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Digit derivatives and application to zeta measures

by

Sangtae Jeong (Incheon)

1. Introduction. Let k = Fq(T ) be a rational function field over a finite
field Fq of q elements where q is a power of a prime p and let k∞ = Fq((π))
be the completion of k at the infinite place π = 1/T . Then we denote by
A = Fq[T ],A∞ = Fq[[π]] the rings of integers of k,k∞ respectively and
by C∞ the completion of an algebraic closure of k∞. Throughout, we also
denote by A+ the set of monic polynomials in T of A, which corresponds
to the set Z+ of positive integers. We then have well known analogies with
the classical case: Z↔ A, Q↔ k, R↔ k∞, C↔ C∞. Over A, Carlitz [C1]
first studied the special values of an analogue of the classical Riemann zeta
function, defined as the power sums

ζ(k) =
∑

a∈A+

1
ak

for k ∈ Z+.

In connection with arithmetic and analytic theory over function fields the
zeta function is more generally extended by Goss [Go2] into the character
space S∞ = C×∞ ×Zp, where Zp is the ring of p-adic integers. In particular,
over A the zeta function ζ(s) = ζ(s1, s2) with s = (s1, s2) ∈ S∞ is defined
as

ζ(s) =
∑

a∈A+

1
as

where as = s1
degT (a) · 〈a〉s2 and 〈a〉 = πdegT (a) · a is the 1-unit part of a as

an element in k×∞. It is then easily seen that ζ(T k, k) = ζ(k), so Goss’s zeta
function coincides with that of Carlitz for k ≥ 1.

The zeta measures, which are defined below, involve both the special
values ζ(x,−k) for non-negative integers k and orthonormal bases for the
space of continuous functions defined on the integer ring of the completion
of k at any place. Let v be a finite place of k, so v corresponds to a prime
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ideal of A generated by a monic irreducible polynomial πv of A. Let Av be
the completion of A at v, kv be the fraction field of Av, and let C(Av,kv)
be the kv-Banach space of continuous functions from Av into kv equipped
with the usual sup norm. It is then well known (see [W, Go1, Co, Sn, J2])
that the space C(Av,kv) has two sets of orthonormal bases consisting of the
Carlitz polynomials and digit derivatives. Now the zeta measure is defined
as a 1-parameter family of measures for all x such that |x|∞ < 1. Indeed,
the zeta measure µx on Av is given by an integral of the form�

Av

tk dµx(t) = z(x,−k)(1)

for integers k ≥ 0, where z(x,−k) = ζ(T−kx,−k).
Similarly the zeta measure µ(∞)

x on A∞ is given by�
A∞

tk dµ(∞)
x (t) = ζ(x,−k).(2)

By an isomorphism between the algebra of measures with the usual con-
volution product and the algebra of formal divided power series ([Sn, Go2])
each measure µx is mapped uniquely to a divided power series fµx(z) =∑∞

k=0mx(k) z
k

k! , where mx(k) = � Av
fk dµx for an orthonormal basis {fk}k≥0

of C(Av,kv) coming from an orthonormal basis of the Fq-linear functions
via the digit expansion principle as in [Co]. From this we see that the di-
vided power series associated to the zeta measures depend on the choice of
orthonormal bases for the space C(Av,kv).

An explicit computation of the zeta measure at a finite place of A with
respect to the Carlitz polynomials was done completely by D. Thakur [Th].
Motivated by Thakur’s work, recently Z. Yang [Y2] completed an extensive
computation of the divided power series associated to the zeta measure at
the infinite place with the counterpart of the Carlitz polynomials for the
parameter π. As for the digit derivatives B. Snyder [Sn] calculated the zeta
measure only at places of degree 1 in A via a highly complicated computa-
tion.

In this paper we derive some interesting interpolation results on A (hence
on Fq[[T ]]) for the digit derivatives, which are parallel to those known for
the Carlitz polynomials in [C2]. We then give a simple alternative proof of
Snyder’s result by relating interpolation to the zeta measure as in [Th]. In
addition, we explicitly compute the divided power series associated to the
zeta measure at A∞ in terms of the counterpart of digit derivatives for the
parameter π. The latter work is closely patterned on Yang’s computation
[Y1, Y2]. For it can be observed throughout Section 2 (see also [C2, J1])
that the Carlitz polynomials and digit derivatives share many properties of
orthonormal bases of C(Fq[[T ]],Fq((T ))).
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2. Properties of digit derivatives. For each n ≥ 0 the nth hyperdif-
ferential operator Dn is defined by

Dn(Tm) =
(
m

n

)
Tm−n for m ≥ 0

and is extended to the polynomial ring A = Fq[T ] by Fq-linearity. It is
also well known that the operator Dn on A can be extended uniquely to
k and then continuously to the completion of A at any place. The read-
ers are referred to [H, HS, T, Co] for more properties of Dn. In particular,
at the place (T ) the set of Dn forms an orthonormal basis of the space of
continuous Fq-linear functions from Fq[[T ]] = AT to Fq((T )) = kT , denoted
LC(Fq[[T ]],Fq((T ))), which is independently proved by B. Snyder, the au-
thor and K. Conrad ([Sn, J2, Co]).

With a basis of LC(Fq[[T ]],Fq((T ))), one can easily construct an or-
thonormal basis of the entire space C(Fq[[T ]],Fq((T ))) by the digit principle
of K. Conrad [Co]. More precisely, we form the q-adic extensions of Dn,
called digit derivatives, as follows. For an integer k ≥ 0 written in base q
as

k = k0 + k1q + . . .+ kwq
w (0 ≤ ki < q),(3)

we put

Dk(x) =
w∏

n=0

Dknn (x), k ≥ 1; D0(x) = 1.

On applying the digit principle to {Dn(x)}n≥0 we have

Theorem 2.1. {Dk(x)}k≥0 is an orthonormal basis of the space
C(Fq[[T ]],Fq((T ))).

By reformulating Serre’s Lemme I (see [Se]) Conrad gave a nice and sim-
ple proof of Theorem 2.1 but did not derive an explicit formula which re-
covers the expansion coefficients when any function f ∈ C(Fq[[T ]],Fq((T )))
is written uniquely as f =

∑∞
k=0BkDk(x) where Bk ∈ Fq((T )) tend to 0

as k → ∞. We will focus on deriving a formula for expansion coefficients
even though it was already discovered by the author in indirect ways (see
[J1, J2]). The derivation we will give here is intrinsic and natural in the
sense that it follows from the proof of Theorem 2.1 together with the basic
properties of D∗k defined below. Moreover, we shall derive some interesting
results parallel to those known for the Carlitz polynomials in [C2], in terms
of the digit derivatives.

The main ingredient of the digit principle (for proving Theorem 2.1) is to
show that for any integer m ≥ 0 the reduced maps D0,D1, . . . ,Dqm−1 span
Maps(Fq[[T ]]/Tm,Fq) as an Fq-vector space, where Maps(X,Y ) denotes the
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set of maps from X to Y. For cardinality reasons, this is equivalent to show-
ing that they are linearly independent in Maps(Fq[[T ]]/Tm,Fq). Another
remark to Theorem 2.1 is that the set of all possible finite Fq((T ))-linear
combinations of Dk’s, denoted SpanFq((T )){Di : i ≥ 0}, is dense in the entire
space C(Fq[[T ]],Fq((T ))).

Unlike the Carlitz polynomials, we are dealing with non-polynomial
functions, so it is necessary to define an order associated to a function
f ∈ SpanFq((T )){Di : i ≥ 0}, which corresponds to the degree of a poly-
nomial. We say that f is of order d, denoted ord(f), if d is the maximum of
those i with Bi 6= 0 in the expansion of f of the form f(x) =

∑k
i=0BiDi(x).

We now define D∗k, as a variant of Dk, in such a way that Carlitz [C2] defined
his polynomials G∗k. For an integer k ≥ 0 given in (3), set

D∗k(x) =
w∏

n=0

D∗knqn(x),

where

D∗cqn(x) =
{Dcn(x) if 0 ≤ c < q − 1,

Dcn(x)− 1 if c = q − 1.

Observe that Dqn(x) = D∗qn(x) = Dn(x), Dk(x) and D∗k(x) have order k. Note
that all non-zero polynomials in T of degree < m are killed by D∗qm−1(x)
but D∗qm−1(0) = (−1)m. Since the digit derivatives Dk(x) and Carlitz poly-
nomialsGk(x) are q-adic extensions of hyperdifferential operators Dn(x) and
(normalized) Carlitz linear polynomials En(x) respectively, via the digit ex-
pansion, Dk(x) have the same properties with Gk(x) such as the binomial
formula. For later use we state the binomial formula for Dk and D∗k.

Lemma 2.2 ([C2, J1]). (1) Dk(x+ u) =
∑

i+j=k

(
k
i

)
Di(x)Dj(u).

(2) Dk(x− u) =
∑

i+j=k(−1)j
(
k
i

)
Di(x)Dj(u).

(3) D∗k(x+ u) =
∑

i+j=k

(
k
i

)
Di(x)D∗j(u).

(4) D∗k(x− u) =
∑

i+j=k(−1)j
(
k
i

)
Di(x)D∗j (u).

We now deal with interpolation series of continuous functions in the
space C(Fq[[T ]],Fq((T ))) in terms of D∗k(x). For k given in (3), write

D∗k(x) = (Dk0
0 (x)− δk0(q−1)) . . . (Dkww (x)− δkw(q−1)),

where δij is the Kronecker delta. Expanding out the right hand side, we get

D∗k(x) = Dk(x) +
k−1∑

i=0

Ci,kDi(x),

where Ci,k ∈ {−1, 0, 1}. Thus the transition matrix of {D∗i (x) : 0 ≤ i ≤ k}
to {Di(x) : 0 ≤ i ≤ k} is a lower triangular matrix with diagonal entries
all 1, so Serre’s lemma and Theorem 2.1 give
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Corollary 2.3. {D∗k(x)}k≥0 is an orthonormal basis of the space
C(Fq[[T ]],Fq((T ))).

We remark that by the same argument above the collection of a variant
of Carlitz (normalized) polynomials G∗k given in [C2, Y2, J1] is also an or-
thonormal basis of C(Fq[[T ]],Fq((T ))). Unlike Theorem 2.12 below there is
no known formula for expansion coefficients in a non-trivial infinite repre-
sentation of a function ∈ C(Fq[[T ]],Fq((T ))) in terms of D∗k, nor is there one
for G∗k.

Let f(x) be a function in SpanFq((T )){Di : i ≥ 0} of order k < qm, then
it can be uniquely written as

f(x) = B0 +B1D1(x) + . . .+BkDk(x).(4)

As Carlitz did, we are in a position to recover the coefficients Bi. For this
we need first two crucial lemmas.

Lemma 2.4. Let f(x) be a function in SpanFq((T )){Di : i ≥ 0} of order
≤ k < qm for some integer m ≥ 0. If f(a) = 0 for all a in A of degree < m,
then f is identically zero.

Proof. Write f as in (4). Suppose f is not identically zero. Then f can
be scaled so that ‖f‖ = max0≤i≤k{|Bi|} = 1. This implies that all Bi lie in
Fq[[T ]] and Bj does not belong to (T ) for some 0 ≤ j ≤ k. Now taking the
reduction of f modulo (T ) gives

f =
k∑

i=0

BiDi.

Since 1, T, . . . , Tm−1 span Fq[[T ]]/Tm as an Fq-vector space, by hypothesis, f
is a zero map viewed as an element in Maps(Fq[[T ]]/Tm,Fq). As the reduced
maps Di are linearly independent over Fq from the remark to Theorem 2.1,
all Bi are 0, implying that all Bi belong to (T ). This is a contradiction.

Lemma 2.5. Let f(x) be a function in SpanFq((T )){Di : i ≥ 0} of order
≤ k < qm for some integer m ≥ 0. If f(a) = 0 for all monics a in A of
degree m, then f is identically zero.

Proof. The proof is exactly the same as above since the reduced elements
of monics in A of degree m span Fq[[T ]]/Tm as an Fq-vector space.

Lemmas 2.4 and 2.5 are analogous to polynomial situations and they
hold for any integer m such that qm > ord(f).

Let us consider an auxiliary function associated to f in (4):

Φ(x) =
∑

a∈A
degT (a)<m

f(a)D∗qm−1(x− a),(5)
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where qm > k = ord(f). The order of Φ(x) is at most qm − 1. If now a is
any polynomial in T of degree < m, then it is easily seen that (5) gives

Φ(a) = (−1)mf(a).

Therefore, it follows from Lemma 2.4 that

Φ(x) = (−1)mf(x).(6)

On the other hand, by Lemma 2.2(4) applied to k = qm − 1, rewrite (5) as

Φ(x) =
∑

i+j=qm−1

Di(x)
∑

a∈A
degT (a)<m

D∗j (a)f(a).

Comparing this with (6) we have at once

Theorem 2.6. Let f =
∑k

i=0BiDi(x) be a function of order k < qm.
Then

Bi = (−1)m
∑

a∈A
degT (a)<m

D∗qm−1−i(a)f(a) for i < qm.

Lemma 2.7. Let f be a function of any order in SpanFq((T )){Di : i ≥ 0}
and qm, qn > i. Then

(−1)m
∑

a∈A
degT (a)<m

D∗qm−1−i(a)f(a) = (−1)n
∑

a∈A
degT (a)<n

D∗qn−1−i(a)f(a).

Proof. Let qm > qn > i. Then by definition

D∗qm−1−i = D∗qm−qnD∗qn−1−i

and note that

D∗qm−qn(a) =
{

0 if n ≤ degT (a) < m,

(−1)m−n if degT (a) < n.

Then the left hand side of the equation in the statement reduces to the right
hand side.

We shall now give a formula for expansion coefficients of the represen-
tation of f ∈ C(Fq[[T ]],Fq((T ))) in terms of the digit derivatives Di. By
Theorem 2.1 write f(x) =

∑∞
i=0BiDi(x) and as done by Carlitz, divide f

into two sums as follows:

f(x) =
∑

i<qm

BiDi(x) +
∑

i≥qm
BiDi(x).

For a ∈ A of degree < m satisfying qm > i, we see clearly f(a) = f1(a)
where f1(x) is the first sum, which is a function of order < qm. By the
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coefficient formula in Theorem 2.6, we get, for i < qm,

Bi = (−1)m
∑

a∈A
degT (a)<m

D∗qm−1−i(a)f1(a) = (−1)m
∑

a∈A
degT (a)<m

D∗qm−1−i(a)f(a).

From this and Lemma 2.7 we have

Theorem 2.8. Let f =
∑

i≥0BiDi(x) be a representation of f ∈
C(Fq[[T ]],Fq((T ))). Then

Bi = (−1)m
∑

a∈A
degT (a)<m

D∗qm−1−i(a)f(a)

for any integer m such that qm > i.

We also define another function analogous to (5):

Φ1(x) =
∑

a∈A+

degT (a)=m

f(a)D∗qm−1(x− a).(7)

Then Φ1(x) is of order < qm. If now a is any monic in T of degree m, then
it is easily seen that (7) implies

Φ1(a) = (−1)mf(a).

If we now take qm > k = ord(f), we deduce at once, by Lemma 2.5, that

Φ1(x) = (−1)mf(x).(8)

By Lemma 2.2(4) again, rewrite (7) as

Φ1(x) =
∑

i+j=qm−1

Di(x)
∑

a∈A+

degT (a)=m

D∗j (a)f(a).

Comparing this with (8) leads to

Theorem 2.9. Let f =
∑k

i=0BiDi(x) be a function of order k < qm.
Then

Bi = (−1)m
∑

a∈A+

degT (a)=m

D∗qm−1−i(a)f(a) for i < qm.

We turn to the orthogonality formula for the digit derivatives whose
derivation follows on mimicking the proof of the orthogonality for the Carlitz
polynomials ([C2, p. 495]). As a special case, consider now f(x) = Dk(xu).
We write

Dk(xu) =
k∑

i=0

βi(u)Di(x),(9)
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where βi(u) is a function in u. Then by Theorems 2.6 and 2.9 we get, re-
spectively

βi(u) = (−1)m
∑

a∈A
degT (a)<m

D∗qm−1−i(a)Dk(au)(10)

and

βi(u) = (−1)m
∑

a∈A+

degT (a)=m

D∗qm−1−i(a)Dk(au) (qm > k).(11)

Putting u = 1 in (9), we clearly get

βi(1) =
{

0 if i < k,

1 if i = k.

Comparison with (10) leads to
∑

a∈A
degT (a)<m

D∗qm−1−i(a)Dk(a) =
{

0 if i < k,

(−1)m if i = k,

while (11) gives
∑

a∈A+

degT (a)=m

D∗qm−1−i(a)Dk(a) =
{

0 if i < k,

(−1)m if i = k,

provided qm > k.
Changing the notation slightly, we get the orthogonality formula for the

digit derivatives.

Theorem 2.10. (1) For l < qm, k ≥ 0,
∑

a∈A
degT (a)<m

Dk(a)D∗l (a) =
{

0 if k + l 6= qm − 1,

(−1)m if k + l = qm − 1.

(2) For l < qm, k < qm,
∑

a∈A+

degT (a)=m

Dk(a)D∗l (a) =
{

0 if k + l 6= qm − 1,

(−1)m if k + l = qm − 1.

We now provide an interesting property of the digit derivatives, which is
analogous to Theorem 5.8.7 of Goss [Go3] for the Carlitz polynomials. For
brevity, A(t) denotes the set of polynomials in A of degree < t.

Theorem 2.11. Let f(x) be a function in SpanFq((T )){Di : i ≥ 0} of

order k given by f(x) =
∑k

i=0BiDi(x). Then f(x) is invariant under trans-
lations by elements of A(t) if and only if Bi = 0 for i 6≡ 0 (mod qt).
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Proof. It is easy to see that the “if” part comes from the additivity of
the hyperdifferential operators Di(x).

Conversely, let i 6≡ 0 (mod qt). Choose m so that qm > i and m > t.
Then A(t) ⊂ A(m). Let {α1, . . . , αqm−t} be representatives of A(m)/A(t).
The invariance of f(x) under x 7→ x+ β, β ∈ A(t), gives

(−1)mBi =
qm−t∑

j=0

f(αj)
∑

β∈A(t)

D∗qm−1−i(αj + β).

By Lemma 2.2(3), the sum equals
qm−t∑

j=0

f(αj)
∑

β∈A(t)

∑

e+f=qm−1−i

(
qm − 1− i

f

)
D∗e(αj)Df (β).

From Theorem 2.10, we also see that the sum over β vanishes unless f =
qt − 1. But, as i 6≡ 0 (mod qt), we have

(qm−1−i
qt−1

)
≡ 0 (modp), from which

the result follows.

Parallel to (4) consider the representation of a function f(x) of order
≤ k < qm in terms of D∗i (x):

f(x) =
k∑

i=0

B∗i D∗i (x).(12)

Via Φ(x) as in (5), one can use Lemma 2.4 to prove

Theorem 2.12. Let f(x) be a function of order ≤ k given by (12). Then

B∗i = (−1)m
∑

a∈A
degT (a)<m

Dqm−1−i(a)f(a) for i < qm.

Again we define Φ1(x) as in (7) and use Lemma 2.5 to derive a formula
for the coefficients.

Theorem 2.13. Let f(x) be a function of order ≤ k given by (12). Then

B∗i = (−1)m
∑

a∈A+

degT (a)=m

Dqm−1−i(a)f(a) for i < qm.

3. Application to zeta measures. In this section, we relate integral
properties of the digit derivatives to the computation of the divided power
series associated to the zeta measure at the primes of degree 1, in particular
(T ) in A.

The zeta measure µx on Av defined by (1) is rewritten as

µx =
∑

a∈A+

x−degT (a)δa,
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where δa(t) is the Dirac measure concentrated at a. Hence, when we take
v = (T ) and fk = Dk, the kth coefficient of the divided power series fµx(z)
is given by the formula

mx(k) =
∑

a∈A+

x−degT (a)Dk(a) =
∞∑

m=0

x−m
( ∑

a∈A+

degT (a)=m

Dk(a)
)
.

To compute the sum in parentheses we apply Theorem 2.13 to a special case.

Theorem 3.1.
∑

a∈A+

degT (a)=m

Dk(a) =
{

(−1)m if k = kmq
m + qm − 1 for 0 ≤ km ≤ q − 1,

0 otherwise.

Proof. Write k in base q as k = k0 + k1q + . . . + kwq
w, kw 6= 0. If

w > m, then Dw(x) kills any polynomial a ∈ A+ of degree m. Hence we
need only consider the case where w ≤ m. For w ≤ m, write Dk(x) =
Dkmm (x)Dkm−1

m−1 (x) . . .Dk0
0 (x) where we may assume that ki = 0 if i > w. If

a ∈ A+ is of degree m, then Dm(a) = 1, so Dk(a) = Dkm−1
m−1 (a) . . .Dk0

0 (a) =
Dk−kmqm(a). Thus we get

∑

a∈A+

degT (a)=m

Dk(a) =
∑

a∈A+

degT (a)=m

Dk−kmqm(a).

Now as k − kmqm < qm, we apply Theorem 2.13 with f(x) = 1 to get the
desired result.

We mention here that Theorem 3.1 was first derived by B. Snyder [Sn]
via a highly complicated computation. As a corollary, we obtain mx(k) by
regrouping sums by degrees of polynomials a in A+.

Corollary 3.2.∑

a∈A+

x−degT (a)Dk(a)

=





(−1)mx−m if k = kmq
m + qm − 1 and 1 ≤ km < q − 1,

(−1)mx−m(1− x−1) if k = qm+1 − 1,

0 otherwise.

To sum up, we rewrite the kth coefficient mx(k) for an A-magic number
[Go2], which is defined as an integer k of the form

k = kA(c,m) = cqm + qm − 1 for 0 < c < q.

Theorem 3.3. Let
∑

k≥0mx(k)zk/k! be the divided power series associ-

ated to µ(T )
x with respect to the digit derivatives Dk(x).
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(1) mx(k) 6= 0 if and only if k is an A-magic number.
(2) mx(0) = 1.
(3) Let k = kA(c,m) be a positive A-magic number. Then

mx(k) =
{

(−1)mx−m if c < q − 1,

(−1)m(1− x−1)x−m if c = q − 1.

For comparison we state the remarkable computation by Thakur [Th] of
the divided power series for the Carlitz polynomials Gk(x).

Theorem 3.4. Let
∑

k≥0mx(k)zk/k! be the divided power series asso-
ciated to µx with respect to the Carlitz polynomials Gk(x).

(1) mx(k) 6= 0 if and only if k is an A-magic number.
(2) mx(0) = 1.
(3) Let k = kA(c,m) be a positive A-magic number. Then

mx(k) =
{

(−1)mx−m if c < q − 1,

(−1)m(1− x−1)x−m if c = q − 1.

We see there is a remarkable similarity between the two divided power
series. As the Carlitz polynomials are a (global) orthonormal basis for all
places v of A, in some sense, Thakur’s result may give a reasonable guess
as to how the computation involving the digit derivatives extends to higher
degree primes. Unlike the degree 1 primes, it is impossible to get a closed
formula for interpolation in higher degree primes, so that one has to search
for a new method to complete the zeta measure computation in the case of
higher degree primes. The search for such an idea is left to the readers by
putting a right digit derivatives basis for higher degree primes. Let v be a
finite place v of A of degree d ≥ 2. Write k in qd-adic expansion as

k = k0 + k1q
d + k2q

2d + . . .+ kwq
wd, 0 ≤ ki < qd.

With a family of hyperdifferential operators Dn, we form the qd-adic exten-
sions of Dn, which only depend on the degree of the prime:

Dk,v(x) = Dk0
0 (x)Dk1

1 (x) . . .Dkww (x).

By Theorem 10 of [Co], it turns out that this collection of Dk,v is an or-
thonormal basis of C(Av,kv). Then the computation of the zeta measure at
v amounts to the following

Problem. Calculate
∑

a∈A+

x−deg(a)Dk,v(a)

explicitly for any given integer k ≥ 0.
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4. Zeta measure of Fq[T ] at the infinite place. Recall that A =
Fq[T ],k = Fq(T ), A∞ = Fq[[π]], k∞ = Fq((π)) and π = 1/T . We denote by
Ã = Fq[π] the polynomial ring in π over Fq and by Ã+ the set of monic
polynomials in π of Ã. Then we understand that A∞ and k∞ are the com-
pletions of Ã and k at the prime (π), respectively. Motivated by D. Thakur’s
work on the zeta measure at any finite place of A, Z. Yang [Y1, Y2] made
an extensive computation of the zeta measure at A∞ by considering the
counterpart G̃k(x) of the Carlitz polynomials for the parameter π. Since the
zeta measure at π depends only on the choice of an orthonormal basis of
C(A∞,k∞) it is now natural to ask what is the zeta measure on A∞ with
respect to the digit derivatives basis for the parameter π. Indeed this ba-
sis is formed by the q-adic extensions, D̃k(x), of hyperdifferential operators
D̃n, which are defined by D̃n(πm) =

(
m
n

)
πm−n on Ã for m ≥ 0. As seen

in the previous section, the Carlitz polynomials and digit derivatives share
many interesting properties on A, so it is reasonable to expect that such a
phenomenon may happen with the computation of the zeta measure at (π).
Thus we aim to compute the zeta measure at A∞ with respect to D̃k(x) and
compare this with Yang’s result. We begin by stating his result:

Theorem 4.1. Let
∑

k≥0mx(k)zk/k! be the divided power series asso-

ciated to µ(∞)
x with respect to the Carlitz polynomials G̃k(x).

(1) mx(0) = 1.
(2) mx(k) = 1 for 1 ≤ k ≤ q − 2.
(3) mx(q − 1) = 1− πq−1x−1.
(4) If k = kwq

w + . . .+k1q+k0 with kw > 0 and k 6= qw+1−1, then take
f ≡ k mod (q − 1), 0 ≤ f < q − 1. Let k− f = (q − 1− l0) + (q− 1− l1)q+
. . .+ (q − 1− lw)qw. Then

mx(k) = 0 if l0 + l1 + . . .+ lw 6= q − 1;

otherwise

mx(k) = (−1)w
(
k

f

)(
q − 1− l1

l0

)(
q − 1− l2
l0 + l1

)
. . .

×
(

q − 1− lw−1

l0 + l1 + . . .+ lw−2

)
π

(
∑w
i=1

qi−1
q−1 li)x−w.

(5) If k = qw+1 − 1, w > 0, then

mx(k) = (−1)w(1 + πq−1 + . . .+ πq
w−1)x−w + (−1)w+1πq

w+1−1x−(w+1).

For a direct comparison with Yang’s result, we give the end result of the
zeta measure associated to D̃k(x).
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Theorem 4.2. Let
∑

k≥0mx(k)zk/k! be the divided power series asso-

ciated to µ(∞)
x with respect to the digit derivatives D̃k(x).

(1) mx(0) = 1.
(2) mx(k) = 1 for 1 ≤ k ≤ q − 2.
(3) mx(q − 1) = 1− πq−1x−1.
(4) If k=kwq

w + . . .+ k1q+ k0 with kw>0 and k 6= qw+1− 1, then take
f ≡ k mod (q − 1), 0 ≤ f < q − 1. Let k− f = (q − 1− l0) + (q− 1− l1)q+
. . .+ (q − 1− lw)qw. Then

mx(k) = 0 if l0 + l1 + . . .+ lw 6= q − 1;

otherwise

mx(k) = (−1)w
(
k

f

)(
q − 1− l1

l0

)(
q − 1− l2
l0 + l1

)
. . .

×
(

q − 1− lw−1

l0 + l1 + . . .+ lw−2

)
π(
∑w
i=1 ili)x−w.

(5) If k = qw+1 − 1, w > 0, then

mx(k) = (−1)w(1 + πq−1 + π2(q−1) + . . .+ πw(q−1))x−w

+ (−1)w+1π(w+1)(q−1)x−(w+1).

As mentioned above, it is now not surprising that the two divided power
series in Theorems 4.1 and 4.2 have a similar shape but differ slightly only
at the exponents of π. The difference comes from the recursive equations
satisfied by the two linear objects, Carlitz linear polynomials and hyperdif-
ferential operators (cf. Lemma 4.3 in [Y2] and Lemma 4.6 below).

The zeta measure µ(∞)
x defined by formula (2) is reformulated by

µ(∞)
x (t) =

∑

a∈A+

x−degT (a)δ〈a〉(t).

Using this sum we shall completely determine the coefficients of the
divided power series associated to the zeta measure on A∞. As for finite
primes, the kth coefficient of the divided power series fµx(z) is given by the
formula

mx(k) =
∑

a∈A+

x−deg(a)D̃k(〈a〉) =
∞∑

j=0

x−j
( ∑

a∈A+

degT (a)=j

D̃k(〈a〉)
)
.(13)

Thus the problem of computing mx(k) is reduced to calculating
∑

a∈A+

degT (a)=j

D̃k(〈a〉)

for a given k and any integer j ≥ 0.
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For k = 0 it is easy to see that mx(0) = 1. By the well known fact (see
[C1])

∑

a∈A+

degT (a)=j

ak = 0 for k < qj − 1,

we easily see that mx(k) = 1 for 1 ≤ k ≤ q − 2.
From now on, write k 6= q − 1 in base q as

k = k0 + k1q + . . .+ kwq
w, kw 6= 0, w > 0.(14)

To simplify mx(k) we have a simple

Lemma 4.3. For an integer k ≥ q given by (14),
∑

a∈A+

degT (a)=j

D̃k(〈a〉) = 0 if j < w or j ≥ w + 2.

Proof. The case where j < w is clear as D̃w(x) kills polynomials in π of
degree < w. For j ≥ w + 2, write a = T j + aj−1T

j−1 + . . .+ a1T + a0 and
〈a〉 = 1 + aj−1π + . . . + a0π

j = 1 + b where b ∈ W = SpanFq{π, . . . , πj}.
Rewrite and compute the sum as follows:

∑

a∈A+

degT (a)=j

D̃k(〈a〉) =
∑

b∈W
D̃k(1 + b) =

∑

b∈W

w∏

i=0

D̃i(1 + b)ki = 0,

where the last equality follows from Lemma 8.8.1 of [Go2].

We remark that the sum in Lemma 4.3 also equals 0 if the sum of digits
of k is < (k + 1)(q − 1) even when dimFq(W ) = k + 1 in its proof.

By Lemma 4.3, the last equality in (13) reduces to

mx(k) =
( ∑

a∈A+

degT (a)=w

D̃k(〈a〉)
)
x−w +

( ∑

a∈A+

degT (a)=w+1

D̃k(〈a〉)
)
x−(w+1).

To calculate the two sums in this equation, we state the following result
analogous to Theorem 3.1.

Lemma 4.4.
∑

a∈Ã+

degπ(a)=m

D̃k(a) =
{

(−1)m if k = kmq
m + qm − 1 for 0 ≤ km ≤ q − 1,

0 otherwise.
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For α ∈ Fq, set Uα = {z ∈ Fq[[π]] : z ≡ α mod π}, and as the counterpart
of A(d, j, α) =

∑
a∈Uα, degπ(a)=d G̃j(a) defined in [Y2], put

B(d, j, α) =
∑

a∈Uα
degπ(a)=d

D̃j(a)(15)

for α ∈ Fq and d an integer ≥ 0. Using (15), we rewrite

∑

a∈A+

degT (a)=w

D̃k(〈a〉) =
w∑

d=1

B(d, k, 1).(16)

Similarly
∑

a∈A+

degT (a)=w+1

D̃k(〈a〉) =
w+1∑

d=1

B(d, k, 1).(17)

To simplify the two sums in (16) and (17) we prove the following

Lemma 4.5.

B(d, j, 1) =





B(d, j, 0) + (−1)d if j = qd+1 − 1 or qd − 1,

B(d, j, 0) if j ≡ 0 mod (q − 1),

j 6= qd+1 − 1, j 6= qd − 1.

Proof. This follows from Yang’s argument with A(d, j, 1) replaced by
B(d, j, 1).

By Lemma 4.5, the computation of mx(k) reduces to two cases depending
on the digit expansion of k in (14).

Case I: k 6= qw+1 − 1 and w > 0. Then the sum of digits of k is not
(q − 1)(w + 1) so by the remark following Lemma 4.3 and by (16) and (17)
it is easily seen that

mx(k) = B(w, k, 1)x−w.

Subcase (a). If k 6≡ 0 mod (q − 1), then k ≡ f mod (q − 1) for some
integer 0 < f < q − 1. As Yang did, we can deduce the following identity:

B(w, k, 1) =
(
k

f

)
B(w, k − f, 0).

Subcase (b). If k ≡ 0 mod (q − 1), then we use Lemma 4.5 to get

B(w, k, 1) = B(w, k, 0).

Therefore in either case, we get

mx(k) = B(w, k, 1)x−w =
(
k

f

)
B(w, k − f, 0)x−w(18)

where f ≡ k mod (q − 1), and 0 ≤ f < q − 1.
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Case II: k = qw+1−1. (Here w = 0 is allowed to fill up the missing case
k = q − 1.) By (16) and (17) we get

mx(k) = B(w, k, 1)x−w + (B(w + 1, k, 1) +B(w, k, 1))x−(w+1).

Setting B(0, k, 0) = 0, Lemma 4.5 immediately gives

mx(k) = (B(w, k, 0) + (−1)w)x−w(19)

+ (B(w + 1, k, 0) +B(w, k, 0))x−(w+1).

From equations (18) and (19), the problem is finally reduced to comput-
ing B(w, k − f, 0), B(w, qw+1 − 1, 0) and B(w + 1, qw+1 − 1, 0). To this end
we need to show the following lemma involving H̃s

i = D̃i(πi+s), which differs
from Yang’s Lemma 4.3 of [Y2].

Lemma 4.6. The following equation holds:

H̃0
w+1π

w+1 − H̃1
wπ

w + H̃2
w−1π

w−1 + . . .+ (−1)w+1H̃w+1
0 · 1 = 0.

Proof. This follows by induction on w using the product rule for D̃i :
D̃i(πt) = π D̃i(t) + D̃i−1(t) for integers i ≥ 1.

The bulk of remaining computations follows from Yang’s derivations with
H̃s
i = Ẽi(πi+s) replaced by H̃s

i = D̃i(πi+s), along with Lemma 4.6.

Lemma 4.7. The following formulas hold :

B(w, qw+1 − 1, 0) =
{

(−1)w(πq−1 + π2(q−1) + . . .+ πw(q−1)) if w > 0,

0 if w = 0.

B(w + 1, qw+1 − 1, 0) = (−1)w+1(πq−1 + π2(q−1) + . . .+ π(w+1)(q−1)).

Proof. This follows from Lemma 4.4 of [Y2].

It remains to consider the case where k is in Case I. In Subcase (a), if k
also satisfies k−f = fwq

w+ . . .+f1q+f0 and fw = 0 for some 0 < f < q−1,
then it is easy to see that k − f = qw − 1, and

(
k
f

)
=
(
qw+f−1

f

)
= 0. Hence

by (18) we get mx(k) = 0. Thus we may assume

k − f = fwq
w + . . .+ f1q + f0 with fw 6= 0 in q-adic expansion,

and set
li = q − 1− fi for 0 ≤ i ≤ w.

Lemma 4.8. If B(w, k − f, 0) 6= 0, then l0 + l1 + . . .+ lw = q − 1.

Proof. This follows from Lemma 4.6 of [Y2].

Note that Lemma 4.8 also works in the case where k ≡ 0 mod (q − 1)
with f = 0, which is Subcase (b). We just state B(w, k−f, 0), which follows
by imitating the proof of Lemma 4.7 of [Y2], together with Lemmas 4.6
and 4.8.
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Lemma 4.9. Let k − f = fwq
w + . . . + f1q + f0 with fw 6= 0, and let

k − f ≡ 0 mod (q − 1) with 0 < f < q − 1 as before. Then
B(w, k − f, 0)

= (−1)w
(
q − 1− l1

l0

)(
q − 1− l2
l0 + l1

)
. . .

(
q − 1− lw−1

l0 + l1 + . . .+ lw−2

)
πl1+2l2+...+wlw .

Finally, collecting mx(k) for all k ≥ 0 yields Theorem 4.2, as desired.
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