produced by such tuples, as they have small areas compared
to the length of their boundary.

In our problem, a simple but key device is Lemma 4 below, which pro-
vides us with a uniform bound for the index of any of the fractions in any
chain that contributes to the measure of the given set S(m, α, c).

Lemma 4. For any α > 0, c ≥ 1, there exists an integer T = T (α, c) ≥ 1
with the following property : For any integer m > 0 and any γi, γj ∈ FQ with

Q = [mc], i < j, qi ≥ m, qj ≥ m and J(γi)∩J(γj) 6= ∅, we have vQ(γs) ≤ T
for any s with i < s ≤ j.

Proof. Write j = i + k. Since J(γi) ∩ J(γi+k) 6= ∅,

ai+k

qi+k
−

ai

qi
≤

α

q2
i+k

+
α

q2
i

≤
2α

m2
.

For any s such that i < s ≤ i + k,

asqi − aiqs

qsqi
≤

ai+k

qi+k
−

ai

qi
.

Here asqi − aiqs ≥ 1 and qi ≤ Q, hence 1/(Qqs) ≤ 2α/m2, and so qs ≥
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m2/(2αQ). Thus for any i < s ≤ i + k,

vQ(γs) =

[

Q + qs−1

qs

]

≤
Q + Q

m2/(2αQ)
≤ 4αc2.

We may choose T = [4αc2] and this completes the proof.

4. The case I = [0, 1]. In this section we present a proof of the existence
of the limit (2) and also provide an explicit formula for the limit. With the
length of the chains as well as the sizes of the index bounded, we will proceed
to connect our problem to the distribution of visible points inside expanding
regions, which can then be treated with the aid of Lemmas 1 and 2.

Using the inclusion-exclusion principle, we obtain

µ(S(m, α, c)) = µ
(

⋃

γi∈FQ; qi≥m

J(γi)
)

=

N(Q)
∑

r=1

(−1)r−1
∑

1≤i1<···<ir≤N(Q)
qi1

≥m,...,qir≥m

µ
(

r
⋂

s=0

J(γis)
)

=

N(Q)−1
∑

r=0

(−1)r
∑

1≤j1<···<jr≤N(Q)

∑

i
qi+js≥m, 0≤s≤r

µ
(

r
⋂

s=0

J(γi+js)
)

,

where j0 = 0. For simplicity write

µj1,...,jr =
∑

i
qi+js≥m, 0≤s≤r

µ
(

r
⋂

s=0

J(γi+js)
)

.

Many of these terms vanish by Lemma 3. More precisely,

(5) µ(S(m, α, c)) =
K

∑

r=0

(−1)r
∑

1≤j1<···<jr≤K

µj1,...,jr .

Then by Lemma 4, one can further write µj1,...,jr as a finite sum,

(6) µj1,...,jr =
∑

1≤k1,...,kjr≤T

µ
k1,...,kjr

j1,...,jr
,

where

(7) µ
k1,...,kjr

j1,...,jr
=

∑

i
vQ(γi+j)=kj , 1≤j≤jr

qi+js≥m, 0≤s≤r

µ
(

r
⋂

s=0

J(γi+js)
)

.
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For any integer n > 0 and any positive integers k1, . . . , kn, let

Tk1,...,kn
=

n
⋂

j=1

T−j+1
Tkj

.

Then for any (x, y) ∈ Tk1,...,kn
, we have

L0(x, y) = x, L1(x, y) = y,

and recursively,

Li+1(x, y) = kiLi(x, y) − Li−1(x, y), 1 ≤ i ≤ n.

Therefore there exist real numbers ωi, υi depending only on k1, . . . , kn such
that

Li(x, y) = ωix + υiy, 0 ≤ i ≤ n + 1.

The set Tk1,...,kn
⊂ T is obtained by intersecting finitely many half-planes,

and so it is a convex polygon. For any t > 0 and any 1 ≤ j1 < · · · < js ≤ n,
define

H
j1,...,js

k1,...,kn
(t) = {(x, y) ∈ Tk1,...,kn

: Ljv(x, y) ≥ t, 0 ≤ v ≤ s}.

Here H
j1,...,js

k1,...,kn
(t) is also a convex polygon. We now return to (7). For any

γi, γi+1 ∈ FQ, we see that

vQ(γi+1) = k1, vQ(γi+2) = k2, . . . , vQ(γi+jr) = kjr ,

qi ≥ m, qi+j1 ≥ m, qi+j2 ≥ m, . . . , qi+jr ≥ m.

This means that

(qi/Q, qi+1/Q) ∈ Tk1,...,kjr , QLjv(qi/Q, qi+1/Q) ≥ m, 0 ≤ v ≤ r,

that is,
(qi/Q, qi+1/Q) ∈ H

j1,...,jr

k1,...,kjr
(m/Q),

and therefore (7) becomes

(8) µ
k1,...,kjr

j1,...,jr
=

∑

i
(qi/Q,qi+1/Q)∈H

j1,...,jr
k1,...,kjr

(m/Q)

µ
(

r
⋂

s=0

J(γi+js)
)

.

Next, fix j1, . . . , jr, k1, . . . , kjr , and denote for simplicity H
j1,...,jr

k1,...,kjr
by H .

For any t > 0 and (qi/Q, qi+1/Q) ∈ H (t),

µ
(

r
⋂

s=0

J(γi+js)
)

= max

{

0, min
0≤s≤r

{

ai+js

qi+js

+
α

q2
i+js

}

− max
0≤s≤r

{

ai+js

qi+js

−
α

q2
i+js

}}

.

Since for any 0 ≤ js′ < js ≤ jr,

ai+js

qi+js

−
ai+js′

qi+js′

=

js−js′−1
∑

λ=0

1

qi+js−λqi+js−λ−1
,
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and

qi+js = QLjs

(

qi

Q
,
qi+1

Q

)

= Q

(

ωjs

qi

Q
+ υjs

qi+1

Q

)

= ωjsqi + υjsqi+1,

where ωjs , υjs are real numbers which only depend on k1, . . . , kjr , one sees
that µ(

⋂r
s=0 J(γi+js)), when considered as a function of the variables qi, qi+1,

is piecewise smooth. Denote this function by fj1,...,jr(x, y), so that

fj1,...,jr(qi, qi+1) = µ
(

r
⋂

s=0

J(γi+js)
)

.

Here

Q2fj1,...,jr(Qx, Qy) = fj1,...,jr(x, y),

and for any t such that t > δ > 0, one has

‖fj1,...,jr‖∞,QH (t) ≪α,δ
1

Q2
, ‖Dfj1,...,jr‖∞,QH (t) ≪α,δ

1

Q3
.

Given ε > 0, there exists an M > 0 such that if m > M , then 1/c ≤
m/Q ≤ 1/c + ε and H (1/c + ε) ⊂ H (m/Q) ⊂ H (1/c). The set H (1/c) is
a convex polygon, and fj1,...,jr is piecewise smooth. By Lemma 1,

∑

i
(qi/Q,qi+1/Q)∈H (1/c)

µ
(

r
⋂

s=0

J(γi+js)
)

=
∑

i
(qi/Q,qi+1/Q)∈H (1/c)

fj1,...,jr(qi, qi+1)

=
∑

(u,v)∈QH (1/c)∩Z2
pr

fj1,...,jr(u, v)

=
6

π2

\\
QH (1/c)

fj1,...,jr(x, y) dx dy + E1

=
6Q2

π2

\\
H (1/c)

fj1,...,jr(Qx, Qy) dx dy + E1

=
6

π2

\\
H (1/c)

fj1,...,jr(x, y) dx dy + E1,

where

E1 ≪ ‖fj1,...,jr‖∞,QH (1/c)Q log Q

+ ‖Dfj1,...,jr‖∞,QH (1/c) Area(QH (1/c)) log Q

≪α,c
Q log Q

Q2
+

Q2 log Q

Q3
≪α,c

log Q

Q
;
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here we use

Area(QH (1/c)) = Q2 Area(H (1/c)) ≪ Q2.

Similarly,

∑

i
(qi/Q,qi+1/Q)∈H (1/c+ε)

µ
(

r
⋂

s=0

J(γi+js)
)

=
6

π2

\\
H (1/c+ε)

fj1,...,jr(x, y) dx dy + E2,

where we also have

E2 ≪α,c
log Q

Q
.

Clearly, \\
H (1/c+ε)

fj1,...,jr(x, y) dx dy =
\\

H (1/c)

fj1,...,jr(x, y) dx dy + o(1)

as ε → 0. Letting m → ∞ and ε → 0, we conclude that

(9) lim
m→∞

µ
k1,...,kjr

j1,...,jr
=

6

π2

\\
H

j1,...,jr
k1,...,kjr

(1/c)

fj1,...,jr(x, y) dx dy

for any 1 ≤ j1 < · · · < jr ≤ K and 1 ≤ k1, . . . , kjr ≤ T . By (6),

lim
m→∞

µj1,...,jr =
6

π2

∑

1≤k1,...,kjr≤T

\\
H

j1,...,jr
k1,...,kjr

(1/c)

fj1,...,jr(x, y) dx dy

=
6

π2

\\
H j1,...,jr (1/c)

fj1,...,jr(x, y) dx dy,

where

H
j1,...,jr(t) =

⋃

1≤k1,...,kjr≤T

H
j1,...,jr

k1,...,kjr
(t)

= {(x, y) ∈ T : Ljv(x, y) ≥ t, 0 ≤ v ≤ r}.

Lastly, from (5) it follows that the limit limm→∞ µ(S(m, α, c)) exists for any
α > 0, c ≥ 1. Therefore we have proved:

Theorem 2. The limit (2) exists for any α > 0, c ≥ 1. Denoting the

limit by ̺(α, c), we have

(10) ̺(α, c) =
6

π2

K
∑

r=0

(−1)r
∑

1≤j1<···<jr≤K

\\
H j1,...,jr (1/c)

fj1,...,jr(x, y) dx dy.
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We end this section with some comments on how to derive explicit for-
mulas such as (1), (3) and (4) from equation (10) above. Let us take the
case α ≤ c/(1 + c2) first. As Erdős, Szüsz and Turán remarked in [7],
J(γi) ∩ J(γj) = ∅ for any i 6= j. Hence K = 0, and only the first term
survives in (10). More precisely,

̺(α, c) =
6

π2

\\
H (1/c)

f(x, y) dx dy,

where H (1/c) = {(x, y) ∈ T : L0(x, y) = x ≥ 1/c} and f(x, y) = 2α/x2, so

̺(α, c) =
6

π2

\\
H (1/c)

f(x, y) dx dy =
12α

π2
log c.

This is (1). In the case c2/(1 + c2) ≤ αc ≤ 1, Kesten observed in [18] that
J(γi)∩J(γi+2) = ∅ for any i. Therefore K = 1, and only the first two terms
are left. Then

(11) ̺(α, c) =
6

π2

\\
H (1/c)

f(x, y) dx dy −
6

π2

\\
H 1(1/c)

f1(x, y) dx dy.

The first term is already computed and equals 12α
π2 log c. As for the second

one, H 1(1/c) = {(x, y) ∈ T : x ≥ 1/c, y ≥ 1/c} and

f(x, y) = max

{

0,
α

x2
+

α

y2
−

1

xy

}

.

Note that if 1/2 ≤ α ≤ 1/c, we always have f(x, y) = α
x2 + α

y2 −
1
xy ≥ 0, and

one finds that

(12)
\\

H 1(1/c)

f1(x, y) dx dy = 2

(

αc − 2α +
α

c
−

1

2
(log c)2

)

.

In the case c/(1 + c2) ≤ α ≤ min(1/2, 1/c), Kesten pointed out that f(x, y)
≥ 0 if and only if 1/β ≤ x/y ≤ β, where

β =
1 + (1 − 4α2)1/2

2α
.

A straightforward computation shows that β ≤ c ≤ β + 1, which further
gives \\

H 1(1/c)

f1(x, y) dx dy

= 2

(

αc +
α

c
− αβ −

α

β
+ α

(

1

β
− β

)

log
c

β
−

1

2

(

log
c

β

)2)

.

Plugging this and (12) into (11) yields formulas (4) and (3) immediately.
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5. Proof of Theorem 1. Let I = (a, b) ⊂ [0, 1]. We use the same
notation as in the previous section. Define FQ(I) = FQ ∩ I and consider
the set

S′
I(m, α, c) =

⋃

γi∈FQ(I); qi≥m

J(γi),

where as before, Q = [mc]. For any ε > 0, there exists an M > 0 such that
if m > M , then

(13) S′
Iε

(m, α, c) ⊂ SI(m, α, c) ⊂ S′
I(m, α, c),

where Iε := (a+ε, b−ε). Let us first consider the measure of the right hand
side of (13). As in the proof of Theorem 2, one finds that

(14) µ(S′
I(m, α, c)) =

K
∑

r=0

(−1)r
∑

1≤j1<···<jr≤K

µj1,...,jr ,

where

µj1,...,jr =
∑

i
qi+js≥m, 0≤s≤r

γjs∈I, 0≤s≤r

fj1,...,jr(qi, qi+1)

=
∑

i
qi+js≥m, 0≤s≤r

γi∈I

fj1,...,jr(qi, qi+1) −
∑

i
qi+js≥m, 0≤s≤r

γi∈I, γjr /∈I

fj1,...,jr(qi, qi+1)

= µ′
j1,...,jr

− ej1,...,jr .

It is clear that

ej1,...,jr ≤ jr
2α

m2
≤

2Kα

m2
≪α,c

1

Q2
.

We further write

µ′
j1,...,jr

=
∑

1≤k1,...,kjr≤T

µ′k1,...,kjr

j1,...,jr
,(15)

where

(16) µ′k1,...,kjr

j1,...,jr
=

∑

i
vQ(γi+j)=kj , 1≤j≤jr

qi+js≥m, 0≤s≤r
γi∈I

fj1,...,jr(qi, qi+1).

For any two consecutive Farey fractions γi = ai/qi < γi+1 = ai+1/qi+1,
ai+1qi − aiqi+1 = 1, we have ai ≡ −qi+1 (mod qi), where qi+1 is uniquely
defined by the relations 1 ≤ qi+1 ≤ qi and qi+1qi+1 ≡ 1 (mod qi). Since
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1 ≤ ai ≤ qi, we have ai = qi − qi+1 and

γi =
ai

qi
= 1 −

qi+1

qi
∈ I,

so qi+1 ∈ Iqi
, where Iqi

= ((1 − b)qi, (1 − a)qi). Therefore (16) becomes

µ′k1,...,kjr

j1,...,jr
=

∑

i
(qi/Q,qi+1/Q)∈H

j1,...,jr
k1,...,kjr

(m/Q)

qi+1∈Iqi

fj1,...,jr(qi, qi+1).(17)

Fix now j1, . . . , jr, k1, . . . , kjr and write H for H
j1,...,jr

k1,...,kjr
. By Lemma 2,

∑

i
(qi/Q,qi+1/Q)∈H (1/c)

γi∈I

fj1,...,jr(qi, qi+1) =
∑

(u,v)∈QH (1/c)∩Z
2
pr

v̄∈Iu

fj1,...,jr(a, b)

=
6|I|

π2

\\
QH (1/c)

fj1,...,jr(x, y) dx dy + E′
1

=
6|I|

π2

\\
H (1/c)

fj1,...,jr(x, y) dx dy + E′
1,

where

E′
1 ≪δ mf‖fj1,...,jr‖∞,QH (1/c)Q

3/2+δ + ‖fj1,...,jr‖∞,QH (1/c)Q log Q

+ ‖Dfj1,...,jr‖∞,QH (1/c) Area(QH (1/c)) log Q

for any δ > 0. Here mf is an upper bound for the number of intervals of
monotonicity of each of the functions y 7→ fj1,...,jr(x, y), which are piecewise
smooth for any 1 ≤ j1 < · · · < jr ≤ K. Hence mf ≪α,c 1. We have seen in
the previous section that

‖fj1,...,jr‖∞,QH (1/c) ≪α,c
1

Q2
, ‖Dfj1,...,jr‖∞,QH (1/c) ≪α,c

1

Q3
,

and

Area(QH (1/c)) ≪ Q2.

Putting together all the above estimates, we derive for 0 < δ < 1/2,

E′
1 ≪α,c,δ

mfQ3/2+δ

Q2
+

Q log Q

Q2
+

Q2 log Q

Q3
≪α,c,δ

1

Q1/2−δ
.

Choose δ = 1/3 and let m → ∞. Since limm→∞ m/Q = 1/c, we infer as in
the proof of Theorem 2 that
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lim
m→∞

µ′k1,...,kjr

j1,...,jr
= lim

m→∞

∑

i
(qi/Q,qi+1/Q)∈H

j1,...,jr
k1,...,kjr

(m/Q)

qi+1∈Iqi

fj1,...,jr(qi, qi+1)

= lim
m→∞

∑

i
(qi/Q,qi+1/Q)∈H

j1,...,jr
k1,...,kjr

(1/c)

qi+1∈Iqi

fj1,...,jr(qi, qi+1)

=
6|I|

π2

\\
H

j1,...,jr
k1,...,kjr

(1/c)

fj1,...,jr(x, y) dx dy.

By combining (14), (15) and (10) we deduce that

lim
m→∞

µ(S′
I(m, α, c)) =

6|I|

π2

∑

1≤j1<···<jr≤K

(−1)r
\\

H j1,...,jr (1/c)

fj1,...,jr(x, y) dx dy

= |I|̺(α, c),

where

̺(α, c) = lim
m→∞

µ(S(m, α, c)),

and for any t > 0,

H
j1,...,jr(t) =

⋃

1≤k1,...,kjr≤T

H
j1,...,jr

k1,...,kjr
(t).

Similarly,

lim
m→∞

µ(S′
Iε

(m, α, c)) = |Iε|̺(α, c).

Lastly, by letting ε → 0, we conclude from (13) that limm→∞ µ(SI(m, α, c))
exists for any α > 0, c ≥ 1 and moreover,

lim
m→∞

µ(SI(m, α, c)) = |I|̺(α, c),

which completes the proof of Theorem 1.
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