J

On the Tate–Shafarevich group of semistable elliptic curves with a rational 3-torsion

by

Noboru Aoki (Tokyo)

1. Introduction. Let E be an elliptic curve defined over the rational number field \mathbb{Q} and $E(\mathbb{Q})$ the Mordell–Weil group of \mathbb{Q} -rational points on E. Let n be an integer greater than one and E_n the group of n-torsion points on E. The *n*-Selmer group Sel⁽ⁿ⁾(E/\mathbb{Q}) of E/\mathbb{Q} is defined to be the kernel of the composite map

$$H^1(\mathbb{Q}, E_n) \to \prod_p H^1(\mathbb{Q}_p, E_n) \to \prod_p H^1(\mathbb{Q}_p, E),$$

where the first map is the direct product of restriction maps for all places p of \mathbb{Q} and the second map is the one induced from the inclusion $E_n \hookrightarrow E$. Then $\operatorname{Sel}^{(n)}(E/\mathbb{Q})$ is known to be finite for any n, and there is an injection from the quotient group $E(\mathbb{Q})/nE(\mathbb{Q})$ into $\operatorname{Sel}^{(n)}(E/\mathbb{Q})$. Thus $\operatorname{Sel}^{(n)}(E/\mathbb{Q})$ gives an upper bound for the rank of $E(\mathbb{Q})$. Therefore, if $\operatorname{rank}(E(\mathbb{Q}))$ is unbounded when E varies over the elliptic curves over \mathbb{Q} , then the order of $\operatorname{Sel}^{(n)}(E/\mathbb{Q})$ with n fixed can be arbitrarily large. The converse, however, is not necessarily true because of the presence of the Tate–Shafarevich group

$$III(E/\mathbb{Q}) = \operatorname{Ker}\Big(H^1(\mathbb{Q}, E) \to \prod_p H^1(\mathbb{Q}_p, E)\Big).$$

The *n*-torsion subgroup $III(E/\mathbb{Q})_n$ of $III(E/\mathbb{Q})$ fits into the exact sequence

$$0 \to E(\mathbb{Q})/nE(\mathbb{Q}) \to \operatorname{Sel}^{(n)}(E/\mathbb{Q}) \to III(E/\mathbb{Q})_n \to 0.$$

Thus we are naturally led to the following problem: Given a prime number n and a family \mathscr{E} of elliptic curves over \mathbb{Q} , determine whether

$$\sup\{\#(III(E/\mathbb{Q})_n) \mid E \in \mathscr{E}\} = \infty$$

or not. This problem has been studied for n = 2 by Bölling [3], Kramer [8], Lemmermeyer [9] and Atake [1], for n = 3 by Cassels [6], and for n = 5 by Fisher [7]. The families of elliptic curves considered in those works may

²⁰⁰⁰ Mathematics Subject Classification: 11G05, 11G07, 14H52.

be divided into two types: one is the family of (quadratic ([3], [9], [1]) or cubic ([6])) twists of a fixed elliptic curve, and the other is a one-parameter family of semistable elliptic curves with non-constant j-invariant ([8], [7]).

In this paper we will be mainly interested in two types of elliptic curves:

$$\begin{split} E &= E_{(a,b)}: \quad y^2 + axy + by = x^3, \\ F &= F_{(a,b)}: \quad y^2 + axy + by = x^3 - 5abx - a^3b - 7b^2, \end{split}$$

where a, b are relatively prime non-zero integers such that $a^3 - 27b \neq 0$. One can easily see that E has a rational point $S = (0,0) \in E(\mathbb{Q})$ of order 3, and Fis the quotient of E by the cyclic subgroup $\langle S \rangle$ generated by S. We consider the problem above for n = 3 and the family of such elliptic curves $F_{a,b}$. We should remark that the assumption on a and b ensures that E and F are semistable elliptic curves, and so CM elliptic curves are excluded from our family in contrast to the work of Cassels mentioned above, where he treated the CM elliptic curves $x^3 + y^3 + dz^3 = 0$. The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let $\mathscr E$ be the set of elliptic curves $F_{(a,b)}$ defined above. Then

$$\sup\{\#(III(F/\mathbb{Q})_3) \mid F \in \mathscr{E}\} = \infty.$$

In the proof of Theorem 1.1 we will assume that $a^3 - 27b$ is a prime number and b is not a cube in \mathbb{Q} , hence neither E_3 nor F_3 splits over \mathbb{Q} . (Note that the discriminants of our curves are given by $\Delta_E = (a^3 - 27b)b^3$ and $\Delta_F = (a^3 - 27b)^3b$.) Therefore we cannot use the method of [4] and [7] to prove Theorem 1.1. We will instead compute a restriction of the Cassels–Tate pairing to a subgroup of $III(F/\mathbb{Q}(E_3))$ using McCallum's formula (see Theorem 6.5). This part was strongly influenced by the recent work of Beaver [2] and Fisher [7].

2. The Selmer group and the Tate-Shafarevich group. Let n be a positive integer greater than one. Let E be an elliptic curve defined over a number field k. Suppose E(k) contains a point S of order n and let $F = E/\langle S \rangle$ be the quotient of E by the cyclic group generated by S. Then F is also defined over k and the natural surjection $\varphi : E \to F$ is a (k-rational) cyclic n-isogeny such that $E_{\varphi} := \operatorname{Ker}(\varphi) = \langle S \rangle$. Since S is rational over k, we have $E_{\varphi} \cong \mathbb{Z}/n\mathbb{Z}$ as $\operatorname{Gal}(\overline{k}/k)$ -modules. Let $\psi : F \to E$ be the dual isogeny of φ . Then $F_{\psi} := \operatorname{Ker}(\psi)$ is isomorphic to μ_n as a $\operatorname{Gal}(\overline{k}/k)$ -module.

Now, let L be a field containing k and consider the exact sequence

$$0 \to F_{\psi} \to F \xrightarrow{\psi} E \to 0$$

of $\operatorname{Gal}(\overline{L}/L)$ -modules. Taking Galois cohomology, we obtain the exact sequence

(1)
$$0 \to E(L)/\psi(F(L)) \xrightarrow{\delta_L^{(\psi)}} H^1(L, F_{\psi}) \to H^1(L, F)_{\psi} \to 0.$$

Let M_k be the set of places of k. For each $v \in M_k$, we denote by k_v the completion of k at v. Taking k_v for L, we then obtain the exact sequence

$$0 \to E(k_v)/\psi(F(k_v)) \xrightarrow{\delta_v^{(\psi)}} H^1(k_v, F_\psi) \to H^1(k_v, F)_\psi \to 0$$

where $\delta_v^{(\psi)} = \delta_{k_v}^{(\psi)}$. Let res_v : $H^1(k, *) \to H^1(k_v, *)$ denote the restriction map. We define the ψ -Selmer group by

$$\operatorname{Sel}^{(\psi)}(F/k) = \operatorname{Ker}\left(H^{1}(k, F_{\psi}) \xrightarrow{\prod \operatorname{res}_{v}} \prod_{v \in M_{k}} H^{1}(k_{v}, F_{\psi}) \to \prod_{v \in M_{k}} H^{1}(k_{v}, F)\right)$$
$$= \{x \in H^{1}(k, F_{\psi}) \mid \operatorname{res}_{v}(x) \in \operatorname{Im}(\delta_{v}^{(\psi)}) \text{ for all } v \in M_{k}\}.$$

Since $F_{\psi} \cong \mu_n$, Kummer theory implies that $H^1(k, F_{\psi}) \cong k^{\times}/k^{\times n}$. In what follows we will identify $H^1(k, F_{\psi})$ with $k^{\times}/k^{\times n}$ by this isomorphism. Thus $\operatorname{Sel}^{(\psi)}(F/k)$ may be viewed as a subgroup of $k^{\times}/k^{\times n}$. The following proposition will be useful when we give an explicit description of $\operatorname{Im}(\delta_k^{(\psi)})$.

PROPOSITION 2.1. There exists a rational function $f \in k(E)^{\times}$ such that

$$\operatorname{div}(f) = n((S) - (O)) \quad and \quad f \circ [n] \in (k(E)^{\times})^n,$$

where [n] denotes the multiplication-by-n map. Then

$$\delta_k^{(\psi)}(P) \equiv f(P) \pmod{k^{\times n}}$$

for any $P \in E(k) \setminus \{O, S\}$.

Proof. See [13, Chapter X, Theorem 1.1]. ■

Define the Tate-Shafarevich group of F/k by

$$III(F/k) = \operatorname{Ker}\Big(H^1(k,F) \to \prod_{v \in M_k} H^1(k_v,F)\Big).$$

It is conjectured that III(F/k) is finite. Let

$$\langle , \rangle : III(F/k) \times III(F/k) \to \mathbb{Q}/\mathbb{Z}$$

be the Cassels–Tate pairing on III(F/k). (See [5], [15] or [11] for the definition.) It is well known that this pairing is non-degenerate if and only if the divisible part of III(F/k) is trivial. Let $III(F/k)_{\psi}$ be the kernel of the map $III(F/k) \to III(E/k)$ induced from ψ , and let

$$\langle , \rangle_{\psi} : III(F/k)_{\psi} \times III(F/k)_{\psi} \to \frac{1}{n} \mathbb{Z}/\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z}$$

be the restriction of $\langle \ , \ \rangle$ to the subgroup $I\!I\!I(F/k)_{\psi}$. The group $I\!I\!I(F/k)_{\psi}$ fits into the exact sequence

$$0 \to E(k)/\psi(F(k)) \xrightarrow{\delta_k^{(\psi)}} \operatorname{Sel}^{(\psi)}(F/k) \to III(F/k)_{\psi} \to 0.$$

Pulling back the pairing to $\operatorname{Sel}^{(\psi)}(F/k)$ using the surjection $\operatorname{Sel}^{(\psi)}(F/k) \to \operatorname{III}(F/k)_{\psi}$, we obtain a pairing on $\operatorname{Sel}^{(\psi)}(F/k)$, which we denote by the same symbols:

(2)
$$\langle , \rangle_{\psi} : \operatorname{Sel}^{(\psi)}(F/k) \times \operatorname{Sel}^{(\psi)}(F/k) \to \mathbb{Z}/n\mathbb{Z}.$$

In Section 6 we will prove an explicit formula for the pairing \langle , \rangle_{ψ} when E is a semistable elliptic curve satisfying a certain condition on the discriminant of E.

3. Tate curves. Let p be a prime number. Throughout this section k will denote a p-adic field, that is, a finite extension of \mathbb{Q}_p . Let v denote the valuation of k such that $v(k^{\times}) = \mathbb{Z}$ and q a non-zero element of k with v(q) > 0. Let $E = E_q$ be the Tate curve over k defined by the equation (3) $y^2 + xy = x^3 + a_4(q)x + a_6(q)$.

where $a_4(q)$ and $a_6(q)$ are convergent power series in k[[u]] defined by

$$a_4 = -\sum_{n=1}^{\infty} \frac{n^4 q^n}{1 - q^n}, \quad a_6 = -\frac{1}{12} \left(5\sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n} + 7\sum_{n=1}^{\infty} \frac{n^5 q^n}{1 - q^n} \right).$$

(For more details on the Tate curve see [14, Chapter V].) Then we have an isomorphism of $\operatorname{Gal}(\overline{k}/k)$ -modules called the *Tate parametrization*:

$$\tau: \overline{k}^{\times}/q^{\mathbb{Z}} \to E(\overline{k}), \quad u \mapsto (X(u), Y(u)),$$

where X(u) and Y(u) are convergent power series in k[[u]] defined by

(4)
$$X(u) = \frac{u}{(1-u)^2} + \sum_{n=1}^{\infty} \left(\frac{q^n u}{(1-q^n u)^2} + \frac{q^n u^{-1}}{(1-q^n u^{-1})^2} - 2 \frac{q^n}{(1-q^n)^2} \right),$$

(5)
$$Y(u) = \frac{u^2}{(1-u)^3} + \sum_{n=1}^{\infty} \left(\frac{(q^n u)^2}{(1-q^n u)^3} - \frac{q^n u^{-1}}{(1-q^n u^{-1})^3} + \frac{q^n}{(1-q^n)^2} \right).$$

Let n be a prime number, and fix an nth root of unity $\zeta \in \mu_n$ and an nth root $q_1 = q^{1/n}$ of q in \overline{k} . Then for any $P \in E_n$, we define two elements $\mu(P)$ and $\nu(P)$ of $\mathbb{Z}/n\mathbb{Z}$ by

$$\tau(\zeta^{\mu(P)}q_1^{\nu(P)}) = P.$$

Clearly both μ and ν are homomorphisms from E_n to $\mathbb{Z}/n\mathbb{Z}$.

Now, let S be a k-rational point of E of order n. As in the preceding section we consider the quotient F of E by the cyclic subgroup generated by S and the cyclic isogeny $\psi: F \to E$.

PROPOSITION 3.1. Let $\delta_k^{(\psi)} : E(k) \to H^1(k, F_{\psi}) = k^{\times}/k^{\times n}$ be the map defined in (1). Then

$$\operatorname{Im}(\delta_k^{(\psi)}) = \begin{cases} k^{\times}/k^{\times n} & \text{if } \nu(S) \neq 0, \\ \{1\} & \text{if } \nu(S) = 0. \end{cases}$$

This fact is well known; for example it is proved in [2] in the case of n = 5and the proof works for any n. However, we will give another proof using an explicit description of the rational function f defined in Proposition 2.1. This proof is a generalization of that of Brumer and Kramer [4], where the case n = 2 is treated. We consider the following theta function:

$$\theta(u) = (1-u) \prod_{n=1}^{\infty} \frac{(1-q^n u)(1-q^n u^{-1})}{(1-q^n)^2} \quad (u \in \overline{k}^{\times}).$$

LEMMA 3.2. Let $x_1, \ldots, x_r \in \overline{k}^{\times}$ and $m_0, m_1, \ldots, m_r \in \mathbb{Z}$. Let f be a function on \overline{k}^{\times} defined by

$$f(u) = u^{-m_0} \prod_{i=1}^r \theta(u/x_i)^{m_i} \quad (u \in \overline{k}^{\times}).$$

Then the equation f(qu) = f(u) holds for all $u \in \overline{k}^{\times}$ if and only if the following two conditions are satisfied:

$$\sum_{i=1}^{r} m_i = 0 \quad and \quad \prod_{i=1}^{r} x_i^{m_i} = q^{m_0}.$$

Moreover, if these conditions are satisfied (hence $f \circ \tau^{-1}$ may be viewed as a rational function on the Tate curve E), then the divisor of the rational function f on E is given by

$$\operatorname{div}(f \circ \tau^{-1}) = \sum_{i=1}^{r} m_i(\tau(x_i))$$

Proof. See $[12, \S1, Proposition 1]$.

Proof of Proposition 3.1. We want to construct a rational function f on E which satisfies the condition of Proposition 2.1. Let $\mu = \mu(S), \nu = \nu(S)$ and define a function f on E by

(6)
$$f(\tau(u)) = u^{-\nu} \left(\frac{\theta(\zeta^{-\mu} q_1^{-\nu} u)}{\theta(u)} \right)^n \quad (u \in \overline{k}^{\times}).$$

Then Lemma 3.2 implies that f is a rational function on E defined over k such that $\operatorname{div}(f) = n((S) - (O))$. Moreover, we define a function g on E by

$$g(\tau(u)) = u^{-\nu} \frac{\theta(\zeta^{-\mu}q_1^{-\nu}u^n)}{\theta(u^n)}.$$

Then g is also a rational function on E defined over k and satisfies the relation

$$f(\tau(u^n)) = g(\tau(u))^n$$

Therefore $f \circ [n] = g^n$, so f satisfies the condition in Proposition 2.1. Hence

(7)
$$\delta_k^{(\psi)}(\tau(u)) \equiv f(\tau(u)) \equiv u^{-\nu} \pmod{k^{\times n}}$$

for all $u \in k^{\times}$. Proposition 3.1 now easily follows from (7).

In the next proposition we identify $\mathbb{Z}/n\mathbb{Z}$ with the subset $\{0, 1, \ldots, n-1\}$ of \mathbb{Z} . Thus we regard $\nu(P)$ as an integer such that $0 \leq \nu(P) < n$.

PROPOSITION 3.3. Suppose $q_1 \in k$. Let $f \in k(E)^{\times}$ be the rational function on E defined by (6). Then for any $P \in E(k)_n \setminus \{O, S\}$, v(f(P)) is given by the formula

$$v(f(P)) = -(\nu(S)\nu(P) - n\max\{\nu(S) - \nu(P), 0\})v(q_1) - \delta_{\nu(S),\nu(P)}v(1-\zeta),$$

where $\delta_{\pi,\pi}$ denotes Kronecker's delta.

Proof. For any $\alpha, \beta \in \overline{k}^{\times}$, we write $\alpha \sim \beta$ if $v(\alpha/\beta) = 0$. Take $u, z \in \overline{k}^{\times}$ such that $\tau(u) = S, \tau(z) = P$. Clearly one can take u, z so that $0 \leq v(u), v(z) < v(q)$. Then by (6) we have

$$f(P) = z^{-\nu(S)} \left(\frac{\theta(u^{-1}z)}{\theta(z)}\right)^n.$$

Since $v(z) = \nu(P)v(q_1)$, this shows that

(8)
$$v(f(P)) = -\nu(S)\nu(P)v(q_1) + n \cdot v\left(\frac{\theta(u^{-1}z)}{\theta(z)}\right).$$

To calculate the second term, notice that -v(q) < v(z/u) < v(q) and $0 \le v(z) < v(q)$. Hence $1 - q^n (z/u)^{\pm 1} \sim 1$ and $1 - q^n z^{\pm 1} \sim 1$ for all $n \ge 1$. Thus

$$\frac{\theta(u^{-1}z)}{\theta(z)} \sim \frac{1 - u^{-1}z}{1 - z}$$

First, suppose $\nu(P) \neq 0$. Then $1 - z \sim 1$ and

$$1 - u^{-1}z \sim \begin{cases} 1 & \text{if } \nu(P) > \nu(S), \\ u^{-1}z & \text{if } \nu(P) < \nu(S), \\ 1 - \zeta & \text{if } \nu(P) = \nu(S). \end{cases}$$

Here we have used the fact that $1 - \zeta^s \sim 1 - \zeta$ for any 0 < s < n. Therefore,

(9)
$$v\left(\frac{\theta(u^{-1}z)}{\theta(z)}\right) = -\max\{\nu(S) - \nu(P), 0\}v(q_1) + \delta_{\nu(S),\nu(P)}v(1-\zeta).$$

From (8) and (9) we obtain the desired formula.

214

Next, suppose $\nu(P) = 0$. Then $\mu(P) \neq 0$, hence $1 - z \sim 1 - \zeta^{\mu(P)} \sim 1 - \zeta$. Moreover, if $\nu(P) = 0$, then $\mu(S) \neq \mu(P)$, and

$$1 - u^{-1}z \sim \begin{cases} u^{-1} & \text{if } \nu(S) \neq 0, \\ 1 - \zeta & \text{if } \nu(S) = 0. \end{cases}$$

Therefore,

(10)
$$v\left(\frac{\theta(u^{-1}z)}{\theta(z)}\right) = -\max\{\nu(S), 0\}v(q_1) + \delta_{\nu(S), 0}v(1-\zeta).$$

From (8) and (10), we find that the formula of the proposition also holds in this case. This completes the proof. \blacksquare

COROLLARY 3.4. Suppose n is a prime and $q_1 \in k$. If v(n) = 0, then v(f(P)) is divisible by $v(q_1)$ and the integer $v(f(P))/v(q_1)$ satisfies the congruence

$$\frac{v(f(P))}{v(q_1)} \equiv -\nu(S)\nu(P) \pmod{n}.$$

Further, if v(n) > 0 and $v(q_1) \not\equiv 0 \pmod{n}$ (hence $v(q_1)$ is an n-adic unit), then the same congruence holds.

Proof. If v(n) = 0, then Proposition 3.3 implies that

$$v(f(P)) = -[\nu(S)\nu(P) + n \cdot \max\{\nu(S) - \nu(P), 0\}]v(q_1).$$

Hence the assertion of the proposition holds. If v(n) > 0 and $v(q_1) \neq 0 \pmod{n}$, then $v(q_1)$ is an *n*-adic unit, hence we get the congruence of the proposition again.

4. The Selmer group of a semistable elliptic curve. We return to the situation where k is a number field. In the remainder of this paper we will assume that n is an odd prime number. Let $M_{k,0}$ denote the set of prime ideals of k. For any $\alpha \in k^{\times}$ let $\Sigma_k(\alpha)$ denote the set of prime ideals \mathfrak{p} of k such that $\operatorname{ord}_{\mathfrak{p}}(\alpha) \neq 0$. Let E be a semistable elliptic curve defined over k. Thus $\Sigma(E/k) := \Sigma_k(\Delta_E)$ is the set of bad prime ideals for E. We assume that E has split multiplicative reduction at every prime in $\Sigma(E/k)$. For $\mathfrak{p} \in \Sigma(E/k)$, let $q = q_{\mathfrak{p}}$ be a non-zero element of $k_{\mathfrak{p}}$ with $\operatorname{ord}_{\mathfrak{p}}(q) > 0$ such that E is isomorphic to the Tate curve $E_q/k_{\mathfrak{p}}$ defined by (3). We fix an isomorphism $\phi_{\mathfrak{p}} : E_q \to E$. We write $\mu_{\mathfrak{p}}, \nu_{\mathfrak{p}}$ and $\tau_{\mathfrak{p}}$ for μ, ν and τ defined in the previous section for $E_q/k_{\mathfrak{p}}$. Let

$$A_k = \{ \mathfrak{p} \in \Sigma(E/k) \mid \nu_{\mathfrak{p}}(S) \neq 0 \}, \quad B_k = \Sigma(E/k) \setminus A_k.$$

Consider the following condition:

(11)
$$\Sigma_k(n) \subset \Sigma(E/k).$$

Clearly this is equivalent to requiring that $\operatorname{ord}_{\mathfrak{p}}(\Delta_E) > 0$ for all $\mathfrak{p} \in \Sigma_k(n)$.

For any subset X of $M_{k,0}$, we define a subgroup V(X) of $k^{\times}/k^{\times n}$ by

 $V(X) = \{ x \in k^{\times} / k^{\times n} \mid \operatorname{ord}_{\mathfrak{p}}(x) \equiv 0 \pmod{n} \ (\forall \mathfrak{p} \in M_{k,0} \setminus X) \}.$

Moreover, if Y is another subset of $M_{k,0}$ such that $X \cap Y = \emptyset$, we define a subgroup V(X,Y) of $k^{\times}/k^{\times n}$ by

$$V(X,Y) = \{ x \in V(X) \mid x = 1 \text{ in } k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times n} \ (\forall \mathfrak{p} \in Y) \}.$$

PROPOSITION 4.1. If the condition (11) holds, then

$$\operatorname{Sel}^{(\psi)}(F/k) = V(A_k, B_k).$$

Proof. Let $x \in k^{\times}/k^{\times n}$. Then x belongs to $\operatorname{Sel}^{(\psi)}(F/k)$ if and only if $x \in \operatorname{Im}(\delta_{\mathfrak{p}}^{(\psi)})$ for all $\mathfrak{p} \in M_k$. Since we are assuming that n is odd, it is not necessary to consider the local condition at infinite places. If \mathfrak{p} is a finite place not in $\Sigma(E/k)$ and therefore not dividing n, then it is well known that $\operatorname{Im}(\delta_{\mathfrak{p}}^{(\psi)}) = \mathscr{O}_{\mathfrak{p}}^{\times}/\mathscr{O}_{\mathfrak{p}}^{\times n} \subset k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times n}$, where $\mathscr{O}_{\mathfrak{p}}$ denotes the integer ring of $k_{\mathfrak{p}}$. This shows that $\operatorname{Sel}^{(\psi)}(F/k)$ is a subgroup of $V(\Sigma(E/k))$. If $\mathfrak{p} \in \Sigma(E/k)$, then E has split multiplicative reduction at \mathfrak{p} , and so by Proposition 3.1 we have

$$\operatorname{Im}(\delta_{\mathfrak{p}}^{(\psi)}) = \begin{cases} k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times n} & \text{if } \mathfrak{p} \in A_k, \\ \{1\} & \text{if } \mathfrak{p} \in B_k. \end{cases}$$

Therefore the equality $\operatorname{Sel}^{(\psi)}(F/k) = V(A_k, B_k)$ holds.

COROLLARY 4.2. Assume that the condition (11) holds. If $N\mathfrak{p} \not\equiv 1 \pmod{n}$ for all $\mathfrak{p} \in B_k$, then

$$\operatorname{Sel}^{(\psi)}(F/k) = V(A_k).$$

Proof. Let $x \in V(A_k)$. Then $\operatorname{res}_{\mathfrak{p}}(x) \in \mathscr{O}_{\mathfrak{p}}^{\times}/\mathscr{O}_{\mathfrak{p}}^{\times n}$ for any $\mathfrak{p} \in B_k$. But, since n is a prime number, the assumption that $N\mathfrak{p} \not\equiv 1 \pmod{n}$ implies that $\mathscr{O}_{\mathfrak{p}}^{\times n} = \mathscr{O}_{\mathfrak{p}}^{\times}$. Therefore, x = 1 in $k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times n}$. This proves that $V(A_k) \subset \operatorname{Sel}^{(\psi)}(F/k)$. Thus the assertion follows from Proposition 4.1.

We will henceforth assume that k contains μ_n . For any $\mathfrak{p} \in M_{k,0} \setminus \Sigma_k(n)$ and $x \in k$ with $\operatorname{ord}_{\mathfrak{p}}(x) = 0$, let $\left(\frac{x}{\mathfrak{p}}\right)_n$ be the *n*th power residue symbol, namely $\left(\frac{x}{\mathfrak{p}}\right)_n$ is the *n*th root of unity such that

$$\left(\frac{x}{\mathfrak{p}}\right)_n \equiv x^{(N\mathfrak{p}-1)/n} \pmod{\mathfrak{p}}.$$

Note that $\left(\frac{x}{\mathfrak{p}}\right)_n = 1$ if and only if $x \in \mathscr{O}_{\mathfrak{p}}^{\times n}$. Thus the following corollary immediately follows from Proposition 4.1.

COROLLARY 4.3. Assume that k contains μ_n and the condition (11) holds. Then

$$\operatorname{Sel}^{(\psi)}(F/k) = \left\{ x \in V(A_k) \ \middle| \ \left(\frac{x}{\mathfrak{p}}\right)_n = 1 \ (\forall \mathfrak{p} \in B_k) \right\}.$$

Now, we will give an explicit description of the set A_k . For this purpose, divide the set $\Sigma(E/k)$ into two subsets:

$$\Sigma^{(1)}(E/k) = \{ \mathfrak{p} \in \Sigma(E/k) \mid \operatorname{ord}_{\mathfrak{p}}(\Delta_E) \not\equiv 0 \pmod{n} \},\$$

$$\Sigma^{(2)}(E/k) = \{ \mathfrak{p} \in \Sigma(E/k) \mid \operatorname{ord}_{\mathfrak{p}}(\Delta_E) \equiv 0 \pmod{n} \}.$$

Let f_S be a rational function on E satisfying the condition of Proposition 3.1. For any $\mathfrak{p} \in \Sigma(E/k)$ let $f_{\mathfrak{p},S}$ denote the rational function on E_q defined by (6). Since two rational functions $\phi_{\mathfrak{p}}^*(f_S)$ and $f_{\mathfrak{p},S}$ on E have the same divisor, they differ only by non-zero constant multiple:

$$\phi_{\mathfrak{p}}^*(f_S) = c_{\mathfrak{p}} f_{\mathfrak{p},S} \quad (c_{\mathfrak{p}} \in k_{\mathfrak{p}}^{\times}).$$

But in view of Proposition 2.1 the commutative diagram

$$\begin{array}{cccc} E(k) & \xrightarrow{\delta_{k}^{(\psi)}} H^{1}(k, F_{\psi}) & \xrightarrow{\cong} k^{\times}/k^{\times n} \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ E(k_{\mathfrak{p}}) & \xrightarrow{\delta_{k_{\mathfrak{p}}}^{(\psi)}} H^{1}(k_{\mathfrak{p}}, F_{\psi}) & \xrightarrow{\cong} k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times n} \end{array}$$

shows that $c_{\mathfrak{p}} \in k_p^{\times n}$. Hence, when we compute $\operatorname{Im}(\delta_{\mathfrak{p}}^{(\psi)})$, we may use f_S instead of $f_{\mathfrak{p},S}$.

Let $P \in E_n \setminus \{O, S\}$. Then the above remark shows that

$$\operatorname{ord}_{\mathfrak{p}}(\phi_{\mathfrak{p}}^*(f_S(P))) = \operatorname{ord}_{\mathfrak{p}}(f_{\mathfrak{p},S})$$

for any $\mathfrak{p} \in \Sigma(E/k)$. For each $\mathfrak{p} \in \Sigma^{(2)}(E/k)$, define the rational number

$$i_{\mathfrak{p}}(S,P) = rac{\operatorname{ord}_{\mathfrak{p}}(f_S(P))}{rac{1}{n}\operatorname{ord}_{\mathfrak{p}}(\Delta_E)}.$$

Consider the following condition:

(12)
$$\operatorname{ord}_{\mathfrak{p}}(\Delta_E) \not\equiv 0 \pmod{n} \quad \text{for all } \mathfrak{p} \in \Sigma_k(n).$$

Obviously (12) implies (11).

PROPOSITION 4.4. Assume that k contains μ_n and the condition (12) holds. Then for any prime $\mathfrak{p} \in \Sigma(E/k)$ the following assertions hold:

(i) If $\mathfrak{p} \in \Sigma^{(1)}(E/k)$, then $\nu_{\mathfrak{p}}(S) = 0$.

(ii) If $\mathfrak{p} \in \Sigma^{(2)}(E/k) \setminus \Sigma_k(n)$ (resp. $\mathfrak{p} \in \Sigma_k(n)$), then $i_\mathfrak{p}(S, P)$ is an integer (resp. an n-adic integer) and the congruence

$$i_{\mathfrak{p}}(S,P) \equiv -\nu_{\mathfrak{p}}(S)\nu_{\mathfrak{p}}(P) \pmod{n}$$

holds for any $P \in E(k)_n \setminus \{O, S\}$.

Proof. If $\operatorname{ord}_{\mathfrak{p}}(\Delta_E) \neq 0 \pmod{n}$, then $q_1 = q^{1/n}$ does not belong to $k_{\mathfrak{p}}$. Let σ be an element of $\operatorname{Gal}(\overline{k}_{\mathfrak{p}}/k_{\mathfrak{p}})$ such that $q_1^{\sigma} \neq q_1$. Since the Tate

parametrization $\tau_{\mathfrak{p}}$ is Galois equivariant and S is k-rational, we have

$$\tau_{\mathfrak{p}}(\zeta^{\mu_{\mathfrak{p}}(S)}\mathfrak{q}_{1}^{\nu_{\mathfrak{p}}(S)}) = \tau_{\mathfrak{p}}(\zeta^{\mu_{\mathfrak{p}}(S)}(\mathfrak{q}_{1}^{\sigma})^{\nu_{\mathfrak{p}}(S)}).$$

Hence $\nu_{\mathfrak{p}}(S)\tau_{\mathfrak{p}}(\mathfrak{q}_{1}^{\sigma-1}) = 0$. Since $\mathfrak{q}_{1}^{\sigma-1}$ is an *n*th root of unity other than 1, we have $\tau_{\mathfrak{p}}(\mathfrak{q}_{1}^{\sigma-1}) \neq 0$. Therefore, $\nu_{\mathfrak{p}}(S) = 0$. This proves (i).

To prove (ii), suppose that $\operatorname{ord}_{\mathfrak{p}}(\Delta_E) \equiv 0 \pmod{n}$ and \mathfrak{p} does not divide *n*. Then Corollary 3.4 shows that

$$\frac{\operatorname{ord}_{\mathfrak{p}}(f_S(P))}{\operatorname{ord}_{\mathfrak{p}}(q_1)} \equiv -\nu_{\mathfrak{p}}(S)\nu_{\mathfrak{p}}(P) \pmod{n}.$$

Since $\frac{1}{n} \operatorname{ord}_{\mathfrak{p}}(\Delta_E) = \operatorname{ord}_{\mathfrak{p}}(q_1)$, (ii) follows.

COROLLARY 4.5. Assume that k contains μ_n and the condition (12) holds. Then

$$A_k = \{ \mathfrak{p} \in \Sigma^{(2)}(E/k) \mid i_{\mathfrak{p}}(S, -S) \not\equiv 0 \pmod{n} \}.$$

Proof. By Proposition 4.4(i), A_k is a subset of $\Sigma^{(2)}(E/k)$. Let $\mathfrak{p} \in \Sigma^{(2)}(E/k)$. Applying Proposition 4.4(ii) for P = -S and noticing that $\nu_{\mathfrak{p}}(-S) \equiv -\nu_{\mathfrak{p}}(S) \pmod{n}$, we obtain

$$i_{\mathfrak{p}}(S, -S) \equiv \nu_{\mathfrak{p}}(S)^2 \pmod{n}.$$

This implies that $\mathfrak{p} \in A_k$ if and only if $i_{\mathfrak{p}}(S, -S) \not\equiv 0 \pmod{n}$. The corollary then follows.

5. The Cassels–Tate pairing. We begin with a theorem proved by McCallum [10], which is fundamental in our calculation. It enables us to describe the Cassels–Tate pairing \langle , \rangle_{ψ} defined in (2) in terms of the Hilbert norm residue symbol

$$(,)_{\mathfrak{p}}: k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times n} \times k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times n} \to \mu_{n}$$

of $k_{\mathfrak{p}}$.

THEOREM 5.1. Suppose $E(k)_n \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ and let $\{S,T\}$ be a basis of $E(k)_n$. Let e_n denote the Weil pairing on E_n and put $\zeta = e_n(S,T)$. Let $F = E/\langle S \rangle$ be the cyclic quotient of E by the subgroup $\langle S \rangle$ generated by S. Let $x, x' \in \operatorname{Sel}^{(\psi)}(F/k)$. For each $\mathfrak{p} \in M_k$ let $P_{\mathfrak{p}} \in E(k_{\mathfrak{p}})$ be a local point such that $\operatorname{res}_{\mathfrak{p}}(x) = \delta_{\mathfrak{p}}^{(\psi)}(P_{\mathfrak{p}})$. Then

$$\langle x, x' \rangle_{\psi} = \sum_{\mathfrak{p} \in M_k} \operatorname{Ind}_{\zeta}(f_T(P_{\mathfrak{p}}), x')_{\mathfrak{p}},$$

where $\operatorname{Ind}_{\zeta} : \mu_n \to \mathbb{Z}/n\mathbb{Z}$ denotes the isomorphism sending $\zeta \in \mu_n$ to $1 \in \mathbb{Z}/n\mathbb{Z}$ and f_T is a rational function on E defined in Proposition 2.1.

Proof. One can prove this in a quite similar way to [10, Theorem 1.4]. See also [2] and [7], where the case n = 5 is treated.

The next theorem is proved by Beaver [2] when n = 5, but the proof works for general n. Here we will give a proof based on the result in Section 2.

THEOREM 5.2. Let the notation and assumption be as in Theorem 5.1. Suppose E/k (and hence F/k) is a semistable elliptic curve with split multiplicative reduction at every prime in $\Sigma(E/k)$. Let A_k be as in Section 3 and assume that the condition (11) holds. For each $\mathfrak{p} \in A_k$ put $\lambda_{\mathfrak{p}} = \nu_{\mathfrak{p}}(T)/\nu_{\mathfrak{p}}(S) \in \mathbb{Z}/n\mathbb{Z}$. Then for $x, x' \in \mathrm{Sel}^{(\psi)}(F/k)$ we have

$$\langle x, x' \rangle_{\psi} = \sum_{\mathfrak{p} \in A_k} \lambda_{\mathfrak{p}} \operatorname{Ind}_{\zeta}(x, x')_{\mathfrak{p}}.$$

Proof. Let $\tau_{\mathfrak{p}} : \overline{k}_{\mathfrak{p}}^{\times}/q_{\mathfrak{p}}^{\mathbb{Z}} \to E(\overline{k}_{\mathfrak{p}})$ be the Tate parametrization. For each $\mathfrak{p} \in M_k$ there exists a point $P_{\mathfrak{p}} \in E(k_{\mathfrak{p}})$ such that $\delta_{\mathfrak{p}}^{(\psi)}(P_{\mathfrak{p}}) = \operatorname{res}_{\mathfrak{p}}(x)$. Choose $u_{\mathfrak{p}} \in k_{\mathfrak{p}}^{\times}$ so that $\tau_{\mathfrak{p}}(u_{\mathfrak{p}}) = P_{\mathfrak{p}}$. Then by the same argument as in the proof of Proposition 3.1 one can prove that

$$f_T(P_{\mathfrak{p}}) = f_T(\tau_{\mathfrak{p}}(u_{\mathfrak{p}})) \equiv u_{\mathfrak{p}}^{-\nu_{\mathfrak{p}}(T)} \pmod{k_{\mathfrak{p}}^{\times n}}.$$

Hence by Theorem 5.1 we have

(13)
$$\langle x, x' \rangle_{\psi} = \sum_{\mathfrak{p} \in M_k} \operatorname{Ind}_{\zeta}(u_{\mathfrak{p}}^{-\nu_{\mathfrak{p}}(T)}, x')_{\mathfrak{p}}.$$

If $\nu_{\mathfrak{p}}(S) = 0$, then $\operatorname{Im}(\delta_{\mathfrak{p}}^{(\psi)}) = \{1\}$ by Proposition 3.1, and so $(u_{\mathfrak{p}}^{-\nu_{\mathfrak{p}}(T)}, x')_{\mathfrak{p}} = 1$. If $\nu_{\mathfrak{p}}(S) \neq 0$, then $u_{\mathfrak{p}}^{-\nu_{\mathfrak{p}}(T)} \equiv (u_{\mathfrak{p}}^{-\nu_{\mathfrak{p}}(S)})^{\lambda_{\mathfrak{p}}} \pmod{k_{\mathfrak{p}}^{\times n}}$. Therefore

(14)
$$(u_{\mathfrak{p}}^{-\nu_{\mathfrak{p}}(T)}, x')_{\mathfrak{p}} = (u_{\mathfrak{p}}^{-\nu_{\mathfrak{p}}(S)}, x')_{\mathfrak{p}}^{\lambda_{\mathfrak{p}}} = (x, x')_{\mathfrak{p}}^{\lambda_{\mathfrak{p}}}.$$

The assertion now immediately follows from (13) and (14). \blacksquare

The following theorem shows that one can compute the value of $\lambda_{\mathfrak{p}}$ once the values of the function f_S on E_n have been known.

THEOREM 5.3. Let the notation and assumption be as in Theorem 5.1. Assume, in addition, that the condition (12) holds. Then for any $\mathfrak{p} \in A_k$ the value of $\lambda_{\mathfrak{p}}$ is given by the following formula:

$$\lambda_{\mathfrak{p}} \equiv -\frac{i_{\mathfrak{p}}(S,T)}{i_{\mathfrak{p}}(S,-S)} \pmod{n}.$$

Proof. Applying Proposition 4.4(ii) for P = T, we obtain

$$i_{\mathfrak{p}}(S,T) \equiv -\nu_{\mathfrak{p}}(S)\nu_{\mathfrak{p}}(T) \pmod{n}.$$

Since $i_{\mathfrak{p}}(S, -S) \equiv \nu_{\mathfrak{p}}(S)^2 \pmod{n}$, it follows that

$$\frac{i_{\mathfrak{p}}(S,T)}{i_{\mathfrak{p}}(S,-S)} \equiv -\lambda_{\mathfrak{p}} \pmod{n},$$

which proves the theorem. \blacksquare

6. The case of n = 3. Let *E* be a semistable elliptic curve defined over \mathbb{Q} with a rational point *S* of order 3. After a change of coordinates, we may assume that S = (0, 0) and *E* is defined by the Weierstraß equation

$$(15) y^2 + axy + by = x^3,$$

where a and b are integers such that (a, b) = 1 and $(a^3 - 27b)b \neq 0$. The discriminant of E is given by $\Delta_E = (a^3 - 27b)b^3$, and E has split multiplicative reduction at every prime in $\Sigma(E/\mathbb{Q}) = \Sigma_{\mathbb{Q}}((a^3 - 27b)b)$. Let k be a number field containing a cubic root of unity ζ . One can easily see that for any $\mathfrak{p} \in \Sigma(E/k)$ our elliptic curve E considered over $k_{\mathfrak{p}}$ is isomorphic to the Tate curve

$$E_q: \quad y^2 + xy = x^3 + \frac{b}{2a^3}x + \frac{b^2}{4a^6}$$

with a non-zero element $q = q_{\mathfrak{p}} \in k_{\mathfrak{p}}$ such that $j(E_q) = j(E)$. The isomorphism $\phi_{\mathfrak{p}} : E \to E_q$ is given by

(16)
$$\phi_{\mathfrak{p}}((x,y)) = (a^2 x, a^3 y - b/2)$$

Note that the rational function y on E has the divisor $\operatorname{div}(y) = 3((S) - (O))$. Thus we can take y for the rational function f_S on E.

Now, let $F = E/\langle S \rangle$ be the quotient of E by the cyclic group generated by S and $\varphi : E \to F$ the natural surjection. Then F is defined over \mathbb{Q} by

(17)
$$y^2 + axy + by = x^3 - 5abx - a^3b - 7b^2.$$

Let $\psi: F \to E$ be the dual isogeny of the isogeny φ .

PROPOSITION 6.1. Let k be a number field containing μ_3 and assume that $\operatorname{ord}_{\mathfrak{p}}(3) \not\equiv 0 \pmod{3}$ for all $\mathfrak{p} \in \Sigma_k(3)$. Then $A_k = \Sigma_k(b)$ and $B_k = \Sigma_k(a^3 - 27b)$. Moreover the ψ -Selmer group $\operatorname{Sel}^{(\psi)}(F/k)$ is given by

$$\operatorname{Sel}^{(\psi)}(F/k) = V(\Sigma_k(b), \Sigma_k(a^3 - 27b)).$$

Proof. The assumption on k ensures that the condition (12) is satisfied. Let $\mathfrak{p} \in \Sigma^{(2)}(E/k)$. Since $f_S(-S) = y(-S) = -b$, we have

$$i_{\mathfrak{p}}(S, -S) = rac{\mathrm{ord}_{\mathfrak{p}}(b)}{rac{1}{3} \mathrm{ord}_{\mathfrak{p}}(\Delta_E)}.$$

It follows that $i_{\mathfrak{p}}(S, -S) = 1$ or 0 according as \mathfrak{p} divides b or not. Therefore $A_k = V_k(b)$ (hence $B_k = V_k(a^3 - 27b)$) by Corollary 4.5. Thus the proposition follows from Proposition 4.1.

COROLLARY 6.2. If every prime factor of $a^3 - 27b$ is congruent to 2 modulo 3 and $\operatorname{ord}_3(b) \not\equiv 0 \pmod{3}$, then

$$\operatorname{Sel}^{(\psi)}(F/\mathbb{Q}) = V(\Sigma_{\mathbb{Q}}(b)).$$

Proof. The assertion follows from Proposition 6.1 and Corollary 4.2.

Let $K = \mathbb{Q}(E_3)$. Then it is easy to see that $K = \mathbb{Q}(\sqrt{-3}, \sqrt[3]{a^3 - 27b})$. We remark that if $\operatorname{ord}_3(b) \not\equiv 0 \pmod{3}$, then $\operatorname{ord}_{\mathfrak{p}}(b) \not\equiv 0 \pmod{3}$ for all $\mathfrak{p} \in \Sigma_K(3)$ since the absolute ramification index of \mathfrak{p} is 2.

COROLLARY 6.3. Assume that $\operatorname{ord}_3(b) \not\equiv 0 \pmod{3}$. Then

$$\operatorname{Sel}^{(\psi)}(F/K) = \left\{ x \in V(\Sigma_K(b)) \mid \left(\frac{x}{\mathfrak{p}}\right)_3 = 1 \text{ for all } \mathfrak{p} \in \Sigma_K(a^3 - 27b) \right\}.$$

Proof. The assertion follows from Proposition 6.1 and Corollary 4.3. \blacksquare

Put $\ell = a^3 - 27b$, hence $K = \mathbb{Q}(\sqrt{-3}, \sqrt[3]{\ell})$. It is not hard to compute all the points of E_3 explicitly. First, note that

$$\langle S\rangle=\{O,(0,0),(0,-b)\}$$

The coordinates of the points of $E_3 \setminus \langle S \rangle$ are given as follows:

LEMMA 6.4. Let T be a point of order 3 which does not belong to $\langle S \rangle$. Then we have

$$T = \left(-\frac{(a-\omega\xi)(a-\omega^2\xi)}{9}, -\frac{(a-\omega\xi)^2(a-\omega^2\xi)}{27}\right),$$

where ξ is a cubic root of ℓ and ω is a primitive cubic root of unity. (The number of possible choices of the pair (ξ, ω) is $6 = \#(E_3 \setminus \langle S \rangle)$.)

Proof. Let $P \in E_3 \setminus \{O\}$. Then the x-coordinate x(P) of P is a root of the quadric equation

$$3x^4 + a^2x^3 + 3abx^2 + 3b^2x = 0.$$

The trivial root x = 0 of this equation corresponds to the points S = (0, 0)and 2S = (0, -b). Thus x(T) is a root of the cubic equation

$$3x^3 + a^2x^2 + 3abx + 3b^2 = 0.$$

Solving this equation, we obtain

$$x(T) = -\frac{3b}{a-\xi} = -\frac{(a-\omega\xi)(a-\omega^2\xi)}{9}$$

with some ξ such that $\xi^3 = \ell$. Here the second equality holds since

(18)
$$27b = (a - \xi)(a - \omega\xi)(a - \omega^2\xi).$$

Solving the quadratic equation $y^2 + (ax(T) + b)y - x(T)^3 = 0$, we obtain the description of the *y*-coordinate y(T) of *T* in the lemma.

In the following we fix ξ and consider three (mutually disjoint) subsets $A_K^{(i)}$ (i = 0, 1, 2) of A_K defined by

$$A_K^{(i)} = \{ \mathfrak{p} \in A_K \mid a \equiv \omega^i \xi \pmod{\mathfrak{p}^{\varepsilon_\mathfrak{p}}} \},\$$

where $\varepsilon_{\mathfrak{p}} = 2$ or 1 according as \mathfrak{p} divides 3 or not. If $b \equiv 0 \pmod{3}$, then

$$A_K = A_K^{(0)} \cup A_K^{(1)} \cup A_K^{(2)}$$

by (18).

THEOREM 6.5. Suppose $\operatorname{ord}_3(b) \not\equiv 0 \pmod{3}$. Let $x, x' \in \operatorname{Sel}^{(\psi)}(F/K)$. Then

$$\langle x, x' \rangle_{\psi} = \sum_{\mathfrak{p} \in A_K^{(1)}} \operatorname{Ind}_{\zeta}(x, x')_{\mathfrak{p}} + 2 \sum_{\mathfrak{p} \in A_K^{(2)}} \operatorname{Ind}_{\zeta}(x, x')_{\mathfrak{p}},$$

where $\zeta = e_3(S,T)$.

Proof. It follows from Theorem 5.3 that

(19)
$$\lambda_{\mathfrak{p}} \equiv \frac{\operatorname{ord}_{\mathfrak{p}}(y(T))}{\operatorname{ord}_{\mathfrak{p}}(b)} \pmod{3}$$

for all $\mathfrak{p} \in A_K$. By Lemma 6.4 we have

$$\operatorname{ord}_{\mathfrak{p}}(y(T)) = 2 \operatorname{ord}_{\mathfrak{p}}(a - \omega\xi) + \operatorname{ord}_{\mathfrak{p}}(a - \omega^2\xi).$$

First, suppose \mathfrak{p} does not divide 3. Then \mathfrak{p} does not divide simultaneously any two factors of the right hand side of (18). Therefore, if $a \equiv \xi \pmod{\mathfrak{p}}$, then $\operatorname{ord}_{\mathfrak{p}}(a - \omega\xi) = \operatorname{ord}_{\mathfrak{p}}(a - \omega^2\xi) = 0$. Hence $\operatorname{ord}_{\mathfrak{p}}(y(T)) = 0$. If $a \equiv \omega\xi$ $(\operatorname{mod} \mathfrak{p})$, then $\operatorname{ord}_{\mathfrak{p}}(a - \xi) = \operatorname{ord}_{\mathfrak{p}}(a - \omega^2\xi) = 0$. Hence

$$\operatorname{ord}_{\mathfrak{p}}(y(T)) = 2 \operatorname{ord}_{\mathfrak{p}}(a - \omega\xi) = 2 \operatorname{ord}_{\mathfrak{p}}(b).$$

Similarly, if $a \equiv \omega^2 \xi \pmod{\mathfrak{p}}$, then $\operatorname{ord}_{\mathfrak{p}}(a-\xi) = \operatorname{ord}_{\mathfrak{p}}(a-\omega\xi) = 0$. Hence $\operatorname{ord}_{\mathfrak{p}}(y(T)) = \operatorname{ord}_{\mathfrak{p}}(a-\omega\xi) = \operatorname{ord}_{\mathfrak{p}}(b).$

Consequently, if \mathfrak{p} does not divide 3, then

(20)
$$\operatorname{ord}_{\mathfrak{p}}(y(T)) = \begin{cases} 0 & \text{if } a \equiv \xi \pmod{\mathfrak{p}}, \\ 2 \operatorname{ord}_{\mathfrak{p}}(b) & \text{if } a \equiv \omega \xi \pmod{\mathfrak{p}}, \\ \operatorname{ord}_{\mathfrak{p}}(b) & \text{if } a \equiv \omega^2 \xi \pmod{\mathfrak{p}}. \end{cases}$$

Next, suppose \mathfrak{p} divides 3. Then $\operatorname{ord}_{\mathfrak{p}}(a - \omega^i \xi) > 0$ for any i = 0, 1, 2 and equation (18) shows that

$$\operatorname{ord}_{\mathfrak{p}}(y(T)) = -6 + 2\operatorname{ord}_{\mathfrak{p}}(a - \omega\xi) + \operatorname{ord}_{\mathfrak{p}}(a - \omega^2\xi).$$

(Note that $\operatorname{ord}_{\mathfrak{p}}(3) = 3$.) Moreover, one of the three factors $a - \omega^i$ (i = 0, 1, 2) of the right hand side of (18) is divisible by \mathfrak{p}^2 and the others are not. Therefore, if $a \equiv \xi \pmod{\mathfrak{p}^2}$, then $\operatorname{ord}_{\mathfrak{p}}(a - \omega\xi) = \operatorname{ord}_{\mathfrak{p}}(a - \omega^2\xi) = 1$. Hence $\operatorname{ord}_{\mathfrak{p}}(y(T)) = -3$. If $a \equiv \omega\xi \pmod{\mathfrak{p}^2}$, then $\operatorname{ord}_{\mathfrak{p}}(a - \xi) = \operatorname{ord}_{\mathfrak{p}}(a - \omega^2\xi) = 1$. Hence

$$\operatorname{ord}_{\mathfrak{p}}(a-\omega\xi) = \operatorname{ord}_{p}\left(\frac{27b}{(a-\xi)(a-\omega^{2}\xi)}\right) = \operatorname{ord}_{\mathfrak{p}}(b) + 4b$$

222

Therefore,

$$\operatorname{ord}_{\mathfrak{p}}(y(T)) = 2(\operatorname{ord}_{\mathfrak{p}}(b) + 4) + 1 - 6 = 2\operatorname{ord}_{\mathfrak{p}}(b) + 3.$$

Similarly, if $a \equiv \omega^2 \xi \pmod{\mathfrak{p}^2}$, then $\operatorname{ord}_{\mathfrak{p}}(a - \omega^2 \xi) = \operatorname{ord}_{\mathfrak{p}}(b) + 4$ and $\operatorname{ord}_{\mathfrak{p}}(a - \omega \xi) = 1$. Hence

$$\operatorname{ord}_{\mathfrak{p}}(y(T)) = 2 + \operatorname{ord}_{\mathfrak{p}}(b) + 4 - 6 = \operatorname{ord}_{\mathfrak{p}}(b).$$

Consequently, if \mathfrak{p} divides 3, then

(21)
$$\operatorname{ord}_{\mathfrak{p}}(y(T)) = \begin{cases} -3 & \text{if } a \equiv \xi \pmod{\mathfrak{p}^2}, \\ 2 \operatorname{ord}_{\mathfrak{p}}(b) + 3 & \text{if } a \equiv \omega \xi \pmod{\mathfrak{p}^2}, \\ \operatorname{ord}_{\mathfrak{p}}(b) & \text{if } a \equiv \omega^2 \xi \pmod{\mathfrak{p}^2}. \end{cases}$$

By (20) and (21), for any $\mathfrak{p} \in A_K^{(i)}$ (i = 0, 1, 2) we have $\operatorname{ord}_{\mathfrak{p}}(y(T)) \equiv -i \cdot \operatorname{ord}_{\mathfrak{p}}(b) \pmod{3}.$

It then follows from (19) that

$$\lambda_{\mathfrak{p}} \equiv -i \pmod{3}$$

for any $\mathfrak{p} \in A_K^{(i)}$. Moreover, if $\mathfrak{p} \in M_{K,0} \setminus A_K$, then $\operatorname{ord}_{\mathfrak{p}}(x) \equiv \operatorname{ord}_{\mathfrak{p}}(x') \equiv 0 \pmod{3}$, and so $(x, x')_{\mathfrak{p}} = 1$. Therefore

$$\langle x, x' \rangle_{\psi} = \sum_{i=0}^{2} i \sum_{\mathfrak{p} \in A_{K}^{(i)}} \operatorname{Ind}_{\zeta}(x, x')_{\mathfrak{p}}.$$

This proves the theorem. \blacksquare

7. Proof of Theorem 1.1. We want to show that for a given positive integer r we can find two integers a and b with (a, b) = 1 and $(a^3 - 27b)b \neq 0$ for which

(22)
$$\dim_{\mathbb{Z}/3\mathbb{Z}} III(F_{(a,b)}/\mathbb{Q})_3 \ge r.$$

Let ℓ be an odd prime number with $\ell \equiv -1 \pmod{9}$. Thus ℓ remains prime in $k := \mathbb{Q}(\sqrt{-3})$. Let ξ be a cubic root of ℓ in $\overline{\mathbb{Q}}$ and put $K = \mathbb{Q}(\sqrt{-3}, \xi)$. Since $\ell \equiv -1 \pmod{9}$, ℓ is a cube in \mathbb{Q}_3 , hence $\xi \in \mathbb{Q}_3$. Moreover, by genus theory we know that the class number h of K is not divisible by 3, since the base field k has class number one and K/k is a cyclic extension of degree 3 unramified outside the prime ideal generated by ℓ .

We choose r prime numbers p_1, \ldots, p_r with $p_i \equiv -1 \pmod{9}$ so that the unique prime ideal of k lying above p_i decomposes completely in K. This is possible because $\mathbb{Q}(\zeta_9) \cap K = k$. Let

$$L = k(\sqrt[3]{p_1}, \dots, \sqrt[3]{p_r}).$$

Then L/k is a Kummer extension whose Galois group may be described as follows: For each *i*, we can naturally view $\operatorname{Gal}(k(\sqrt[3]{p_i})/k)$ as a subgroup of

 $\operatorname{Gal}(L/k)$, and we have an isomorphism

$$\operatorname{Gal}(L/k) \cong \prod_{i=1}^{r} \operatorname{Gal}(k(\sqrt[3]{p_i})/k).$$

Choose and fix a primitive cubic root of unity ω , and let g_i be the generator of $\operatorname{Gal}(k(\sqrt[3]{p_i})/k)$ such that

(23)
$$\sqrt[3]{p_i}^{g_i} = \omega \sqrt[3]{p_i}.$$

LEMMA 7.1. There exist prime ideals q_1, \ldots, q_r of K such that

$$\left(\frac{\xi}{\mathfrak{q}_j}\right)_3 = 1$$
 and $\left(\frac{p_i}{\mathfrak{q}_j}\right)_3 = \omega^{\delta_i}$

for all i, j, where $\left(\frac{*}{*}\right)_3$ denotes the cubic power residue symbol of K and δ_{ij} denotes Kronecker's delta.

Proof. The extension KL/k is a Kummer extension of exponent 3. Since ℓ is relatively prime to p_1, \ldots, p_r , we have an isomorphism

$$\operatorname{Gal}(KL/k) \cong \operatorname{Gal}(K/k) \times \operatorname{Gal}(L/k).$$

Therefore, by Chebotarev's density theorem, there exist prime ideals $\mathfrak{Q}_1, \ldots, \mathfrak{Q}_r$ of KL such that

(24)
$$\begin{cases} \operatorname{Frob}_{KL/k}(\mathfrak{Q}_i)|_K = 1, \\ \operatorname{Frob}_{KL/k}(\mathfrak{Q}_i)|_L = g_i. \end{cases}$$

Let \mathbf{q}_i be the prime ideal of K lying under \mathfrak{Q}_i . The first condition of (24) implies that $\operatorname{Frob}_{K/k}(\mathbf{q}_i) = 1$ since $\operatorname{Frob}_{K/k}(\mathbf{q}_i) = \operatorname{Frob}_{KL/k}(\mathfrak{Q}_i)|_K$. This shows that $\left(\frac{\xi}{\mathbf{q}_i}\right)_3 = 1$. Moreover the second condition of (24) implies that

$$\sqrt[3]{p_i}^{\mathrm{Frob}_{KL/k}(\mathfrak{Q}_j)} = \omega^{\delta_{ij}} \sqrt[3]{p_i},$$

which is equivalent to $\left(\frac{p_i}{\mathfrak{q}_j}\right)_3 = \omega^{\delta_{ij}}$. Thus the prime ideals $\mathfrak{q}_1, \ldots, \mathfrak{q}_r$ have the desired properties.

Letting \mathfrak{p}_i and \mathfrak{q}_i be as above, choose an integer a such that

(25)
$$\begin{cases} \operatorname{ord}_3(a-\xi) = 3, \\ a \equiv \xi \pmod{\mathfrak{p}_1 \dots \mathfrak{p}_r}, \\ a \equiv \omega \xi \pmod{\mathfrak{q}_1 \dots \mathfrak{q}_r}. \end{cases}$$

The existence of such an integer is ensured by the fact that $\xi \in \mathbb{Q}_3$ and the prime ideals $\mathfrak{p}_i, \mathfrak{q}_i$ (i = 1, ..., r) decompose completely in K for all *i*. Moreover the first condition of (25) shows that

$$\Sigma_K(3) \subset A_K^{(1)}.$$

Since $\operatorname{ord}_{\mathfrak{p}}((a-\xi)-(a-\omega^{i}\xi)) = \operatorname{ord}_{\mathfrak{p}}((\omega^{i}-1)) = 1$ for any $\mathfrak{p} \in \Sigma_{K}(3)$ and i = 1, 2, this shows that $\operatorname{ord}_{\mathfrak{p}}(a-\omega^{i}\xi) = 1$ for i = 1, 2. Therefore,

224

 $\operatorname{ord}_{\mathfrak{p}}((a - \omega\xi)(a - \omega^2\xi)) = 2$. In particular, regarding $(a - \omega\xi)(a - \omega^2\xi)$ as an element of \mathbb{Q}_3 , we have $\operatorname{ord}_3((a - \omega\xi)(a - \omega^2\xi)) = 1$. Hence the relation

$$\operatorname{ord}_3(a^3 - \ell) = \operatorname{ord}_3(a - \xi) + \operatorname{ord}_3((a - \omega\xi)(a - \omega^2\xi))$$

shows that $\operatorname{ord}_3(a^3 - \ell) = 4$. Therefore, if we put

$$b = \frac{a^3 - \ell}{27},$$

then b is an integer such that (a, b) = 1 and $\operatorname{ord}_3(b) = 1$.

Let $E = E_{(a,b)}$ and $F = F_{(a,b)}$ be two elliptic curves defined by the equation in (15) and (17) respectively. Then K coincides with $\mathbb{Q}(E_3)$. Let $S = (0,0) \in E_3$ and choose $T \in E_3 \setminus \langle S \rangle$ so that $e_3(S,T) = \omega$, where ω is the primitive cubic root of unity defined in (23). We claim that

(26)
$$\dim_{\mathbb{Z}/3\mathbb{Z}}(III(F/\mathbb{Q})_{\psi}) \ge r.$$

Since $III(F/\mathbb{Q})_{\psi} \subset III(F/\mathbb{Q})_3$, this proves the claim (22). To prove (26), let β_j be a generator of the principal ideal \mathfrak{q}_j^h for each $j = 1, \ldots, r$. (Recall that h is the class number of K.) Before proving (26) itself, we prove a lemma.

LEMMA 7.2. Let the notation be as above. Then $p_1, \ldots, p_r \in \operatorname{Sel}^{(\psi)}(F/\mathbb{Q})$ and $\beta_1, \ldots, \beta_r \in \operatorname{Sel}^{(\psi)}(F/K)$.

Proof. Since $\ell = a^3 - 27b$ is a prime number with $\ell \equiv 2 \pmod{3}$, Corollary 6.2 shows that

$$\operatorname{Sel}^{(\psi)}(F/\mathbb{Q}) = V(\Sigma_{\mathbb{Q}}(b)).$$

In particular, $p_1, \ldots, p_r \in \operatorname{Sel}^{(\psi)}(F/\mathbb{Q})$.

To prove the second statement, notice that $K \supset \mu_3$. Let $\mathfrak{l} = (\xi)$ denote the unique prime ideal in K lying above ℓ . Then by Corollary 6.3 we have

$$\operatorname{Sel}^{(\psi)}(F/K) = \left\{ x \in V(\Sigma_K(b)) \; \middle| \; \left(\frac{x}{\mathfrak{l}}\right)_3 = 1 \right\}.$$

Thus, in order to prove that $\beta_i \in \operatorname{Sel}^{(\psi)}(F/K)$, we have to show that $\left(\frac{\beta_i}{\mathfrak{l}}\right)_3 = 1$. But this is equivalent to $(\xi, \beta_i)_{\mathfrak{l}} = 1$. To compute $(\xi, \beta_i)_{\mathfrak{l}}$, note that

$$(\xi,\beta_i)_{\mathfrak{q}_i} = \left(\frac{\xi}{\mathfrak{q}_i}\right)_3^h = 1.$$

The first equality holds because $\operatorname{ord}_{\mathfrak{q}_i}(\xi) = 0$ and $\operatorname{ord}_{\mathfrak{q}_i}(\beta_i) = h$, and the second one holds by Lemma 7.1. Moreover, since $\xi \equiv -1 \pmod{9}$, we have $(\xi, \beta_i)_{\mathfrak{p}} = 1$ for all $\mathfrak{p} \in \Sigma_K(3)$. Then the product formula implies that $(\xi, \beta_i)_{\mathfrak{l}} = 1$. This proves that $\beta_i \in \operatorname{Sel}^{(\psi)}(F/K)$, completing the proof.

We return to the proof of (26). For this, it suffices to show that the images of $p_1, \ldots, p_r \in \operatorname{Sel}^{(\psi)}(F/\mathbb{Q})$ in $\operatorname{III}(F/\mathbb{Q})_{\psi}$ are linearly independent. Since we have a homomorphism $\operatorname{Sel}^{(\psi)}(F/\mathbb{Q}) \to \operatorname{Sel}^{(\psi)}(F/K)$ induced from the natural map $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 3} \to K^{\times}/K^{\times 3}$, it is enough to show that the images of $p_1, \ldots, p_r \in \operatorname{Sel}^{(\psi)}(F/K)$ in $\operatorname{III}(F/K)_{\psi}$ are linearly independent. For this purpose, we calculate the Cassels–Tate pairing $\langle p_i, \beta_j \rangle_{\psi}$ on $\operatorname{Sel}^{(\psi)}(E/K)$ for all i, j.

We first note that $(p_i, \beta_j)_{\mathfrak{p}} = 1$ for all $\mathfrak{p} \in \Sigma_K(3)$ because $p_i \equiv -1 \pmod{9}$. For each *i* there are three conjugate ideals of \mathfrak{p}_i in *K*. We number them so that

$$\Sigma_K(p_i) \cap A_K^{(\nu)} = \{\mathfrak{p}_i^{(\nu)}\} \quad (\nu = 0, 1, 2).$$

Thus $\mathfrak{p}_i^{(0)} = \mathfrak{p}_i$. Moreover, by the choice of the integer *a* in (25) we have

$$\begin{cases} \Sigma_K(\beta_i) \cap A_K^{(1)} = \{\mathfrak{q}_i\}, \\ \Sigma_K(\beta_i) \cap A_K^{(\nu)} = \emptyset \quad (\nu = 0, 2) \end{cases}$$

Therefore, applying Theorem 6.5, we obtain

(27)
$$\langle p_i, \beta_j \rangle_{\psi} = \operatorname{Ind}_{\omega}(p_i, \beta_j)_{\mathfrak{p}_i^{(1)}} + 2 \operatorname{Ind}_{\omega}(p_i, \beta_j)_{\mathfrak{p}_i^{(2)}} + \operatorname{Ind}_{\omega}(p_i, \beta_j)_{\mathfrak{q}_j}.$$

Since p_i is in k, we have

$$(p_i, \beta_j)_{\mathfrak{p}_i^{(1)}} = (p_i, \beta_j)_{\mathfrak{p}_i^{(2)}} = (p_i, N_{K/k}(\beta_j))_{p_i}$$

Hence the sum of the first two terms of the right hand side of (27) is equal to zero. On the other hand, we have

$$(p_i, \beta_j)_{\mathfrak{q}_j} = \left(\frac{p_i}{\mathfrak{q}_j}\right)_3^h = \omega^{h\delta_{ij}}$$

by Lemma 7.1. Consequently, we obtain the following simple description of the pairing $\langle p_i, \beta_j \rangle_{\psi}$:

$$\langle p_i, \beta_j \rangle_{\psi} \equiv h \delta_{ij} \pmod{3}.$$

Since h is not divisible by 3, the equality $\langle p_i, \beta_j \rangle_{\psi} = 0$ holds if and only if $i \neq j$, which proves that p_1, \ldots, p_r are independent in $\operatorname{Sel}^{(\psi)}(E/K)$. This proves (26), completing the proof of Theorem 1.1.

References

- D. Atake, On elliptic curves with large Tate-Shafarevich groups, J. Number Theory 87 (2001), 282–300.
- C. D. Beaver, 5-torsion in the Shafarevich-Tate group of a family of elliptic curves, ibid. 82 (2000), 25–46.
- [3] V. R. Bölling, Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig groβ werden, Math. Nachr. 67 (1975), 157–179.
- [4] A. Brumer and K. Kramer, The rank of elliptic curves, Duke Math. J. 44 (1977), 715–743.
- J. W. S. Cassels, Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95–112.

- [6] J. W. S. Cassels, Arithmetic on curves of genus 1. VI. The Tate-Shafarevich group can be arbitrarily large, ibid. 214 (1963), 65–70.
- [7] T. Fisher, On 5 and 7 descents for elliptic curves, PhD thesis, Cambridge, 2000.
- [8] K. Kramer, A family of semistable elliptic curves with large Tate-Shafarevich groups, Proc. Amer. Math. Soc. 89 (1983), 379–386.
- [9] F. Lemmermeyer, On Tate-Shafarevich groups of some elliptic curves, in: Algebraic Number Theory and Diophantine Analysis (Graz, 1998), F. Halter-Koch and R. F. Tichy (eds.), de Gruyter, 2000, 277–291.
- [10] W. G. McCallum, On the Shafarevich-Tate group of the Jacobian of a quotient of the Fermat curve, Invent. Math. 93 (1988), 637–666.
- [11] S. Milne, Arithmetic Duality Theorems, Perspect. Math. 1, Academic Press, 1986.
- [12] P. Roquette, Analytic Theory of Elliptic Functions over Local Fields, Hamburger Math. Einzelschriften (N.F.) 1, Vandenhoeck & Ruprecht, Göttingen, 1970.
- [13] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.
- [14] —, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer, 1994.
- [15] J. Tate, Duality theorems in Galois cohomology over number fields, in: Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 288–295.

Department of Mathematics Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo 171-8501, Japan E-mail: aoki@rkmath.rikkyo.ac.jp

> Received on 11.2.2002 and in revised form on 14.2.2003 (4216)