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1. Introduction. In 1951 Sierpiński [11] began the investigation of
prime numbers with preassigned digits. In [12] he showed that in any given
base g and with given a, b with 1 ≤ a ≤ g − 1, gcd(b, g) = 1, 1 ≤ b ≤ g − 1,
one can find infinitely many primes p having a as its first digit and b as its
last. This result was extended to arithmetic progressions of primes in [4]. As
we show in the next section, these results are elementary deductions from
deeper results on the distribution of primes. Indeed, one can make certain
quantitative statements about how many initial or final digits one can pre-
scribe. Recently Wolke [13] has considered the more difficult case where one
preassigns at most two digits anywhere in the expansion of an integer with
k digits, and obtains an asymptotic formula (valid for k → ∞) in this case.

We need some notation to state the problem. Given positive integers
g, t, k we shall say that a sequence in Z

2 is (g, t, k)-admissible if it is of
the form d1, . . . ,dt with dj = (nj , aj) where 1 ≤ n1 < · · · < nt ≤ k and
aj ∈ {0, . . . , g − 1} with gcd(at, g) = 1 if nt = k, and a1 ≥ 1 if n1 = 1.
Wolke makes a quantitative conjecture, which in a qualitative form reads as
follows.

Conjecture. Let g ≥ 2, t ≥ 1 be given. Then there exists a positive

quantity K = K(g, t) such that for all k ≥ K, and any (g, t, k)-admissible

sequence, there are primes p = b1 . . . bk in base g with bnj
= aj , 1 ≤ j ≤ t.

Wolke gives a proof of this result dependent on the Generalised Rie-
mann Hypothesis. It is the purpose of this paper to establish this conjecture
unconditionally.

2. Sketch of proof. First we distinguish the easy and difficult parts of
the problem. By the main theorem in [2], for any large x there are primes
in the interval [x, x + x0.525]. It follows that for large enough k we can
preassign the first 0.475k − 1 digits. Even with the Riemann Hypothesis we
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could not expect to do better than preassigning the first (1/2 − ε)k digits
(although here we could take ε → 0 as k → ∞). The strongest possible
conjecture on gaps between primes would increase this to (1 − ε)k digits.
Now the question of preassigning the final digits corresponds to the difficult
problem of primes in arithmetic progressions. One would therefore expect
the maximum number of final digits that can be preassigned to depend on
the best currently known value for Linnik’s constant. We note that Heath-
Brown [9] has established that for all large q, given a coprime to q there is
a prime p ≡ a (mod q) with p ≤ q11/2. This enables one to preassign the last
2k/11 digits essentially.

One can make some attempt to try to combine these results to preassign
blocks of digits at the begining and end of the expansion of an integer,
but progress is difficult without good zero-free regions for L-functions. In
the case of working to base g = pc for some c, with p an odd prime (and
hence the arithmetic progressions considered are to modulus pr for some r),
the work of Gallagher [6] can be brought into play. Using the techniques
outlined in [8] it is then possible to preassign 0.472k digits, so long as they
appear in two continuous blocks: one at the start and one at the end of
the expansion. The challenging problem is to consider the preassigned digits
spread throughout the expansion and here we present a method which does
this.

To simplify notation we shall henceforth work only in base 10, but the
proof works identically for all bases. We write { } to denote the fractional
part of a real number. We note that if, in base 10, we have p = b1 . . . bk,
then br = a is equivalent to

(1) {p/10u} ∈ [a/10, (a + 1)/10),

where u = k + 1 − r. There are well known techniques for picking out such
a fractional part condition using exponential sums; see [1, Chapter 2] for
example. The consideration of (1) would require the right sort of bounds on

(2)
L

∑

l=1

∣

∣

∣

∑

p<10k

e(lp10−u)
∣

∣

∣
.

Indeed, by [1, Theorem 2.2], we obtain a solution if, with L = 20, the
above sum is < 1

6π(10k). Here π(x) denotes the number of primes up to x

(or if one wanted a “genuine” k digit prime then replace π(10k) with π(10k)−
π(10k−1)).

Now the estimation of such exponential sums is well known in analytic
number theory (see, for example, [5, Chapter 25]). For a successful outcome
one essentially requires 10u to be neither near 10k in size, nor near 1. To be
precise, one requires a condition (for large k) like 10kk−4 > 10u > k4. Of
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course, if 10u were to be outside this range then we could handle the situation
using either primes in short intervals or primes in arithmetic progressions.

So, if we had an estimate for exponential sums over primes in short
intervals in arithmetic progression then we would expect to be able to settle
the conjecture for t = 3. The argument would go as follows. If all three digits
were near the beginning then use primes in short intervals. If they were all
near the end then use primes in arithmetic progressions. If there were a
1–2 or 2–1 split between these cases then it can be handled by modifying
the smallest prime in an arithmetic progression result (a weaker exponent
would have to be used here—indeed the Siegel–Walfisz theorem suffices). In
the other cases we need to bring a bound for an expression like (2) into play
(with restrictions on p). This is provided by the following result.

Lemma 1. Suppose that 1 < y < x, gcd(a, q) = gcd(b, d) = 1, gcd(d, q)
= h. Then we have

(3)
∑

y≤p<x
p≡b (mod d)

e

(

ap

q

)

≪ x(log x)2
(

h

dq1/2
+

(

q

xh

)1/2

+
1

x1/5d2/5

)

.

Proof. This follows (after partial summation) by applying the theorem
in [3] with N = x and N = y. If y is very near x then one could give a
sharper bound, but that will not be required here.

In applying the above result to the case t = 3 with a digit near the
start and end of the expansion fixed we will have a = l(l, 10u)−1, q =
10u(l, 10u)−1, d will be a small power of 10 and h will be d. The challenge
still remains to deal with more than one digit at neither end of the expansion.
To do this we need to treat more than one condition like (1) simultaneously.
Again, there are ways to do this using exponential sums. Before the problem
can be transformed, however, there is a possible natural difficulty to over-
come. If two or more digits are adjacent then it would be most sensible to
treat them as a block. For example

{p10−r} ∈ [a1/10, (a1 + 1)/10) and {p10−(r+1)} ∈ [a2/10, (a1 + 1)/10)

would become

{p10−(r+1)} ∈ [(a1/10 + a2)/10, (a1/10 + a2 + 1)/10).

The interference between consecutive or very near digits is translated into
the exponential sum estimates as the expression

l1
10r

+
l2

10r+1

becoming zero or a fraction with very small denominator for relatively low
values of l1, l2, namely 10l1 = −l2.
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The reader should by now see that it ought to be possible to tackle the
case t = 3. The case for larger t just becomes more complicated. We need
to determine when we are treating near digits as a “block”, and when to
consider them separately. Also those digits close to either end need to be
isolated from those considered via the above fractional part argument. The
principle we began to expound in the case t = 3 remains, however, as shall
be seen in the next section.

3. Completion of the proof. First we state the lemma converting the
problem from simultaneous Diophantine approximation to exponential sum
form.

Lemma 2. Let Ij be subintervals of [0, 1), 1 ≤ j ≤ u, with |Ij | = 2uL−1
j .

Let rm ∈ R for 1 ≤ m ≤ X and αj ∈ R for 1 ≤ j ≤ u. Suppose that

(4)
∑

|lj |≤Lj

max |lj |>0

∣

∣

∣

∑

m≤X

e(rm(α1l1 + · · · + αulu))
∣

∣

∣
≤

X

4u2 − 1
.

Then there is a solution to

{rmαj} ∈ Ij , 1 ≤ j ≤ u.

Proof. This follows from [7, Lemma 5].

We also need a form of the Siegel–Walfisz theorem to count the number
of primes in short intervals restricted to an arithmetic progression.

Lemma 3. Let N ≥ 1 be given. Let x, q, y be related by

1 ≤ q ≤ (log x)N , (x − y)(log x)N ≥ x.

Suppose gcd(a, q) = 1. Then the number of primes p ≡ a (mod q) with y ≤
p ≤ x is

(5) >
x − y

2φ(q) log x
,

for all x > x0(N).

Proof. This follows from [5, p. 133], for example. The value x0(N) is
ineffective owing to the appeal to Siegel’s theorem.

Proof of Conjecture. We have not tried to optimise the argument; there
are various ways it could be made more efficient with more effort. We will not
fix the relation between k and t initially, although the reader should bear in
mind that k will eventually be chosen to be much larger than t. We can there-
fore start by assuming that k > 84t, which suffices for Lemma 4, for example.
In the following, logr z denotes the logarithm of z to base r. Let A > 1 be
a fixed constant to be determined later, and write κ = log8(A log10 k). First
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we isolate the preassigned digits amongst the initial and final digits (which
will be considered using primes in short intervals in arithmetic progressions)
from those which will be tackled via the Diophantine approximation argu-
ment.

Lemma 4. With the above notation, there must be a j with κ ≤ j ≤
t + 1 + κ such that there are no prescribed digits in place n with either

(6) 8j < n ≤ 8j+1 or k − 8j+1 < n ≤ k − 8j .

Proof. There are at least t + 1 disjoint pairs of intervals for n defined
by (6) with j in the stated interval, and only t numbers we wish to avoid.

When applying the above lemma, in case of ambiguity we take the small-
est such j. We now fix the first and last 8j digits, say by choosing to be 1
all those digits not already preassigned. We note that

kA ≤ 108j

≤ k8t+2A.

Write V = 108j

. It follows that V is of size (log 10k)B for some B bounded
in terms of t. Putting this another way, kα < V < kβ, where α, β depend
at most on t. This will be crucial since we need kN > V for some fixed N
in order to apply Lemma 3, and we shall eventually choose A = 3 so that
k3 ≤ V . By Lemma 3 the number of primes with the first and last 8j digits
fixed, say X, is

(7) ≫
10k−2·8j

k
=

10k

kV 2
.

We write A for this set of primes, and also note for future reference that
108j+1

= V 8.

We now divide the remaining digits into blocks according to where the
preassigned digits fall. Let the remaining nj be m1 < · · · < mv. We form
blocks B1, . . . ,Bu using the rule

mj ∈ Br and mj+1 < mj + t ⇒ mj+1 ∈ Br.

We then have at most t blocks and each block encompasses at most t2 digits.
We then fix all previously non-assigned digits in each block (say by putting
them all equal to zero). We thus have at most t simultaneous conditions
that p must satisfy of the form

{p/10k−fj+1} ∈ Ij ,

where fj is the first position of a block (so it equals mh for some h) and Ij

has length 10−sj where sj is the length (that is, the number of digits) of the
block. Say we have u blocks altogether. By Lemma 2 we must then show
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that

(8)
∑

|lj |≤Lj

max |lj |>0

∣

∣

∣

∑

p∈A

e(p(α1l1 + · · · + αulu))
∣

∣

∣
≤

X

4u2 − 1
,

where Lj = 2u10sj , and αj = 10−fj .
Now let

α1l1 + · · · + αulu = a/q with gcd(a, q) = 1.

By our construction of the blocks,

2Ljαj = 4u10sj−fj ≤ 4u10−t−fj+1 < αj+1.

It follows that a 6= 0, since if w is the largest value with lw 6= 0, then |lwαw|
exceeds the sum of all the moduli of all the other terms. Also

2Luαu ≤ 4u10−8j+1

≤ 4tV −8.

Thus
q > V −7,

assuming kA > 4t (we have already assumed k to be much larger than this
in fact!). We also have

q < 10k−8j+1

= 10kV −8.

Now the number of values taken by (l1, . . . , lu) in (8) is

<
u

∏

j=1

(2Lj + 1) <
u

∏

j=1

(3u10sj ) ≤ (3t)t10t2 .

We can therefore apply Lemma 1 (we note that d < q1/8 by our con-
struction, but we only need the bounds 1 ≤ h ≤ d) to give a bound for the
left-hand side of (8), which is

< (3t)t10t210kk2

(

1

q1/2
+

(

q

10k

)1/2

+
1

10k/5

)

≪ (3t)t10t210kk2V −7/2 ≪ X

(

(3t)t10t2k3

V 3/2

)

,

using (7). Hence (8) is satisfied (with A = 3 say) for all large k and the
proof is complete. To be more precise, we need to choose k so that

(3t)t10t2 < k,

and that it is “sufficiently large” for Lemma 3 to operate—and this makes
the dependence on t ineffective.

We leave it as an exercise for the reader to show that one can obtain
an asymptotic formula for the number of primes as k → ∞. In this case
one might want to commence with Vinogradov’s familiar construction of a
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trigonometric polynomial approximating the characteristic function of an
interval (mod 1), as in [1, Chapter 2.1]. Also, one needs to sum over all
possible combinations of digits that were fixed in the argument but were
not among those preassigned.
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