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Congruence monoids

by

Alfred Geroldinger and Franz Halter-Koch (Graz)

1. Introduction. The simplest examples of congruence monoids are
the multiplicative monoids 1 + 4N0, 1 + pN0 for some prime number p, and
2N ∪ {1}. They are multiplicative submonoids of N, and they appear in the
literature as examples for non-unique factorizations (see [19, Sect. 3.3], [28]
and [29]). A first systematic treatment of congruence monoids (defined by
residue classes coprime to the module) was given in [20] and in [21], where it
was proved that these congruence monoids are Krull monoids. Congruence
monoids defined by residue classes which are not necessarily coprime to the
module were introduced in [18] as a tool to describe the analytic theory of
non-unique factorizations in orders of global fields.

In this paper, we investigate the arithmetic of congruence monoids in
Dedekind domains satisfying some natural finiteness conditions (finiteness
of the ideal class group and of the residue class rings). The main examples
we have in mind are

• multiplicative submonoids of the naturals defined by congruences
(called Hilbert semigroups);
• (non-principal) orders in algebraic number fields.

The crucial new idea is to use divisor-theoretic methods. As usual in
algebraic number theory, the global arithmetical behavior is determined by
the structure of the semilocal components and the class group. The class
groups of congruence monoids in Dedekind domains are essentially ray class
groups (and thus they are well studied objects in algebraic number theory).
The semilocal components are congruence monoids in semilocal principal
ideal domains. For their arithmetical investigation we construct abstract
models which are easier to handle than the concrete arithmetical objects.
These abstract models, called AC- and C0-monoids, are built in a similar
way to the finitely primary monoids which turned out to be useful in the
investigation of the multiplicative structure of one-dimensional noetherian
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domains (see [23]). AC- and C0-monoids are defined as submonoids of facto-
rial monoids, and their deviation from the factorial overmonoid is measured
by class semigroups, a new concept generalizing the usual class groups. In
recent investigations by W. Hassler [27], C0-monoids also proved to be useful
as abstract models for the multiplicative arithmetic of noetherian integral
domains D satisfying the following finiteness conditions: the divisor class
group of the integral closure D of D is finite, and if f = (D : D), then the
residue class ring D/f is also finite.

Congruence monoids are atomic (every non-unit is a product of irre-
ducible elements), but in general they do not have unique factorization.
A systematic investigation of phenomena of non-unique factorization in rings
of integers of algebraic number fields was initiated by W. Narkiewicz (see
[30, Ch. 9] for a survey on classical results). In recent years there has been an
increasing interest in phenomena of non-unique factorizations in integral do-
mains, initiated by the work of D. D. Anderson, D. F. Anderson and others
(see for example [2], [3] and [5]). For an overwiew concerning recent results
on non-unique factorizations in monoids and integral domains the interested
reader should consult the survey articles in [1] and [9], in particular [4], [6],
[7], [8], [12] and [24].

We shall prove that congruence monoids in Dedekind domains show the
same phenomena of non-unique factorizations as the rings of integers of al-
gebraic number fields. They are locally tame, have finite catenary degree,
and their sets of lengths of factorizations are almost arithmetical multi-
progressions. Making allowance for the fact that phenomena of non-unique
factorizations are purely multiplicative, most of the arithmetical investiga-
tions of this paper are carried out in the language of monoids. An essential
tool is the theory of tame and complete ideals of monoids developed in [16].

This paper is organized as follows. In Section 2 we fix the notations
concerning the algebraic and arithmetical theory of monoids and recall the
basic concepts of non-unique factorizations. In Section 3 we introduce con-
gruence monoids in Dedekind domains and give several different examples.
We establish the divisor theory of these monoids and formulate the main
result of the paper (Theorem 3.6).

In Sections 4 and 5 we develop the essential tools for the proof. For the
reason mentioned above they are formulated in the language of monoids.
In Section 4 we introduce the concept of class semigroups. It is an appro-
priate refinement of the usual notion of a class group in algebraic number
theory. Its finiteness allows the transfer of arithmetical properties from a
(simple) monoid to a (more complicated) submonoid. In Section 5 we define
AC-monoids and C0-monoids which are suitable models for the arithmeti-
cally interesting congruence monoids. In this paper we confine ourselves to
the investigation of the arithmetical properties of these monoids (a system-
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atical theory from an algebraic point of view will be presented in a forthcom-
ing paper). Finally, in Section 5 we apply the abstract results to congruence
monoids in Dedekind domains.

2. Notations and preliminaries on monoids. Let N denote the set
of positive integers, and N0 = N ∪ {0}. For m,n ∈ Z, we set

[m,n] = {x ∈ Z | m ≤ x ≤ n}.
For a set X, we denote by |X| ∈ N0∪{∞} its cardinality. Our terminology is
consistent with that of the survey articles [8], [12] and [24]. For convenience
and to fix notations, we recall some key notions and the basic results of the
theory of non-unique factorizations which we use in this paper.

Basic notions. By a semigroup we mean a non-empty set with a com-
mutative and associative law of composition having a unit element. By a
monoid we mean a cancellative semigroup. Subsemigroups and submonoids
are always assumed to contain the unit element. Usually, we use multi-
plicative notation and denote the unit element by 1. For subsets A, B of a
monoid H, we set AB = {ab | a ∈ A, b ∈ B}, and for n ∈ N, we define
An = {a1 · . . . · an | a1, . . . , an ∈ A} and A[n] = {an | a ∈ A}.

Additive notation will only be used for the submonoids of RI .
Concerning the notions of ideal theory and elementary divisibility theory

in a monoid, we use the terminology of [25] (but note that there all monoids
have an additional zero element which has to be neglected in our context). In
particular, by an s-ideal of a monoid H we mean a subset a ⊂ H satisfying
aH = a.

For each monoid H, we fix a quotient group q(H) of H. For any subset
E ⊂ H, we denote by [E] the submonoid of H generated by E and by 〈E〉
the subgroup of q(H) generated by E. For a submonoid T ⊂ H and any
subset a ⊂ q(H), we set T−1a = {t−1a | t ∈ T, a ∈ a} ⊂ q(H). We denote
by H× the group of invertible elements of H and by Hred = {aH× | a ∈ H}
the associated reduced monoid of H. We call H reduced if H× = {1} (and
then Hred = H).

Let H be a monoid and a, b ∈ H. We call a a divisor of b and write a | b
(or more precisely a |H b) if b ∈ aH. We call a and b associated if aH = bH
(or, equivalently, if aH× = bH×). An element u ∈ H is called an atom if
u 6∈ H×, and for all a, b ∈ H, u = ab implies a ∈ H× or b ∈ H×. We denote
by A(H) the set of all atoms of H, and we call the monoid H atomic if every
a ∈ H \ H× is a product of atoms. An element p ∈ H is called a prime if
H \ pH is a submonoid of H, and H is called factorial if every a ∈ H \H×
is a product of primes. Every prime is an atom, and a monoid is factorial
if and only if it is atomic, and every atom is a prime. If H is atomic and
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p ∈ H is a prime, then every a ∈ q(H) has a representation a = pnbc−1,
where b, c ∈ H, p - bc and n ∈ Z. The exponent n is uniquely determined by
the classes aH× and pH× in Hred, and we call n = vp(a) the p-adic value of
a. The map vp: q(H) → Z is a surjective group homomorphism, called the
p-adic valuation.

For an integral domain R, we denote by R• = R \ {0} its multiplicative
monoid. Then (R•)red is isomorphic to the monoid of non-zero principal
ideals of R.

Free monoids and coproducts. For a set P , we denote by F(P ) the free
abelian monoid with basis P . Then F(P ) is a reduced factorial monoid and
P is the set of primes of F(P ). Every subset X of F(P ) has a unique greatest
common divisor, denoted by gcd(X) ∈ F(P ). Every a ∈ F(P ) has a unique
representation in the form

a =
∏

p∈P
pνp , where νp ∈ N0 and νp = 0 for all but finitely many p ∈ P,

and then νp = vp(a) for all p ∈ P . For a, b ∈ F(P ), we set

|a| =
∑

p∈P
vp(a), d(a, b) = max

{∣∣∣∣
a

gcd(a, b)

∣∣∣∣,
∣∣∣∣

b

gcd(a, b)

∣∣∣∣
}
.

We call |a| the size of a and d(a, b) the distance between a and b. Note that
| · |: F(P )→ N0 is a homomorphism, and d: F(P )×F(P )→ N0 is a metric.

For s ∈ N, the additive monoid Ns0 is free abelian with the canonical basis
consisting of the unit vectors. For m = (m1, . . . ,ms),n = (n1, . . . , ns) ∈ Ns0
we define m ≤ n if mi ≤ ni for all i ∈ [1, s], and, conforming with the above
definition, |n| = n1 + . . .+ ns. Note that m ≤ n if and only if m |n.

For a family of reduced monoids (Dp)p∈P , we define the coproduct by

D=
∐

p∈P
Dp =

{
(ap)p∈P ∈

∏

p∈P
Dp

∣∣∣ ap = 1 for all but finitely many p ∈ P
}
.

We view the components Dp as submonoids of D. Consequently, every a ∈ D
has a unique representation in the form

a =
∏

p∈P
ap, where ap ∈ Dp for all p ∈ P,

and ap = 1 for all but finitely many p ∈ P.

If all Dp are equal, say Dp = D0 for all p ∈ P , we set D = D
(P )
0 . In

particular, N(P )
0 is free abelian with the unit vectors as a basis. We shall

henceforth identify this monoid with F(P ). As usual, we set
n∐

i=1

Hi = H1×. . .×Hn.
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If H1, . . . ,Hn are submonoids of a monoid H, then H = H1× . . .×Hn if
and only if every a ∈ H has a unique representation a = a1 · . . . · an, where
ai ∈ Hi for all i ∈ [1, n].

A monoid H is factorial if and only if H = H××F(P ) for some set P .
More precisely, if H is factorial and P is any maximal set of pairwise non-
associated prime elements of H, then H = H××F(P ).

Divisor homomorphisms and Krull monoids. Semigroup and monoid ho-
momorphisms are always assumed to respect the unit element. A monoid
homomorphism ϕ: H → D is called

• a divisor homomorphism if, for all u, v ∈ H, ϕ(u) |ϕ(v) implies u | v;
• cofinal if for every a ∈ D there exists some u ∈ H such that a |ϕ(u).

A submonoid H ⊂ D is called

• cofinal if the inclusion map H ↪→ D is cofinal;
• saturated if the inclusion map H ↪→ D is a divisor homomorphism

(equivalently, H = D ∩ q(H));
• divisor-closed if for all a ∈ D and b ∈ H, a | b implies a ∈ H.

For any subset E ⊂ H, we denote by [[E]] the smallest divisor-closed
submonoid of H containing E. Explicitly, [[E]] consists of all x ∈ H such
that x |u for some u ∈ [E].

Every monoid homomorphism ϕ: H → D extends uniquely to a ho-
momorphism of the quotient groups, denoted by q(ϕ): q(H) → q(D). Its
cokernel C(ϕ) = q(D)/Im q(ϕ) is called the class group of ϕ. We write
C(ϕ) additively, and for a ∈ q(D), we denote by [a]ϕ ∈ C(ϕ) the class
of a. If a, b ∈ D, then [a]ϕ = [b]ϕ if and only if there exist elements
u, v ∈ H such that aϕ(u) = bϕ(v). If ϕ is a divisor homomorphism, then
ϕ(H) = {a ∈ D | [a]ϕ = [1]ϕ}. If ϕ is cofinal, then C(ϕ) = {[a]ϕ | a ∈ D}.

If H ⊂ D is a submonoid and ϕ = (H ↪→ D), then we define D/H =
C(ϕ) = q(D)/q(H), and for a ∈ D we set [a]D/H = [a]ϕ. We shall mainly
apply this notion if H ⊂ D is saturated. In this case, q(H)∩D = H, and if
|D/H| = β ∈ N, then aβ ∈ H for all a ∈ D.

A monoid homomorphism ϕ: H → D is called a divisor theory if D
is a free abelian monoid, and for every a ∈ D there exists a finite subset
X ⊂ H such that a = gcd(ϕ(X)). If ϕ: H → D and ϕ′: H → D′ are
divisor theories, then there exists a unique isomorphism Φ: D → D′ such
that Φ◦ϕ = ϕ′. A monoid H is called a Krull monoid if there exists a divisor
theory ϕ: H → D. Its class group C(ϕ) is (up to canonical isomorphism)
uniquely determined by H, and we call C(H) = C(ϕ) the class group of H.

The most important case arises when H = R• for some Dedekind do-
main R. If I(R) denotes the set of all non-zero ideals of R, then the map
∂: R• → I(R) defined by ∂(a) = aR is a divisor theory. Let C(R) denote
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the ideal class group of R, and for a ∈ I(R) let [a] ∈ I(R) denote the
ideal class of a. Then the assignment [a]ϕ 7→ [a] defines an isomorphism
C(R•) = C(∂) ∼→ C(R), and we shall henceforth not distinguish between
these groups.

Next we review and supplement some divisor-theoretic results from [15].
Let (Dp)p∈P be a family of reduced monoids and

ϕ = (ϕp)p∈P : H → D =
∐

p∈P
Dp

a divisor homomorphism. ϕ is said to have the approximation property if for
any distinct p1, . . . , pn ∈ P and elements ai ∈ Dpi there exists some u ∈ H
such that ϕpi(u) = ai for all i ∈ [1, n].

Assume now that ϕ has the approximation property. Then ϕ is cofinal,
and for every finite subset E ⊂ P and every class g ∈ C(ϕ), there exists some
a ∈ D such that ap = 1 for all p ∈ E and g = [a]ϕ. Moreover, if Dp

∼= N0
for all p ∈ P , then ϕ is a divisor theory, hence H is a Krull monoid and
C(H) = C(ϕ). We shall use the following more precise result.

Proposition 2.1. Let (Dp)p∈P be a family of reduced monoids and

ϕ = (ϕp)p∈P : H → D =
∐

p∈P
Dp

a divisor homomorphism having the approximation property. Let E ⊂ P be
a finite subset , and set

D(E) =
∐

p∈P\E
Dp, H(E) = ϕ−1(D(E)), ϕ(E) = ϕ|H(E): H(E) → D(E).

(1) ϕ(E) is a divisor homomorphism having the approximation property ,
and there exists an isomorphism Φ: C(ϕ(E)) ∼→ C(ϕ) satisfying

Φ([a]ϕ(E)) = [a]ϕ for all a ∈ D(E).

(2) If Dp
∼= N0 for all p ∈ P \ E, then H(E) is a Krull monoid , and

ϕ(E) is a divisor theory having the approximation property. In particular ,
C(ϕ) ∼= C(H(E)).

Proof. (1) It is easily checked that ϕ(E) is a divisor homomorphism.
Suppose now that p1, . . . , pn ∈ P \ E are distinct, and let ai ∈ Dpi be

given. Since ϕ has the approximation property, there exists some u ∈ H
such that ϕpi(u) = 1 for all i ∈ [1, n] and ϕp(u) = 1 for all p ∈ E, whence
u ∈ H(E). Since ϕ(E) = ϕ|H(E), it follows that ϕ(E) has the approximation
property, and hence it is cofinal. Thus we obtain C(ϕ(E)) = {[a]ϕ(E) | a ∈
D(E)}. If a, b ∈ D(E), then [a]ϕ(E) = [b]ϕ(E) implies [a]ϕ = [b]ϕ. Therefore
there exists a homomorphism Φ: C(ϕ(E))→ C(ϕ) satisfying Φ([a]ϕ(E)) = [a]ϕ
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for all a ∈ D(E). Since ϕ has the approximation property, Φ is surjective. If
a ∈ D(E) and [a]ϕ(E) ∈ Ker(Φ), then [a]ϕ = 0 implies a ∈ ϕ(H) ∩ D(E) =
ϕ(E)(H(E)) and therefore [a]ϕ(E) = 0. Consequently, Φ is an isomorphism.

(2) Obvious by (1) and the remarks preceding this proposition.

Factorizations and sets of lengths. Let H be a monoid. The monoid
Z(H) = F(A(Hred)) is called the factorization monoid of H. The unique
homomorphism π: Z(H) → Hred satisfying π|A(Hred) = id is called the
factorization homomorphism of H. It is surjective if and only if H is atomic,
and it is an isomorphism if and only if H is factorial. For a ∈ H, the
elements in Z(a) = π−1(aH×) ⊂ Z(H) are called the factorizations of a,
and L(a) = {|z| | z ∈ Z(a)} ⊂ N0 is called the set of lengths of a. If m ∈ L(a)
and d ∈ N is such that [m,m + d] ∩ L(a) = {m,m + d}, then d is called a
distance of a, and we denote by ∆(a) the set of all distances of a. Among
the best investigated invariants of non-unique factorizations are the system
of sets of lengths and the set of distances of a monoid H, defined by

L(H) = {L(a) | a ∈ H}, ∆(H) =
⋃

a∈H
∆(a).

H is called a BF-monoid (a monoid with bounded factorizations), if all sets
L ∈ L(H) are finite.

For a finite subset A ⊂ Z the pattern ideal Φ(A) ⊂ H is the set of all
a ∈ H such that y + A ⊂ L(a) for some y ∈ Z. It is an s-ideal of H.

A finite set L ⊂ Z is called an almost arithmetical multiprogression with
bound M ∈ N if there exists some d ∈ [1,M ] and some subset D ⊂ [0, d]
with {0, d} ⊂ D such that L = L′ ∪ L∗ ∪ L′′, where

L′ ⊂ minL∗ + [−M,−1], L′′ ⊂ maxL∗ + [1,M ],

L∗ = [minL∗,maxL∗] ∩ (minL∗ +D + dZ).

We say that the Structure Theorem for Sets of Lengths holds for a monoid H
if H is a BF-monoid and there exists some M ∈ N such that every L ∈ L(H)
is an almost arithmetical multiprogression with bound M .

The main result of this paper asserts that the Structure Theorem for
Sets of Lengths holds for AC-monoids and hence for congruence monoids in
Dedekind domains satisfying some natural finiteness conditions. The proof
will be done by verifying the assumptions in the following abstract result,
which is proved in [14, Proposition 4.8] (see also in [16, Theorem 3.4 and
Remark 3.5]), and whose assumptions will be explained below.

Theorem 2.2. Let H be a BF-monoid such that ∆(H) is finite and all
pattern ideals in H are tamely generated. Then the Structure Theorem for
Sets of Lengths holds for H.
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A homomorphism β: H → D of reduced monoids is called a transfer
homomorphism if β is surjective, β−1(1) = {1}, and for all u ∈ H and
y, z ∈ D, the following condition is satisfied: If β(u) = yz, then there exist
v, w ∈ H such that u = vw, β(v) = y and β(w) = z.

If β: H → D is a transfer homomorphism, then the Structure Theorem
for Sets of Lengths holds for H if and only if it holds for D (see [24, Lem-
ma 5.4]).

We continue with an explanation of the notions used in the formulation
of Theorem 2.2.

The catenary degree. Let H be an atomic monoid. For a ∈ H, we denote
by c(a) the minimal N ∈ N0 ∪ {∞} with the following property: For any
two factorizations z, z′ ∈ Z(a), there exists a finite sequence (z0, z1, . . . , zk)
in Z(a) such that z0 = z, zk = z′ and d(zi−1, zi) ≤ N for all i ∈ [1, k]. Then
c(a) ≤ sup L(a), and we call

c(H) = sup{c(a) | a ∈ H} ∈ N0 ∪ {∞}
the catenary degree of H. If a ∈ H, then max∆(a) ≤ max{0, c(H) − 2}.
Consequently, if c(H) <∞, then ∆(H) is finite.

Tameness. Let H be an atomic monoid. For a ∈ H and x ∈ Z(H), we
denote by t(a, x) the smallest N ∈ N0 ∪{∞} with the following property: If
Z(a) ∩ xZ(H) 6= ∅ and z ∈ Z(a), then there exists some z′ ∈ Z(a) ∩ xZ(H)
such that d(z, z′) ≤ N (note that, if c ∈ H and x ∈ Z(c), then the condition
Z(a)∩xZ(H) 6= ∅ is equivalent to c | a). For subsets H ′ ⊂ H and X ⊂ Z(H),
we define

t(H ′,X) = sup{t(a, x) | a ∈ H ′, x ∈ X} ∈ N0 ∪ {∞}.
For a ∈ H and x ∈ Z(H), we set t(a,X) = t({a},X) and t(H ′, x) =
t(H ′, {x}). We shall write tH instead of t if it is necessary to refer to H.

H is called locally tame if t(H,u) <∞ for all u ∈ A(Hred).
Let a ⊂ H be an s-ideal. A subset E ⊂ a is called a tame generating set

of a if there exists some γ ∈ N such that, for every a ∈ a, there is some e ∈ E
satisfying e | a, sup L(e) ≤ γ and t(a,Z(e)) ≤ γ. If a has a tame generating
set, then a is called tamely generated . Our notion of a tame generating set
is stronger than that used in [14], but it is consistent with that of [16]. For
a detailed discussion we refer the reader to [16, Remark 3.5].

Finitary monoids and complete s-ideals. Let H be a monoid. A subset
U ⊂ H \ H× is called an almost generating set of H if there exists some
n ∈ N such that (H \H×)n ⊂ UH. An s-ideal a ⊂ H is called complete over
U if there exists some n ∈ N such that

[[u]]−1a ∩H ⊂ u−na for all u ∈ U.
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The monoid H is called finitary if it is a BF-monoid and has a finite
almost generating set. Finitary monoids are investigated in [17], and the
theory of complete and tamely generated ideals is developed in [16]. We
recall some notions of this theory which will be used in Section 5.

Let H be a finitary monoid and U ⊂ H \H× a finite almost generating
set. For u ∈ U , we denote by Hu the set of all a ∈ H without a divisor in
[[u]]\H×. For an s-ideal a ⊂ H, we denote by a(U, u) the set of all a ∈ a∩u2H
such that [[u]] is maximal in the set {[[v]] | v ∈ U, a ∈ v2H}, and we set

a[U, u] = Hu ∩ (u[[u]])−1a(U, u).

By definition, we have a(U, u) ⊂ H(U, u) and a[U, u] ⊂ H[U, u]. The s-ideal
a is called U -generated if

a =
(⋃

u∈U
u[[u]] a[U, u]

)
∪ (a \ U [2]H).

An almost generating set U is called full if there exists some m ∈ N such
that H[U, u] ⊂ H \ U [m]H for all u ∈ U . If U is full, then there exists some
M ∈ N such that max L(a) ≤M whenever a ∈ H[U, u] for some u ∈ U .

Restriction to reduced monoids. All factorization properties explained
hitherto apply for a monoid H if and only if they apply for the associated
reduced monoid Hred. Hence we may without restriction assume that H is
reduced, and we will do this whenever it is convenient.

3. Congruence monoids in Dedekind domains. We start with some
preliminaries concerning congruences which regard signatures.

Definition 3.1. Let R be an integral domain and m ∈ N0.

(1) A map
σ = (σ1, . . . , σm): R• → {±1}m

is called a sign vector of R if there exist distinct ring monomorphisms
w1, . . . , wm: R → R such that σj(a) = sign{wj(a)} for all a ∈ R• and
all j ∈ [1,m]. We call m = |σ| the dimension of σ. For m = 0, the empty
sequence will also be considered as a sign vector.

(2) Let {0} 6= f / R be an ideal and σ = (σ1, . . . , σm) a sign vector of R.
Two elements a, b ∈ R• are called congruent modulo fσ, in symbols a ≡ b
mod fσ, if a ≡ b mod f and σ(a) = σ(b). Obviously, congruence modulo
fσ is a congruence relation on the monoid R•. We denote by R/fσ the
semigroup of congruence classes, and for a ∈ R•, we denote by [a]fσ ∈ R/fσ
the congruence class containing a. For m = 0, the congruence modulo fσ is
just the ordinary congruence modulo f, and we write f instead of fσ.
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(3) Let {0} 6= f / R be an ideal of R, let σ be a sign vector of R and
∅ 6= Γ ⊂ R/fσ a multiplicatively closed subset (not necessarily containing
the unit element [1]fσ). Then the (multiplicative) monoid

H = HΓ = {a ∈ R• | [a]fσ ∈ Γ} ∪ {1} ⊂ R•

is called the congruence monoid defined in R modulo fσ by Γ . It is called

• regular modulo f if aR+ f = R for all a ∈ H;
• singular modulo f if aR+ f 6= R for all a ∈ H \ {1}.

(4) A submonoid H ⊂ R• is called a congruence monoid in R if there
exists an ideal f 6= {0} of R, a sign vector σ of R and a multiplicatively
closed subset ∅ 6= Γ ⊂ R/fσ such that H is the congruence monoid defined
in R modulo fσ by Γ . Every such ideal f is called an ideal of definition for H.

We summarize the properties of congruences regarding signatures in the
following

Lemma 3.2. Let R be an integral domain, {0} 6= f / R an ideal and
σ = (σ1, . . . , σm) a sign vector of R.

(1) Let ∅ 6= Γ ⊂ R/fσ be a multiplicatively closed subset , {0} 6= f′ ⊂ f
another ideal of R, m′ ∈ N and σ′ = (σ′1, . . . , σ

′
m′) a sign vector of R

such that {σ1, . . . , σm} ⊂ {σ′1, . . . , σ′m′}. Then there is a unique monoid
homomorphism ψ: R/f′σ′ → R/fσ satisfying

ψ([a]f′σ′) = [a]fσ.

ψ is surjective, and if Γ ′ = ψ−1(Γ ) ⊂ R/f′σ′, then HΓ = HΓ ′ .
(2) Suppose that a ∈ R•. For every e ∈ {±1}|σ| there exists an element

ae ∈ R• such that σ(ae) = e and ae ≡ a mod f. If the elements ae are chosen
in this way , then

a+ f =
⊎

e∈{±1}|σ|
[ae]fσ.

(3) (R/fσ)× = {[a]fσ | a ∈ R•, a + f ∈ (R/f)×}, and there is an exact
sequence

1→ {±1}|σ| ν→ (R/fσ)× θ→ (R/f)× → 1,

where θ([a]fσ) = a+ f, and ν(e) = [a]fσ if a ≡ 1 mod f and σ(a) = e.
(4) Let ∅ 6= Γ ⊂ R/fσ be a multiplicatively closed subset. Then HΓ is

regular modulo f if and only if Γ ⊂ (R/fσ)×, and HΓ is singular modulo f
if and only if Γ ∩ (R/fσ)× = ∅.

Proof. (1) Observe that, for all a, b ∈ R•, [a]f′σ′ = [b]f′σ′ implies
[a]fσ = [b]fσ.

(2) and (3) are proved in [21, Hilfssatz 2, Satz 6 and Satz 7], and (4) is
a simple consequence of (3).
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Examples 3.3. (1) Let R be an integral domain and A ⊂ R an order
in R (that means, A ⊂ R is a subring and R/A is a finitely generated torsion
A-module). Then f = {a ∈ R | aR ⊂ A} 6= {0}, f is the largest ideal of R
lying in A, and A/f ⊂ R/f is a subring (hence multiplicatively closed). The
multiplicative monoid

A• = {a ∈ R• | a+ f ∈ A/f}
of A is the congruence monoid defined in R modulo f by A/f. It is neither
regular nor singular modulo f.

(2) Suppose that f ∈ N, and let Λ ⊂ Z/fZ be a multiplicatively closed
subset. Then the Hilbert semigroup defined modulo f by Λ is the monoid

Hf (Λ) = {a ∈ N | a+ fZ ∈ Λ} ∪ {1}.
All examples of congruence monoids mentioned in the introduction are of
this type. In order to view them as congruence monoids according to our
definition, let σ = sign: Z• → {±1} be the ordinary sign function, and set

Λ+ = {[a]fZσ ∈ Z/fZσ | a ∈ N, a+ fZ ∈ Λ}.
Then Λ+ ⊂ Z/fZσ is a multiplicatively closed subset, and Hf (Λ) is the
congruence monoid defined in Z modulo fZσ by Λ+. Hilbert semigroups
modulo f may by regular (as 1 + 4N0), singular (as {1} ∪ 2N) or neither of
them (as {a ∈ N | a 6≡ −1 mod 3}).

(3) Let R be the ring of integers of an algebraic number field K, m ∈
N0, and let w1, . . . , wm: K → R be the real embeddings of K. Define σ =
(σ1, . . . , σm): R• → {±1}m by σj(a) = sign(wj(a)) for all j ∈ [1,m]. For an
ideal {0} 6= f / R, the principal ray modulo f in R is defined by

Sf = {a ∈ R• | a ≡ 1 mod f, wj(a) > 0 for all j ∈ [1,m]}.
According to our definition, Sf is the congruence monoid defined in R mod-
ulo fσ by {[1]fσ}. It is regular modulo f.

Proposition 3.4. Let R be an integral domain and H ⊂ R• a congru-
ence monoid in R.

(1) Let {0} 6= f′ ⊂ f ⊂ R be ideals of R. If f is an ideal of definition
for H, then so is f′.

(2) If f1 and f2 are ideals of definition for H, then so is f1 + f2. In
particular , if R is noetherian, then H has a largest ideal of definition.

Proof. (1) Let σ be a sign vector of R and ∅ 6= Γ ⊂ R/fσ a mul-
tiplicatively closed subset such that H = HΓ . If ψ: R/f′σ → R/fσ is the
homomorphism defined in Lemma 3.2(1) and Γ ′ = ψ−1(Γ ), then HΓ ′ = HΓ ,
and thus f′ is an ideal of definition for H.

(2) For i ∈ {1, 2}, let σ(i) = (σ(i)
1 , . . . , σ

(i)
mi) be a sign vector of R and

∅ 6= Γ ′i ⊂ R/fiσ
(i) a multiplicatively closed subset such that H = HΓ ′i

.
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Let σ = (σ1, . . . , σm) be a sign vector of R such that {σ1, . . . , σm} =
{σ(1)

1 , . . . , σ
(1)
m1 , σ

(2)
1 , . . . , σ

(2)
m2}. If ψi: R/fiσ → R/fiσ

(i) is the homomorphism
defined in Lemma 3.2(1) and Γi = ψ−1

i (Γ ′i ), then H = HΓ1 = HΓ2 .
We set f = f1 + f2 and Γ = {[a]fσ | a ∈ H \ {1}} ⊂ R/fσ. Then Γ 6= ∅

is a multiplicatively closed subset of R/fσ, H ⊂ HΓ , and we assert that
equality holds. If b ∈ HΓ \ {1}, then there exists some a ∈ H \ {1} such
that [b]fσ = [a]fσ, that is, b ≡ a mod f and σ(b) = σ(a). Hence there exist
elements x1 ∈ f1 and x2 ∈ f2 such that b = a + x1 + x2, and there exists
some c ∈ R• \ {1} such that c ≡ a + x1 mod (f1 ∩ f2) and σ(c) = σ(a). We
set c = a + x1 + x0, where x0 ∈ f1 ∩ f2. Now [c]f1σ = [a]f1σ implies c ∈ H.
Since b = c+(x2−x0) ≡ c mod f2 and σ(b) = σ(c), we obtain [b]f2σ = [c]f2σ,
and thus finally b ∈ H.

Our next result is the divisor-theoretic description of congruence monoids
in Dedekind domains. We fix some notations and conventions.

Assumptions for congruence monoids in Dedekind domains. Let R be
a Dedekind domain, {0} 6= f / R, σ a sign vector of R, ∅ 6= Γ ⊂ R/fσ a
multiplicatively closed subset and

HΓ = {a ∈ R• | [a]fσ ∈ Γ} ∪ {1}
the congruence monoid defined in R modulo fσ by Γ . We set P = max(R),
we denote by I = F(P) the monoid of all non-zero ideals of R and, for
p ∈ P, by vp the p-adic exponent. We set

Pf = {p ∈ P | p + f = R}, Tf = R• \
⋃

p∈P\Pf

p = {a ∈ R• | a+ f ∈ (R/f)×},

we denote by If = F(Pf) ⊂ I the monoid of all non-zero ideals of R which
are coprime to f, and we consider the semilocal principal ideal domain T−1

f R.
The embedding R ↪→ T−1

f R induces an isomorphism

R/fσ
∼→ T−1

f R/T−1
f fσ

by which we will identify these two semigroups. Then [a]fσ = [a]T−1
f fσ for all

a ∈ R•. Let
HΓ,f = {z ∈ (T−1

f R)• | [z]T−1
f fσ ∈ Γ} ∪ {1}

be the congruence monoid in the semilocal principal ideal domain T−1
f R

defined modulo T−1
f fσ by Γ . Clearly, HΓ ⊂ HΓ,f. Now we define

∂: HΓ → F(Pf)× (HΓ,f)red by ∂(a) =
(∏

p∈Pf

pvp(a), aH×Γ,f

)
,

and we call ∂ the canonical divisor homomorphism associated with HΓ (we
shall prove in a moment that it is indeed a divisor homomorphism). We view
∂ as the family of its components
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∂ = ((∂p)p∈Pf
, ∂f), where ∂p(a) = pvp(a) for p ∈ Pf and ∂f(a) = aH×Γ,f.

We define
H∗Γ = ∂−1F(Pf), ∂∗ = ∂|H∗Γ : H∗Γ → F(Pf) = If.

Theorem 3.5. Let R be a Dedekind domain, and let HΓ ⊂ R• be a con-
gruence monoid as in the assumptions for congruence monoids in Dedekind
domains.

(1) ∂: HΓ → F(Pf)× (HΓ,f)red is a divisor homomorphism.
(2) Suppose that (R/fσ)× ∩ Γ is a subgroup of (R/fσ)×. Then:

(a) HΓ,f = (Tf ∩HΓ )−1HΓ .
(b) ∂ has the approximation property.
(c) H∗Γ is a Krull monoid , ∂∗ is a divisor theory having the approx-

imation property , and C(∂) ∼= C(∂∗) ∼= C(H∗Γ ). Moreover ,

H∗Γ = {a ∈ HΓ | aR+ f = R} = {a ∈ R• | [a]fσ ∈ (R/fσ)× ∩ Γ},
and there is a (canonical) exact sequence

1→ (R/fσ)×/[R×]fσ(Γ ∩ (R/fσ)×)→ C(H∗Γ )→ C(R)→ 0,

where [R×]fσ = {[u]fσ | u ∈ R×}, and C(R) denotes the ideal
class group of R.

(3) Let f be the largest ideal of definition for HΓ and suppose that
(R/fσ)× ∩ Γ is a subgroup of (R/fσ)×. Then HΓ is a Krull monoid if and
only if HΓ is regular modulo f.

Proof. (1) If a, b ∈ HΓ and ∂(a) | ∂(b), then vp(a) ≤ vp(b) for all p ∈ Pf

and a−1b ∈ HΓ,f ⊂ T−1
f R. Hence also vp(a) ≤ vp(b) for all p ∈ P \ Pf,

and thus c = a−1b ∈ R. If c = 1, there is nothing to do. If c 6= 1, then
[c]fσ = [a−1b]T−1fσ ∈ Γ implies c ∈ HΓ and thus a | b (in HΓ ).

(2) If (R/fσ)×∩Γ is a subgroup of (R/fσ)×, then [1]fσ ∈ Γ and therefore
HΓ = {a ∈ R• | [a]fσ ∈ Γ}.

(a) We show first that Tf ∩ HΓ ⊂ H×Γ,f (which implies that HΓ,f ⊃
(Tf ∩ HΓ )−1HΓ ). If s ∈ Tf ∩ HΓ , then [s]fσ ∈ Γ ∩ (R/fσ)×, and since Γ ∩
(R/fσ)× is a group, we obtain [s−1]T−1fσ = [s]−1

fσ ∈ Γ . Hence s−1 ∈ HΓ,f

and s ∈ H×Γ,f.
For the reverse inclusion, suppose that b = s−1c ∈ HΓ,f, where c ∈ R•

and s ∈ Tf. By Lemma 3.2, there exists some s′ ∈ R• such that ss′ ≡
1 mod fσ and therefore [cs′]fσ = [(cs′)(ss′)−1]T−1fσ ∈ Γ . Since cs′ ∈ HΓ and
ss′ ∈ Tf ∩HΓ , we obtain b ∈ (Tf ∩HΓ )−1HΓ .

(b) Suppose that n ∈ N, let p1, . . . , pn ∈ Pf be distinct, e1, . . . , en ∈ N0
and b ∈ HΓ,f. We must prove that there exists some a ∈ HΓ such that
vpi(a) = ei for all i ∈ [1, n], and aH×Γ,f = bH×Γ,f. By (a) there exists some
c ∈ HΓ and s ∈ Tf∩HΓ such that b = s−1c. Let q ∈ R• be such that vq(q) =
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vq(c) for all q ∈ P\Pf and vpi(q) = 0 for all i ∈ [1, n]. Then q−1c ∈ (T−1
f R)×,

and thus there exist elements w, t ∈ Tf such that q−1c = w−1t. For i ∈ [1, n],
let pi ∈ pi \ p2

i . By the Chinese Remainder Theorem and Lemma 3.2, there
exists some u ∈ R• satisfying

wu ≡ t mod fσ, u ≡ pi mod pei+1
i for all i ∈ [1, n].

Then a = qu ∈ H, vpi(a) = vpi(u) = ei for all i ∈ [1, n], [a]fσ = [qw−1t]T−1fσ

= [c]fσ ∈ Γ implies a ∈ HΓ , and b−1a = sc−1qu = swut−1 ≡ s mod T−1fσ
implies ba−1 ∈ H×Γ,f.

(c) By definition, H∗Γ = {a ∈ HΓ | aR + f = R} = {a ∈ R• | [a]fσ ∈
(R/fσ)× ∩ Γ}. The remaining assertions except those concerning the exact
sequence follow by Proposition 2.1.

We identify C(H∗Γ ) with C(∂∗). For a ∈ If, we denote by [a] ∈ C(R)
the ideal class of a. Then C(R) = {[a] | a ∈ If} and C(H∗Γ ) = {[a]∂∗ |
a ∈ If}. Since [a]∂∗ = [b]∂∗ implies [a] = [b] for all a, b ∈ If, there is
an epimorphism η: C(H∗Γ ) → C(R) satisfying η([a]∂∗) = [a] for all a ∈ If,
and Ker(η) = {[zR]∂∗ | z ∈ Tf}. If z, z′ ∈ Tf and z ≡ z′ mod fσ, then
[zR]∂∗ = [z′R]∂∗ . Hence there exists an epimorphism θ: (R/fσ)× → Ker(η)
satisfying θ([z]fσ) = [zR]∂∗ for all z ∈ Tf, and Ker(θ) consists of all [a]fσ ∈
(R/fσ)× such that there exists some ε ∈ R× satisfying [εa]fσ ∈ Γ . Hence
Ker(θ) = [R×]fσ(Γ ∩ (R/fσ)×).

(3) If HΓ is regular modulo f, then HΓ = H∗Γ , and thus it is a Krull
monoid by (2).

Suppose now that HΓ is a Krull monoid, and set f = pe11 · . . . · pess , where
s ∈ N0, p1, . . . , ps ∈ P are distinct and e1, . . . , es ∈ N. We consider the
decomposition f = f0f1, where

f0 =
s∏

i=1
pi∩H 6=∅

peii , f1 =
s∏

i=1
pi∩H=∅

peii .

Then HΓ is regular modulo f if and only if f0 = R. The set Γ1 = {[a]f1σ |
a ∈ HΓ , a 6= 1} ⊂ R/f1σ is a non-empty multiplicatively closed subset, and
HΓ ⊂ HΓ1 . We shall prove that HΓ1 ⊂ HΓ . Then equality holds, f1 is an
ideal of definition for HΓ , and therefore f1 = f, f0 = R, and H is regular
modulo f.

By the very definition of f0, there exists an element y ∈ f0 ∩HΓ . If x ∈
HΓ1 \{1}, then there exists some a ∈ HΓ \{1} such that x ≡ a mod f1σ. For
all n ∈ N, this implies xny ≡ any mod fσ, hence xny ∈ HΓ , and the identity
(xy)n+1 = yn(xn+1y) implies yn | (xy)n+1 (in HΓ ). By [20, Lemma 2], we
get y |xy (in HΓ ), and thus x ∈ HΓ .

The following Theorem 3.6 is the main result of this paper. Its proof will
be completed in Section 6.
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Theorem 3.6 (Main Theorem for congruence monoids in Dedekind do-
mains). Let R be a Dedekind domain, H a congruence monoid in R and
f an ideal of definition for H. If the residue class ring R/f and the ideal
class group C(R) are both finite, then H is locally tame, c(H) <∞, and the
Structure Theorem for Sets of Lengths holds for H.

4. Class semigroups. If H ⊂ D is a submonoid, we defined the class
group of D modulo H by D/H = q(D)/q(H). This definition generalizes
the usual notion of a class group in algebraic number theory. However, it
does not describe the structure of H in D in a sufficiently precise way unless
H ⊂ D is saturated and cofinal. In the general case, we have to introduce
the following more subtle construction.

Definition 4.1. Let D be a monoid and A ⊂ D a subset. Two elements
y, y′ ∈ D are called A-equivalent (in D) if

y−1A ∩D = y′−1A ∩D.
It is easily checked that A-equivalence is a congruence relation on D. For
y ∈ D, we denote by [y]DA the A-equivalence class of y, and we define

C(A,D) = {[y]DA | y ∈ D}, C∗(A,D) = {[y]DA | y ∈ (D \D×) ∪ {1}}.
The quotient law on C(A,D) is written additively, that is, [xy]DA =
[x]DA + [y]DA for all x, y ∈ D. Then C(A,D) is an (additive) semigroup,
C∗(A,D) ⊂ C(A,D) is a subsemigroup, and the assignment y 7→ [y]DA defines
a surjective semigroup homomorphism D → C(A,D).

If T ⊂ D is any subset, then the map

ψ: {[y]DA | y ∈ T} → {y−1A ∩D | y ∈ T}, [y]DA 7→ y−1A ∩D
is bijective by definition. Note that for all y ∈ D we have either [y]DA ∩A = ∅
or [y]DA ⊂ A. Indeed, if a ∈ [y]DA ∩ A and z ∈ [y]DA , then [a]DA = [z]DA , hence
1 ∈ a−1A ∩D = z−1A ∩D, and therefore z ∈ A.

Without giving details, we mention that there are examples of sub-
monoids H ⊂ D such that D/H = {0} but C(H,D) is infinite. However, if
H ⊂ D is saturated and cofinal, and if y, y′ ∈ D, then [y]D/H = [y′]D/H if
and only if [y]DH = [y′]DH , and thus C(H,D) ∼= D/H.

Proposition 4.2. Let D be a factorial monoid , and let H ⊂ D be an
atomic submonoid such that H ∩ D× = H× and C∗(H,D) is finite. Then
C∗(A(H),D) is also finite.

Proof. We set D∗ = D \D× and H∗ = H \H×. By assumption, the set
{y−1H∩D | y ∈ D∗} is finite, and we must prove that the set {y−1A(H)∩D |
y ∈ D∗} is also finite.
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If y ∈ D∗ and a ∈ y−1H ∩ D, then ay = u ∈ H \ D× = H∗. Hence
y−1H ∩D = y−1H∗∩D, and therefore the set {y−1H∗∩D | y ∈ D∗} is also
finite. Now we consider the partition H∗ = A(H) ]H∗H∗. If y ∈ D, then
y−1H∗ ∩ D = (y−1A(H) ∩ D) ] (y−1H∗H∗ ∩ D). Hence it is sufficient to
prove that the set {y−1H∗H∗ ∩D | y ∈ D∗} is finite, and for this, we show
that

y−1H∗H∗ ∩D =
⋃

y1,y2∈D∗∪{1}
y1y2=y

(y−1
1 H∗ ∩D)(y−1

2 H∗ ∩D).

If a ∈ y−1H∗H∗∩D, then ay = a1a2, where a1, a2 ∈ H∗. Since D is factorial,
there exist elements y1, y2 ∈ D∗ ∪ {1} such that y = y1y2, y1 | a1 and y2 | a2,
and we obtain

a = (y−1
1 a1)(y−1

2 a2) ∈ (y−1
1 H∗ ∩D)(y−1

2 H∗ ∩D).

The reverse inclusion is obvious.

Now we are going to explain in which way the class semigroup C∗(H,D)
connects the arithmetic of H with that of D. We need the following notions.

Definition 4.3. (1) Let H be a monoid and a, b ∈ H. Then ωH(a, b)
denotes the smallest N ∈ N0 ∪ {∞} with the following property: For any
n ∈ N and a1, . . . , an ∈ H, if a = a1 · . . . · an and b | a, then there exists
a subset Ω ⊂ [1, n] such that |Ω| ≤ N and

b
∣∣∣
∏

ν∈Ω
aν .

By definition, ωH(a, b) = 0 if either b - a or b ∈ H×. If m ∈ N0, p1, . . . , pm
are primes of H and b = p1 · . . . · pm, then ωH(a, b) ≤ m.

(2) Let C be an additive abelian semigroup. We denote by d(C) the
smallest d ∈ N ∪ {∞} with the following property: For any m ∈ N and
c1, . . . , cm ∈ C there exists a subset J ⊂ [1,m] such that |J | ≤ d and

m∑

j=1

cj =
∑

j∈J
cj .

If C is an abelian group, then D(C) = d(C) + 1 is known as Daven-
port’s constant and plays an important role in the theory of non-unique
factorization (see [8] or [30, Section 9.1]).

Lemma 4.4. If C is a finite additive abelian semigroup, then d(C) <∞.

Proof. Suppose that C = {c1, . . . , ck}. For every c ∈ C we consider the
set

X(c) =
{

(m1, . . . ,mk) ∈ Nk0
∣∣∣

k∑

i=1

mici = c
}
.
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The set Min(X(c)) of minimal points of X(c) is finite by Dickson’s Theorem
(see [25, Theorem 1.1]), and therefore the set

X =
⋃

c∈C
Min(X(c)) ⊂ Nk0

is also finite. By construction, we obtain d(C) = max{|m| |m ∈ X}.
Proposition 4.5. Let H ⊂ D be a submonoid , H ∩ D× = H× and

a, b ∈ H. Then
ωH(a, b) ≤ ωD(a, b) + d(C∗(H,D)).

Proof. Suppose that n ∈ N, a, b, a1, . . . , an ∈ H, a = a1 · . . . · an and
b |H a. We may assume that a1, . . . , an do not lie in H× and thus not in D×.
Since b |D a, it follows that (after renumbering, if necessary) there exists some
m ∈ [1, n] such that m ≤ ωD(a, b) and b |D a1 ·. . .·am. Let d ∈ D be such that
a1 · . . . ·am = bd. Then b−1a = am+1 · . . . ·and, and (after renumbering again,
if necessary), there exists some t ∈ N such that m+ t ≤ n, t ≤ d(C∗(H,D))
and

n∑

j=m+1

[aj]DH =
m+t∑

j=m+1

[aj]DH .

Then

[b−1a]DH =
n∑

j=m+1

[aj ]DH + [d]DH =
m+t∑

j=m+1

[aj ]DH + [d]DH = [am+1 · . . . · am+td]DH ,

and b−1a ∈ H implies b−1a1 · . . . · am+t = am+1 · . . . · am+td ∈ H. Hence
b | a1 · . . . · am+t, and since m+ t ≤ ωD(a, b) + d(C∗(H,D)), we are done.

Theorem 4.6 (Partition Theorem). Let D be a factorial monoid , and
let S ⊂ H ⊂ D be submonoids such that C∗(A(H),D) is finite. Let Ω ⊂ H
be a subset such that Ω ∩D× ⊂ H× and

sup{ωH(ab, b) | a ∈ S, b ∈ Ω} <∞.
Then Ω has a finite decomposition Ω = Ω1 ∪ . . . ∪ Ωt such that , for all
j ∈ [1, t], a ∈ S and b, b′ ∈ Ωj , we have LH(ab) = LH(ab′).

In particular , if a ⊂ H is a pattern ideal , j ∈ [1, t], a ∈ S and b, b′ ∈ Ωj ,
then ab ∈ a if and only if ab′ ∈ a.

Proof. Let M ∈ N be such that ωH(ab, b) ≤M for all a ∈ S and b ∈ Ω,
and set

C = {[a]DA(H) | a ∈ (D \D×) ∪H×}.
Since [ε]DA(H) = [1]DA(H) for all ε ∈ H×, we infer that C = C∗(A(H),D) is
finite. For b ∈ Ω \ H×, we denote by T(b) the set of all T ∈ F(C) which
arise in the following way: There exists some m ∈ [1,M ], and there exist
elements x1, . . . , xm ∈ D, y1, . . . , ym ∈ (D \D×)∪H× and a1 ∈ H such that
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b = y1 · . . . · ym, a = a1x1 · . . . · xm ∈ S, the elements xjyj are atoms of H
for all j ∈ [1,m], and

T =
m∏

j=1

[yj ]DA(H).

By assumption, the set T = {T(b) | b ∈ Ω \ H×} is finite. For T ∈ T , we
denote by ΩT the set of all b ∈ Ω \H× such that T(b) = T , and we assert
that

Ω = (Ω ∩H×) ∪
⋃

T∈T
ΩT

is the desired decomposition. If b, b′ ∈ H×, then clearly LH(ab) = LH(ab′)
for all a ∈ S. Thus assume that T ∈ T , b, b′ ∈ ΩT , a ∈ S and n ∈ LH(ab).
We must prove that n ∈ LH(ab′).

Let u1, . . . , un ∈A(H) be such that ab = u1 ·. . .·un. Since ωH(ab, b)≤M ,
we may renumber u1, . . . , un in such a way that b |H u1 · . . . · um for some
m ∈ [1,M ], say u1 ·. . .·um = bc, where c ∈ H. Since D is factorial, there exist
elements x1, . . . , xm, y1, . . . , ym ∈ D such that b = y1 ·. . .·ym, c = x1 ·. . .·xm,
and uj = xjyj for all j ∈ [1,m]. We may assume that yj 6∈ D× \H× for all
j ∈ [1,m]. Indeed, suppose that (after renumbering) there is some l ∈ [1,m]
such that y1, . . . , yl ∈ D× \H× and yl+1, . . . , ym 6∈ D× \H×. Since b 6∈ H×,
we infer l < m. Now we replace y1, . . . , yl by 1, ym by (y1 · . . . · yl)ym, xj by
yjxj for all j ∈ [1, l] and xm by (y1 · . . . · yl)−1xm to arrive at an appropriate
choice.

If a1 = um+1 · . . . · un, then a = a1x1 · . . . · xm,

T =
m∏

j=1

[yj]DA(H) ∈ T(b) = T(b′),

and hence there exists a product decomposition b′ = y′1 · . . . · y′m, where
y′j ∈ (D \ D×) ∪ H× and [y′j]

D
A(H) = [yj ]DA(H) for all j ∈ [1,m]. For j ∈

[1,m], we have xj = y−1
j uj ∈ y−1

j A(H) ∩D = y′−1
j A(H) ∩D and therefore

xjy
′
j ∈ A(H). Since ab′ = (x1y

′
1) · . . . · (xmy′m)um+1 · . . . · un, we obtain

n ∈ LH(ab′).
If a ⊂ H is a pattern ideal and a, b, b′ ∈ H are such that LH(ab) =

LH(ab′), then (by the very definition of pattern ideals) we have ab ∈ a if and
only if ab′ ∈ a.

5. Abstract congruence monoids. In this section we introduce two
types of monoids: Abstract congruence monoids (AC-monoids for short) and
C0-monoids. Abstract congruence monoids form a common generalization of
singular congruence monoids in Dedekind domains, of congruence monoids
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in semilocal Dedekind domains and of certain finitely primary monoids. C0-
monoids are special abstract congruence monoids satisfying a finiteness con-
dition. They seem to be the appropriate tool to settle arithmetical questions
in various contexts. In this paper we use them to investigate the arithmetic
of congruence monoids in Dedekind domains. W. Hassler [27] used them only
recently to obtain a multiplicative model for all finitely generated domains
satisfying certain (natural) finiteness conditions.

Definition 5.1. (1) Let F be a monoid, Y ⊂ F a submonoid, s ∈ N
and p1, . . . , ps pairwise non-associated prime elements of F such that F =
Y ×[p1, . . . , ps]. Then every x ∈ F has a unique representation in the form

x = u

s∏

i=1

pnii , where u ∈ Y and (n1, . . . , ns) ∈ Ns0.

We call supp(x) = {i ∈ [1, s] | vpi(x) 6= 0} the support of x, and we set
u = E(x).

(2) Let F = Y × [p1, . . . , ps] be as above and H ⊂ F a submonoid.
A subset I ⊂ [1, s] is called H-essential if there exists some a ∈ H such that
I = supp(a). By definition, ∅ is always H-essential. We denote by EH the
set of all non-empty H-essential subsets of [1, s]. A congruence relation ≡
on Y is called H-admissible with respect to p1, . . . , ps if for all u, v ∈ Y ,

u ≡ v implies u−1H ∩ ([p1, . . . , ps] \ {1}) = v−1H ∩ ([p1, . . . , ps] \ {1})
(equivalently, if x ∈ [p1, . . . , ps] \ {1}, then ux ∈ H implies vx ∈ H).

(3) Let F = Y ×[p1, . . . , ps] be as above. A submonoid H ⊂ F is called
an AC-monoid defined in F by p1, . . . , ps and a congruence relation ≡ on Y
with parameter α ∈ N if the following conditions are satisfied:

(AC 1) Y ∩H = H×.
(AC 2) For every j ∈ [1, s] and a ∈ pαj F , we have a ∈ H if and only if

pαj a ∈ H.
(AC 3) ≡ is H-admissible with respect to p1, . . . , ps, Y/≡ is a finite group,

and |Y/≡|
∣∣α.

(4) A monoid H is called a C0-monoid if there exists a monoid F =
Y × [p1, . . . , ps] as above with Y = F× such that H is an AC-monoid defined
in F by p1, . . . , ps and a congruence relation ≡ on Y with some parameter α.

The concept of an AC-monoid is similar to that of a finitely primary
monoid as introduced in [23] and investigated in detail in [11]. We recall the
definition. A monoid H is called finitely primary of rank s and exponent α
if there exists a factorial monoid F = F××[p1, . . . , ps] (with pairwise non-
associated primes p1, . . . , ps) such that H ⊂ F is a submonoid satisfying

(p1 · . . . · ps)αF ⊂ H, H \H× ⊂ p1 · . . . · psF.
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In this case, F is uniquely determined by H (in fact, F = Ĥ is the complete
integral closure of H), H ∩ F× = H× and EH = {[1, s]}.

In general, a finitely primary monoid need not be an AC-monoid inside
some factorial monoid F . Without proof, we mention that the latter is al-
ways v-noetherian, while there exist finitely primary monoids which are not
(see [26]). The precise connection between AC-monoids and finitely primary
monoids is as follows.

Proposition 5.2. Let H be a finitely primary monoid of rank s and
exponent α, and

F = Ĥ = F××[p1, . . . , ps]

with pairwise non-associated primes p1, . . . , ps. Then H is an AC-monoid
(and thus a C0-monoid) defined in F by p1, . . . , ps and some congruence
relation on F× with parameter α if and only if the following two conditions
are satisfied :

(1) There exists a subgroup V ⊂ F× with (F× : V ) |α and V (H \H×)
⊂ H.

(2) For every j ∈ [1, s] and a ∈ pαj F , we have a ∈ H if and only if
pαj a ∈ H.

Proof. It is sufficient to prove that (1) is equivalent to (AC 3).
Let ≡ be a congruence relation of F× which is H-admissible with respect

to p1, . . . , ps such that F×/≡ is a finite group satisfying |F×/≡|
∣∣ α. Then

V = {u ∈ F× | u ≡ 1} is a subgroup of F×, and F×/V = F×/≡. If v ∈ V
and a ∈ H \H×, then a = uc, where u ∈ F× and c ∈ [p1, . . . , ps]\{1}. Since
vu ≡ u and uc ∈ H, it follows that va = vuc ∈ H.

If (1) is satisfied, let ≡ be the congruence modulo V on F×, that is,
u ≡ v if and only if u−1v ∈ V . Then F×/V = F×/≡, and we must prove
that ≡ is H-admissible with respect to p1, . . . , ps. If u, v ∈ F×, u ≡ v,
x ∈ [p1, . . . , ps]\{1} and ux ∈ H, then ux 6∈ H× and thus vx = (u−1v)(ux) ∈
V (H \H×) ⊂ H.

The following lemma is quite elementary. It contains the main arguments
used throughout the paper.

Lemma 5.3. Let F = Y × [p1, . . . , ps] be as in Definition 5.1 and H ⊂ F
an AC-monoid defined by p1, . . . , ps and a congruence relation ≡ on Y with
parameter α ∈ N.

(1) If u, v ∈ Y , a ∈ F \ Y and u ≡ v, then ua ∈ H implies va ∈ H.
(2) If u ∈ Y and (n1, . . . , ns), (n′1, . . . , n

′
s) ∈ Ns0 are such that , for all

i ∈ [1, s],

either ni = n′i or (ni ≡ n′i mod α and min{ni, n′i} ≥ α),
then

upn1
1 · . . . · pnss ∈ H implies up

n′1
1 · . . . · pn

′
s
s ∈ H.
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(3) If I ∈ EH , (li)i∈I ∈ NI , u ∈ Y and u ≡ 1, then

u
∏

i∈I
pαlii ∈ H.

Proof. (1) Let u, v ∈ Y be such that u ≡ v, a ∈ F \ Y and ua ∈ H.
Then a = wc for some w ∈ Y and c ∈ [p1, . . . , ps] \ {1}. Now u ≡ v implies
uw ≡ vw, and therefore ua = uwc ∈ H implies va = vwc ∈ H.

(2) Let u ∈ Y , (n1, . . . , ns) ∈ Ns0 and upn1
1 · . . . · pnss ∈ H. Let (n′1, . . . , n

′
s)

∈ Ns0 be such that, for all i ∈ [1, s], either ni = n′i or (ni ≡ n′i mod α and

min{ni, n′i} ≥ α). In order to prove that upn
′
1

1 · . . . · p
n′s
s ∈ H we proceed by

induction on l = |{j ∈ [1, s] | nj 6= n′j}|. If l = 0, there is nothing to do. Thus
suppose that l ≥ 1, and let j ∈ [1, s] be such that n′j = nj + kα for some

k ∈ Z\{0}. By induction on |k|we obtain upn1
1 ·. . .·p

nj−1
j−1 p

n′j
j p

nj+1
j+1 ·. . .·pnss ∈ H,

and the induction hypothesis concerning l implies upn
′
1

1 · . . . · p
n′s
s ∈ H.

(3) Since I ∈ EH , there exists some v ∈ Y and (ni)i∈I ∈ NI such that

a = va0 ∈ H, where a0 =
∏

i∈I
pnii ∈ F \ Y.

Hence aα = vαaα0 ∈ H and aα0 ∈ F \ Y . Since vα ≡ 1 ≡ u and ≡ is
H-admissible, (1) implies uaα0 ∈ H. Now the assertion follows by (2), since
αni ≡ αli mod α and min{αli, αni} ≥ α for all i ∈ I.

Theorem 5.4. Let F = Y × [p1, . . . , ps] be as in Definition 5.1 and
H ⊂ F an AC-monoid defined by p1, . . . , ps and a congruence relation ≡ on
Y with parameter α ∈ N.

(1) C∗(H,F ) is finite.
(2) Hred ⊂ F/H× = Y/H×× [p1H

×, . . . , psH×] is an AC-monoid de-
fined by p1H

×, . . . , psH× and some congruence relation ≡∗ on Y/H× with
parameter α. If H is a C0-monoid , then so is Hred.

(3) If F is factorial and H is reduced , then there exists a transfer ho-
momorphism β: H → H into a reduced C0-monoid H.

Proof. (1) For α ∈ N, we define a reduction map %α: F → F as follows.
If x = upn1

1 · . . . · pnss , where u ∈ Y and (n1, . . . , ns) ∈ Ns0, then %α(x) =
upn1−αl1

1 · . . . · pns−αlss , where

li =
{

0 if ni < 2α,

bni/αc − 1 if ni ≥ 2α.

If li 6= 0, then α ≤ ni − αli < 2α. Hence Lemma 5.3 implies that, for all
x, y ∈ F , we have xy ∈ H if and only if %α(x)y ∈ H.

Let {u1, . . . , ut} ⊂ Y be a set of representatives for Y/≡, chosen in such
a way that uτ 6∈ F× whenever there exists some u ∈ Y \ F× such that
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u ≡ uτ . Now we consider the finite set

B =
{
uτ

s∏

i=1

pnii

∣∣∣ τ ∈ [1, t], (n1, . . . , ns) ∈ [0, 2α− 1]s
}
,

and we define ϕ: F → B by ϕ(uc) = uτ%α(c) whenever u ∈ Y , u ≡ uτ and
c ∈ [p1, . . . , ps]. We assert that [x]FH = [ϕ(x)]FH for all x ∈ F \ F×, which in
particular implies that C∗(H,F ) is finite.

To prove this assertion, assume that x = uc ∈ F \ F×, where c ∈
[p1, . . . , ps], u ∈ Y and u ≡ uτ for some τ ∈ [1, t]. Then ϕ(x) = uτ%α(c),
and we must prove that, for all y ∈ F , we have yx ∈ H if and only if
yϕ(x) ∈ H.

If y ∈ F , then y = vb, where v ∈ Y and b ∈ [p1, . . . , ps], yx = uvbc
and yϕ(x) = uτvb%α(c). If bc 6= 1, then also %α(bc) = %α(b%α(c)) 6= 1, and
since uv ≡ uτv, we have yx ∈ H if and only if yϕ(x) ∈ H. If bc = 1,
then b = c = %α(c) = 1, yx = uv, yϕ(x) = uτv, and we argue that then
yx 6∈ H and yϕ(x) 6∈ H. Indeed, yx = uv ∈ H ∩ Y = H× ⊂ F× implies
x ∈ F×, a contradiction. If yϕ(x) = uτv ∈ H ∩ Y = H× ⊂ F×, then
uτ ∈ F× implies u ∈ F× by our special choice of representatives, whence
again yx = uv ∈ F×, which leads to a contradiction as above.

(2) Clearly, p1H
×, . . . , psH× are pairwise non-associated primes of

F/H×, Hred ⊂ F/H× and Y/H× ∩Hred = {1Hred}. Hence (AC 1) holds. If
a ∈ F , then aH× ∈ Hred if and only if a ∈ H, and thus (AC 2) follows.

To prove (AC 3), we define ≡∗ on Y/H× by uH× ≡∗ vH× if u ≡ vε for
some ε ∈ H×. Then ≡∗ is an Hred-admissible congruence relation on F/H×

with respect to p1H
×, . . . , psH×, and the canonical map Y → (Y/H×)/≡∗

induces an epimorphism Y/≡ → (Y/H×)/≡∗. Hence (Y/H×)/≡∗ is also a
finite group of order dividing α.

If H is a C0-monoid, we may assume that Y = F×, hence Y/H× =
(F/H×)×, and Hred is also a C0-monoid.

(3) If F is factorial, then so is Y , and thus Y = F××F(Q) for some set
Q of pairwise non-associated primes of F . For q ∈ Q, we denote by q ∈ Y/≡
the congruence class of q. Then the set Q = {q | q ∈ Q} is finite, say
Q = {q1, . . . , qt}, where t ∈ N0 and q1, . . . , qt ∈ Q. We consider the factorial
monoid

F = F××[q1, . . . , qt, p1, . . . , ps].

Let β: F → F be the unique monoid homomorphism satisfying β|F××
[p1, . . . , ps] = id and β(q) = q for all q ∈ Q. We set

H = β(H) ⊂ F , β = β|H: H → H,

and we assert that β is the desired transfer homomorphism. For this, we
shall prove the following assertions:
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(1) If x, y ∈ Y , then β(x) = β(y) implies x ≡ y.
(2) If x ∈ F and β(x) ∈ H, then x ∈ H.
(3) β is a transfer homomorphism.
(4) H ∩ F× = {1}.
(5) If i ∈ [1, t] and a ∈ qαi F , then a ∈ H if and only if qαi a ∈ H.
(6) If j ∈ [1, s] and a ∈ pαj F , then a ∈ H if and only if pαj a ∈ H.
(7) If u, v ∈ F×, u ≡ v and x ∈ [q1, . . . , qt, p1, . . . , ps] \ {1}, then ux ∈ H

implies vx ∈ H.

By (4)–(7) it follows that H is a C0-monoid, and we are done. Now we
prove the assertions (1)–(7).

(1) If x, y ∈ Y and β(x) = β(y), then x = εq′1 ·. . .·q′m and y = εq′′1 ·. . .·q′′m,
where m ∈ N0, q′1, . . . , q

′
m, q

′′
1 , . . . , q

′′
m ∈ Q and q′j ≡ q′′j for all j ∈ [1,m]. Since

≡ is a congruence relation, we get x ≡ y.
(2) Suppose x ∈ F and β(x) ∈ H , say β(x) = β(u), where u ∈ H. Then

x= ba and u= ca, where b, c ∈ Y and a ∈ [p1, . . . , ps]. Then β(b) = β(c), and
thus b≡ c by (1). If a 6= 1, then u∈H implies x∈H, since ≡ is H-admissible.
If a = 1, then u ∈ H ∩ Y = {1} implies u = 1, whence also x = 1 ∈ H.

(3) Obviously, β is a surjective homomorphism satisfying β−1(1) = {1}.
Assume now that u = q′1 · . . . · q′ma ∈ H, where m ∈ N0, q′1, . . . , q

′
m ∈ Q,

a ∈ F×× [p1, . . . , ps], and β(u) = q′1 · . . . · q′m a = v w for some v, w ∈
H. We may assume that v = q′1 · . . . · q′k a1 and w = q′k+1 · . . . · q′m a2,
where a1, a2 ∈ F××[p1, . . . , ps] and a = a1a2. If v = q′1 · . . . · q′ka1 ∈ F and
w= q′k+1 · . . . · q′ma2 ∈ F , then u = vw, v = β(v) ∈ H, w = β(w) ∈ H, and
(2) implies v, w ∈ H.

(4) If u ∈ H ∩ F×, then u = β(u) ∈ H ∩ F× = H× = {1}.
(5) If a ∈ qαi F , then a = β(qαb), where q ∈ Q, q ≡ qi and b ∈ F .

Then qαi a = β(q2αb), and by (2) we must prove that qαb ∈ H if and only if
q2αb ∈ H.

If b ∈ Y , then qαb ∈ H implies qαb ∈ H ∩ Y = {1}, a contradiction.
Hence qαb 6∈ H and, for the same reason, q2αb 6∈ H. If b 6∈ Y , then the
assertion follows by Lemma 5.3(1), since qα ≡ q2α.

(6) If a ∈ pαj F , then a = β(pαj b) for some b ∈ F , and pαj a = β(p2α
j b).

Hence the assertion follows by (2) and (AC 2).
(7) If 1 6= x = β(x), where x ∈ F(Q)× [p1, . . . , ps], then ux = β(ux)

and vx = β(vx). By (2), we must prove that ux ∈ H implies vx ∈ H. If
x 6∈ F(Q), this follows by Lemma 5.3(1). If x ∈ F(Q) and ux ∈ H, then
ux ∈ H∩Y = {1}, hence x ∈ F× and therefore x = 1. However, we assumed
that x 6= 1.

Proposition 5.5. Let F = F××[p1, . . . , ps] be a factorial monoid with
pairwise non-associated prime elements p1, . . . , ps, and let H ⊂ F be a
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C0-monoid defined by p1, . . . , ps and some congruence relation ≡ on F×

with parameter α.

(1) If E is a finite set and (F× : H×) < ∞, then F(E)×H is also a
C0-monoid.

(2) If S ⊂ H is a saturated submonoid such that H/S is finite, then S
is also a C0-monoid.

Proof. (1) We may assume that (F× : H×) |α, and we denote by ≡H the
congruence modulo H× on F×. We set E = {ps+1, . . . , ps+t}, where t ∈ N0
and

H = H × F(E) = H × [ps+1, . . . , ps+t] ⊂ F = F× × [p1, . . . , ps+t].

Clearly, ≡H is an H-admissible congruence relation on F× with respect to
p1, . . . , ps+t, and F×/≡H = F×/H×. Now it is easily checked that H ⊂ F is
an AC-monoid defined by p1, . . . , ps+t and the congruence relation ≡H with
parameter α.

(2) We set β = |H/S|, and we assert that S is an AC-monoid defined
in F by p1, . . . , ps and some congruence relation ≡∗ with parameter αβ. We
verify the conditions of Definition 5.1.

(AC 1) F×∩S = F×∩H ∩S = H×∩S = S×, since S ⊂ H is saturated.
(AC 2) Suppose that j ∈ [1, s], a ∈ pαβj F , and use the identity (pαβj a)aβ

= a(pαj a)β. If a ∈ S, then pαj a ∈ H, pαβj a ∈ H and (pαj a)β ∈ S. Hence

pαβj a ∈ S, since S ⊂ H is saturated. Conversely, if pαβj a ∈ S, then a ∈ H,
pαj a ∈ H, hence aβ ∈ S and (pαj a)β ∈ S, and thus also a ∈ S, again since
S ⊂ H is saturated.

(AC 3) V = {u ∈ F× | u ≡ 1} ⊂ F× is a subgroup, (F× : V ) |α, and we
assert that V ⊂ q(H). Indeed, if a ∈ H \ F× and v ∈ V , then av ∈ H by
Lemma 5.3(1) and thus v ∈ q(H). Hence W = q(S)∩V ⊂ F× is a subgroup
satisfying (F× : W ) |αβ, and it is easily checked that the congruence modulo
W on F× is S-admissible with respect to p1, . . . , ps.

Now we are ready to proceed with the more subtle arithmetical state-
ments concerning AC-monoids. Proposition 5.6 is the main step in proving
that AC-monoids are locally tame, and Proposition 5.7 asserts that pattern
ideals in C0-monoids are complete.

Proposition 5.6. Let F = Y × [p1, . . . , ps] be as in Definition 5.1 and
H ⊂ F an AC-monoid defined by p1, . . . , ps and some congruence relation
≡ on Y with parameter α ∈ N.

(1) If a ∈ H, I = supp(a) and I∗ = {i ∈ I | {i} ∈ EH}, then
1

2α− 1
max{vpi(a) | i ∈ I∗} ≤ min L(a) ≤

∑

i∈I∗
vpi(a) + |I|(3α− 1).
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(2) If a, b ∈ H, then t(a,Z(b)) ≤ s(2α−1)(ωH(a, b)+1)+sα+max L(b).
(3) For I ∈ EH , we set

uI =
∏

i∈I
pαi .

Then U = {uI | I ∈ EH} is an almost generating set of H.

Proof. (1) If a ∈ H, i ∈ I∗ and vpi(a) ≥ 2α, then p−αi a ∈ H and thus
a 6∈ A(H). Hence vpi(u) ≤ 2α−1 for all u ∈ A(H) and i ∈ I∗, and therefore
max{vpi(a) | i ∈ I∗} ≤ (2α− 1) min L(a), whence the first inequality.

The second inequality is proved by induction on |I|. If I = {i}, then
I∗ = I, and we clearly have min L(a) ≤ vpi(a). Hence we assume that |I| ≥ 2,
we set I ′ = {i ∈ I | vpi(a) < 3α}, and we distinguish two cases.

Case 1: I ′ = ∅. There exists a partition I \ I∗ = I1 ] . . .] It ] I ′′ where
I1, . . . , It are minimial non-empty H-essential subsets of I \ I∗ and I ′′ has
no non-empty H-essential subset. Clearly such a partition exists (but need
not be unique), and we have

|I \ I∗| ≥ |I ′′|+ 2t, whence t ≤ |I|/2.
For every i ∈ I, we have vpi(a) ≥ 3α and therefore vpi(a) = αki + li,
where ki ≥ 2 and α ≤ li < 2α. This supplies us with a decomposition
a = a∗a1 · . . . · ata′′, where

aj =
∏

i∈Ij
pαkii for all j ∈ [1, t],

a∗ =
∏

i∈I∗
pαkii , a′′ = E(a)

∏

i∈I′′
p

vpi (a)
i

∏

i∈I\I′′
plii .

By Lemma 5.3(3) we have a∗, a1, . . . , at ∈ H, and Lemma 5.3(2) implies
a′′ ∈ H. Thus we obtain

min L(a) ≤ min L(a∗) +
t∑

j=1

min L(aj) + min L(a′′),

and we estimate the individual summands. We obviously have

min L(a∗) ≤
∑

i∈I∗
αki ≤

∑

i∈I∗
vpi(a).

Since I ′′ has no non-empty H-essential subset, every atom u dividing a′′

satisfies vpi(u) ≥ 1 for some i ∈ I \ I ′′. Hence

min L(a′′) ≤
∑

i∈I\I′′
li ≤ |I|(2α− 1).

For every j ∈ [1, t], we fix some ij ∈ Ij , and we consider the elements

a′j = p
α(kij−1)
ij

∏

i∈Ij\{ij}
pαi ∈ H, a′′j = pαij

∏

i∈Ij\{ij}
p
α(ki−1)
i ∈ H.
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Since Ij is a minimal non-empty H-essential set, it follows that

min L(aj) ≤ min L(a′j) + min L(a′′j ) ≤ 2α.

Putting all information together, we obtain

min L(a) ≤
∑

i∈I∗
vpi(a) + |I| (2α− 1) + 2αt ≤

∑

i∈I∗
vpi(a) + |I| (3α− 1).

Case 2: I ′ 6= ∅. Let a1 be a maximal divisor of a such that supp(a1)∩I ′
= ∅, and set a = a1a2, where a2 ∈ H. Every atom u dividing a2 satisfies
vpi(u) ≥ 1 for some i ∈ I ′, which implies

min L(a2) ≤
∑

i∈I′
vpi(a) ≤ |I ′| (3α− 1).

By induction hypothesis, we obtain

min L(a1) ≤
∑

i∈I∗
vpi(a1) + |I \ I ′| (3α− 1) ≤

∑

i∈I∗
vpi(a) + |I \ I ′| (3α− 1),

and therefore

min L(a) ≤ min L(a1) + min L(a2) ≤
∑

i∈I∗
vpi(a) + |I| (3α− 1).

(2) We may assume that H is reduced. Suppose that x ∈ Z(b), z =
u1 · . . . · un ∈ Z(a), where u1, . . . , un ∈ A(H), and b | a. We prove that there
exists a factorization z′ ∈ Z(a)∩xZ(H) such that d(z, z′) admits the asserted
bound.

After renumbering if necessary, we may assume that there exists some
m ∈ [0, n] such that b |u1 · . . . · um, say u1 · . . . · um = bc, where c ∈ H. Let
y ∈ Z(c) be a factorization with |y| = min L(c). Then z ′ = xyum+1 · . . . · un
∈ Z(a), and if I∗ = {i ∈ supp(c) | {i} ∈ EH}, then (1) implies

d(z, z′) ≤ max{m, |x|+ |y|}
≤ max

{
ωH(a, b),max L(b) +

∑

i∈I∗
vpi(c) + s(3α− 1)

}
.

For i ∈ I∗, again (1) implies vpi(c) ≤ vpi(bc) ≤ m(2α−1) ≤ ωH(a, b) (2α−1),
and therefore

d(z, z′) ≤ max{m,max L(b) + s(2α− 1)ωH(a, b) + s(3α− 1)}
≤ s(2α− 1)(ωH(a, b) + 1) + sα+ max L(b).

(3) We set n = 2s+1α, and we assert that (H\H×)n ⊂ UH. Suppose that
a = a1 · . . . ·an ∈ (H \H×)n, where a1, . . . , an ∈ H \H×. Then supp(ai) 6= ∅
for all i ∈ [1, n] and |EH | < 2s, and therefore there exists some I ∈ EH such
that |{ν ∈ [1, n] | supp(aν) = I}| > 2α. Hence Lemma 5.3 implies u−1

I a ∈ H,
and thus a ∈ UH.
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Proposition 5.7. Let F = F××[p1, . . . , ps] be a factorial monoid with
pairwise non-associated prime elements p1, . . . , ps, and let H ⊂ F be a C0-
monoid defined by p1, . . . , ps and some congruence relation ≡ on F× with
parameter α. For I ∈ EH , we define

wI =
∏

i∈I
p
α(s+1−|I|)
i ,

and we set W = {wI | I ∈ EH}.
(1) For every θ ∈ N, the set W [θ] is a full almost generating set of H.
(2) Every pattern ideal is complete over W .
(3) If a ⊂ H is an s-ideal which is complete over W , then there exists

some θ0 ∈ N such that for every θ ≥ θ0 the set

Eθ =
⋃

w∈W
wθa[W [θ], wθ] ∪ (a \W [2θ]H) ⊂ a

is a tame generating set of a.

The proof of Proposition 5.7 depends on the following technical Lem-
ma 5.8.

Lemma 5.8. Let all assumptions and notations be as in Proposition 5.7,
I, J ∈ EH and θ ∈ N.

(1) If J ⊂ I, then wJ |ws+1
I .

(2) [[wJ ]] ⊂ [[wI ]] if and only if J ⊂ I.
(3) If a ∈ H, wθI | a and wθJ | a, then wθI∪J | a.
(4) If a ⊂ H is an s-ideal and θ ≥ 2, then there exists a subset

Ω ⊂ a[W [θ], wθI ] such that vpi(b) ≤ 2α − 1 for all b ∈ Ω and i ∈ I, and
a(W [θ], wθI ) ⊂ wθI [[wI ]]Ω.

(5) If a ∈ [[wI ]]−1[[wI ]]H(W [θ], wθI ) ∩H and b ∈ H, then

ωH(a, b) ≤ 2sα(θs+ 1) +
∑

i∈I
vpi(b) + d(C∗(H,F )).

Proof. (1) and (3) follow by a painstaking application of Lemma 5.3,
and (2) holds by (1) and the very definitions.

(4) For every a ∈ a(W [θ], wθI ), we construct an element a∗ ∈ a[W [θ], wθI ] as
follows. If a∈ a(W [θ], wθI ) and i∈ I, then vpi(a)≥ vpi(w

2θ
I ) = 2θα(s+ 1− |I|)

≥ θα(s− |I|+ 1) + 2α. Hence there exist integers li ∈ N and ri ∈ [0, α− 1]
such that vpi(a) = vpi(w

θ
I ) + αli + ri + α, and we obtain

a =
(
wθI
∏

i∈I
pαlii

)
a′,

where α ≤ vpi(a
′) ≤ 2α − 1 for all i ∈ I, and thus a′ ∈ H by Lemma 5.3.

Let now a′′ ∈ [[wI ]] be a maximal divisor of a′, and set a∗ = a′′−1a′. By this
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construction, we obtain

a∗ ∈ HwI ∩ w−θI [[wI ]]−1a(W [θ], wθI ) = a[W [θ], wθI ],

α ≤ vpi(a
∗) ≤ vpi(a

′) ≤ 2α− 1 for all i ∈ I and a ∈ a′wθI [[wI ]] ⊂ a∗wθI [[wI ]].
For every a ∈ a(W [θ], wθI ), we fix an element a∗ ∈ a[W [θ], wθI ] as above.

Then the set Ω of all these elements a∗ has the required properties.
(5) Suppose that a = c−1

1 c2a
′ ∈ H, where c1, c2 ∈ [[wI ]] and a′ ∈

H(W [θ], wθI ). Then w2θ
I | a′ and w2θ

J - a′ for all J ∈ EH satisfying J ! I.
For b ∈ H, we estimate ωH(a, b) by means of Proposition 4.5. It suffices to
prove that for any n ∈ N and a1, . . . , an ∈ H such that a = a1 · . . . · an and
b |H a, there exists a subset Ω ⊂ [1, n] satisfying

|Ω| ≤ 2sα(θs+ 1) +
∑

i∈I
vpi(b), b

∣∣∣
F

∏

ν∈Ω
aν .

Suppose that n ∈ N, a1, . . . , an ∈ H, a = a1 · . . . · an and b |H a. If Ω1 =
{ν ∈ [1, n] | supp(aν) 6⊂ I}, then

∏

i∈[1,s]\I
p

vpi (b)
i

∣∣∣
F

∏

ν∈Ω1

aν ,

and there exists a subset Ω2 ⊂ [1, n] such that

|Ω2| ≤
∑

i∈I
vpi(b),

∏

i∈I
p

vpi (b)
i

∣∣∣
F

∏

ν∈Ω2

aν .

Hence it is sufficient to prove that |Ω1| ≤ 2sα(θs+ 1).
For every subset ∅ 6= L ⊂ [1, s] \ I, we set lL = |{ν ∈ [1, n] | supp(aν) \ I

= L}|, and we assert that lL < (2θs+ 1)α. Once this is proved, we are done
since there are less than 2s−1 such sets L and hence

|Ω1| =
∑

∅6=L⊂[1,s]\I
lL < 2s−1(2θs+ 1)α < 2sα(θs+ 1).

Assume to the contrary that lL ≥ (2θs+1)α for some subset ∅ 6= L ⊂ [1, s]\I.
Then I ∪ L ∈ EH , and we assert that w2θ

I∪L | a′, which gives the desired
contradiction.

In fact, if i ∈ I, then vpi(a
′) ≥ vpi(w

2θ
I ) = 2θα(s+ 1− |I|), and if i ∈ L,

then vpi(a
′) = vpi(a) ≥ lL ≥ (2θs+ 1)α. Hence

vpi(a
′) ≥ 2θα(s+ 1− |I ∪ L|) + α = vpi(w

2θ
I∪L) + α for all i ∈ I ∪ L,

and thus w2θ
I∪L | a′ by Lemma 5.3.

Proof of Proposition 5.7. (1) We set n = 2sθα(s+1), and we assert that
(H \H×)n ⊂W [θ]H. Suppose that a1, . . . , an ∈ H \H× and a = a1 · . . . · an.
Since |EH | < 2s and supp(ai) 6= ∅ for all i ∈ [1, n], there exists some I ∈
EH such that |{ν ∈ [1, n] | supp(aν) = I}| > θα(s + 1). Hence vpi(a) >
θα(s+ 1) ≥ vpi(w

θ
I) + α for all i ∈ I, and thus wθI | a by Lemma 5.3(2).
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It remains to prove thatW [θ] is full, and for this we use [16, Lemma 5.9.2].
We must prove that, for any I ′, I ′′ ∈ EH and a ∈ w2θ

I′ H ∩w2θ
I′′H, there exists

some I ∈ EH such that a ∈ w2θ
I H and w2θ

I′ , w
2θ
I′′ ∈ [[w2θ

I ]]. By Lemma 5.8(3),
the set I = I ′ ∪ I ′′ has the required properties.

(2) Let a ⊂ H be a pattern ideal. By [16, Theorem 5.7], it is sufficient
to prove that for every w ∈ W and every θ ∈ N with θ ≥ 2, there exists
some subset Ω ⊂ H[W [θ], wθ] such that H(W [θ], wθ) ⊂ wθ[[w]]Ω, and there
exists a decomposition Ω = Ω1 ∪ . . . ∪ Ωt with the following property: For
all ν ∈ [1, t], a ∈ [[w]] and b, b′ ∈ Ων , we have ab ∈ a if and only if ab′ ∈ a.

Suppose that w = wI for some I ∈ EH and θ ∈ N with θ ≥ 2. By
Lemma 5.8(4) there exists a subset Ω ⊂ H[W [θ], wθI ] such that H(W [θ], wθI )
⊂ wθI [[wI ]]Ω and vpi(b) ≤ 2α− 1 for all i ∈ I and b ∈ Ω. The desired decom-
position of Ω is furnished by Theorem 4.6 with S = [[wI ]]. By Theorem 5.4(1)
and Proposition 4.2 it follows that C∗(A(H), F ) is finite, and thus we must
prove that

sup{ωH(ab, b) | a ∈ [[wI ]], b ∈ Ω} <∞.
If a ∈ [[wI ]] and b ∈ Ω ⊂ H[W [θ], wθI ], then ab ∈ [[wI ]]H[W [θ], wθI ] ⊂
[[wI ]]−1[[wI ]]H(W [θ], wθI ) ∩H, and Lemma 5.8(5) implies

ωH(ab, b) ≤ 2sα(θs+ 1) +
∑

i∈I
vpi(b) + d(C∗(H,F ))

≤ 2sα(θs+ 1) + (2α− 1)s+ d(C∗(H,F )).

(3) By [16, Theorem 5.6], there exists some θ0 ≥ 2 such that a is
W [θ]-generated for all θ ∈ N with θ ≥ θ0. Let θ ≥ θ0 be given. By [16,
Lemma 5.9.1], there exists some M0 ∈ N such that max L(b) ≤ M0 for all
w ∈ W and b ∈ H[W [θ], wθ]. We shall use [16, Theorem 5.10] to prove that
Eθ is a tame generating set of a, and therefore we must establish the exis-
tence of some bound M ∈ N with the following property: For every w ∈ W
and a ∈ a(W [θ], wθ), there exists some b ∈ a[W [θ], wθ] such that wθb | a and
t(a,Z(b)) ≤M .

Suppose that w = wI for some I ∈ EH and a ∈ a(W [θ], wθI ). By Lem-
ma 5.8(4) there exists some b ∈ a[W [θ], wθI ] such that wθIb | a and vpi(b) ≤
2α−1 for all i∈ I. Since a(W [θ], wθI )⊂H(W [θ], wθI )⊂ [[wI ]]−1[[wI ]]H(W [θ], wθI )
∩H, Lemma 5.8(5) implies

ωH(a, b) ≤ 2sα(θs+ 1) + (2α− 1)s+ d(C∗(H,F )) = M1 (say).

By Proposition 5.6(2) it follows that t(a,Z(b)) ≤ s(2α−1)(M1+1)+sα+M0,
giving the asserted bound.

Theorem 5.9 (Main Theorem on AC-monoids). If H is an AC-monoid
defined in some factorial monoid F , then H is finitary , locally tame,
c(H) <∞, and the Structure Theorem for Sets of Lengths holds for H.
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Proof. Let F be a factorial monoid, Y ⊂ F a submonoid, s ∈ N and
p1, . . . , ps pairwise non-associated prime elements of F such that F = Y ×
[p1, . . . , ps], and assume that H ⊂ F is an AC-monoid defined by p1, . . . , ps
and a congruence relation ≡ on Y with parameter α. Since F is a BF-monoid
and F× ∩H = H×, it follows by [22, Theorem 3] that H is a BF-monoid,
and thus it is finitary by Proposition 5.6(3).

By Theorem 5.4(1), the semigroup C = C∗(H,F ) is finite. If a ∈ H, and
u ∈ A(H) is a product of τ(u) primes of F , then Proposition 4.5 implies
ωH(a, u) ≤ ωF (a, u) + d(C) ≤ τ(u) + d(C) for all a ∈ H. Using Proposi-
tion 5.6(2) we deduce that t(a,Z(u)) ≤ s(2α− 1)[τ(u) + d(C) + 1] + sα+ 1.
Since the right hand side is independent of a, it is a bound for t(H,u), and
therefore H is locally tame. By [17, Theorem 3.10] we have c(H) <∞, and
therefore ∆(H) is finite.

It remains to prove that the Structure Theorem for Sets of Lengths
holds for H. By Theorem 5.4(3) it suffices to do this for a C0-monoid, and
by Theorem 2.2 it suffices to prove that in a C0-monoid pattern ideals are
tamely generated. But this was proved in Proposition 5.7.

6. Proof of the Main Theorem for congruence monoids in
Dedekind domains

Theorem 6.1. Let R be a Dedekind domain and f an ideal of R such
that R/f is finite. Let σ be a sign vector of R, ∅ 6= Γ ⊂ R/fσ a multiplica-
tively closed subset and H = HΓ ⊂ R• the congruence monoid defined in R
modulo fσ by Γ .

(1) If R is semilocal , f is contained in all maximal ideals of R and
Γ ∩ (R/fσ)× 6= ∅, then H is a C0-monoid defined in some factorial monoid
F such that (F× : H×) <∞.

(2) If Γ ∩ (R/fσ)× = ∅ and the ideal class group of R is finite, then H
is an AC-monoid.

Proof. We set P = max(R) and f = pe11 · . . . · pess , where p1, . . . , ps ∈ P
are distinct and e1, . . . , es ∈ N. We denote by Pf = P \ {p1, . . . , ps} the set
of all maximal ideals of R which are coprime to f, by I = F(P) the monoid
of non-zero ideals of R and by If = F(Pf) ⊂ I the submonoid of all ideals
coprime to f. By [10, Theorem 6.28], we have C(R) = {[a] | a ∈ If}. If R is
semilocal, then R is a principal ideal domain and Pf = ∅.

Being a Krull monoid, R• splits in the form R• = R××S, where S is
a submonoid of a free monoid D such that the inclusion map S ↪→ D is a
divisor theory (see [25, Theorem 23.4]). The canonical map R• → I, defined
by a 7→ aR, is also a divisor theory. By the uniqueness of divisor theories,
there exists an isomorphism
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Φ: I ∼→ D, written in the form a 7→ aΦ,

such that (aR)Φ = a for all a ∈ S. Then D = F(PΦ), and we set pi = pΦi
for all i ∈ [1, s]. Then Φ induces an isomorphism C(R) ∼→ D/S given by the
assignment [a] 7→ [aΦ]D/S.

We consider the factorial monoid

F = R××D = Y × [p1, . . . , ps], where Y = R××IΦf = R××F(PΦf ).

Then H ⊂ R• ⊂ F are submonoids, and Tf = Y ∩ R• is the monoid of
all a ∈ R• which are coprime to f. If u ∈ Y , then u = εuΦ with (uniquely
determined) ε ∈ R× and u ∈ If, and we have u ∈ R• if and only if u is a
principal ideal.

We shall prove that H ⊂ F is an AC-monoid defined by p1, . . . , ps and
some congruence relation ≡ on Y with parameter

α = 2 max{e1, . . . , es}|C(R)| |(R/f)×|.
If R is semilocal, then Y = R×, F = R•, and H is a C0-monoid. If R is
semilocal and Γ ∩ (R/fσ)× 6= ∅, then V = {a ∈ R | a ≡ 1 mod fσ} ⊂ H×,
and since R×/V ∼= (R/fσ)× is finite, it follows that F×/H× is finite.

We check the conditions of Definition 5.1.
(AC 1) The inclusion H× ⊂ Y ∩H is obvious. If Γ ∩ (R/f)× = ∅, then

Y ∩ H = {1} = H×. If R is semilocal and Γ ∩ (R/f)× 6= ∅, then Y = R×

and Γ ∩ (R/fσ)× is a group. If u ∈ Y ∩H ⊂ R×, then [u−1]fσ = [u]−1
fσ ∈ Γ ,

hence u−1 ∈ Y ∩H, and thus u ∈ H×.
(AC 2) Suppose that j ∈ [1, s] and a ∈ pαj F . Then pαj ∈ R•, and thus

a ∈ R• if and only if pαj a ∈ R•. Since pαj a ≡ a ≡ 0 mod p
ej
j , pαj ≡ 1 mod peii

for all i ∈ [1, s]\{j} and 2 |α, we get pαj a ≡ a mod fσ. Since a 6= 1, it follows
that pαj a ∈ H if and only if a ∈ H.

(AC 3) For u, v ∈ Y , we define u ≡ v if and only if there exists some
c ∈ Y such that uc, vc ∈ R• and uc ≡ vc mod fσ. We must prove that ≡ is
transitive, compatible with multiplication, Y/≡ is a finite group, and ≡ is
H-admissible.

First of all, if u, v, c ∈ Y , say u = εuΦ, v = ηvΦ and c = γcΦ, where
ε, η, γ ∈ R× and u, v, c ∈ If, then we have uc = εγ(uc)Φ ∈ R if and only if
c ∈ −[u]. Hence u ≡ v implies [u] = [v], and if c′ ∈ Y , then c′u ∈ R• implies
c′v ∈ R•. We assert that even uc′ ≡ vc′ mod fσ. Indeed, if c ∈ Y is such
that uc, vc ∈ R• and uc ≡ vc mod fσ, then (uc′)(uc) ≡ (vc′)(uc) mod fσ,
and uc ∈ Tf implies uc′ ≡ vc′ mod fσ.

If u, v, w ∈ Y , u ≡ v and v ≡ w, then there exists some c ∈ Y such that
uc, vc ∈ R• and uc ≡ vc mod fσ, and by the above, we also have wc ∈ R•
and vc ≡ wc mod fσ, whence u ≡ w.
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If u, v, w ∈ Y and u ≡ v, let c, d ∈ Y be such that uc, vc, wd ∈ R• and
uc ≡ vc mod fσ. Then (uw)(cd), (vw)(cd) ∈ R• and (uw)(cd) ≡ (vw)(cd)
mod fσ implies uw ≡ vw.

If u = εuΦ ∈ Y , where ε ∈ R× and u ∈ If, let c ∈ (−[u])∩If be arbitrary,
and set c = cΦ ∈ Y . Then uc ∈ Tf, and there exists some w ∈ Tf such that
ucw ≡ 1 mod fσ. Then cw ∈ Y and u(cw) ≡ 1. Hence Y/≡ is a group.

Let {a1, . . . , ah} ⊂ If be a set of representatives for C(R), and let
{x1, . . . , xm} ⊂ Tf be a set of representatives for (R/fσ)×. Then {aΦi xj |
i ∈ [1, h], j ∈ [1,m]} ⊂ Y is a set of representatives for Y/≡, and thus
|Y/≡| = |C(R)| |(R/fσ)×| divides α.

We finally prove that ≡ is H-admissible. Suppose that u, v ∈ Y , u ≡ v,
a ∈ [p1, . . . , ps] \ {1} and au ∈ H ⊂ R•. Let c ∈ Y be such that cu, cv ∈ R•
and cu ≡ cv mod fσ. Since (cv)(au) = (cu)(av) and cu ∈ Tf, we obtain
au ≡ av mod fσ and therefore also av ∈ H, since au 6= 1.

Proof of Theorem 3.6. If Γ ∩ (R/fσ)× = ∅, or if R is semilocal and
f is contained in every maximal ideal of R, then H is an AC-monoid by
Theorem 6.1, and the assertions follow by Theorem 5.9.

Assume now that Γ∩(R/fσ)× 6= ∅. We set Tf = {a ∈ R• | a+f ∈ (R/f)×},
and we consider (as in Section 3) the congruence monoid HΓ,f, defined
in the semilocal Dedekind domain T−1

f R modulo T−1
f f by Γ ⊂ R/fσ =

T−1
f R/T−1

f fσ. Note that T−1
f f is contained in every maximal ideal of T−1

f R.
By Theorem 6.1(1), HΓ,f is a C0-monoid defined in some factorial monoid
F such that (F× : H×Γ,f) < ∞, and Theorem 5.4(2) implies that then
(HΓ,f)red is a C0-monoid defined in the factorial monoid F = F/H×Γ,f for
which F× is finite. By Theorem 3.5, there exists a divisor homomorphism
∂: H → F(Pf)×(HΓ,f)red whose class group C(∂) fits into an exact sequence

(R/fσ)× → C(∂)→ C(R)→ 0.

By assumption, the groups C(R) and (R/f)× are finite, and by Lemma 3.2(3)
the group (R/fσ)× is finite as well. Hence C(∂) is finite.

To finish the proof, we need the block monoid B associated with the
divisor homomorphism ∂. We recall its definition and basic properties from
[24, Section 5]. Let C0 = {[p]∂ | p ∈ Pf} ⊂ C(∂) be the set of all classes
containing primes, and let

β: F(Pf)× (HΓ,f)red → F(C0)× (HΓ,f)red

be the unique monoid homomorphism satisfying β(p) = [p]∂ for all p ∈ Pf

and β|(HΓ,f)red = id. Then the monoid B = β ◦ ∂(H) is called the block
monoid and the homomorphism β = β ◦ ∂: H → B is called the block
homomorphism associated with ∂. Furthermore, β is a transfer homomor-
phism, B ⊂ F(C0)×(HΓ,f)red is a saturated submonoid, and the class group
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F(C0)×(HΓ,f)red/B is isomorphic to C(∂). By Proposition 5.5(1), the monoid
F(C0)×(HΓ,f)red is a C0-monoid, and therefore B is a C0-monoid by Propo-
sition 5.5(2). In particular, B is locally tame, c(B) < ∞, and the Structure
Theorem for Sets of Lengths holds for B by Theorem 5.9. Hence the Struc-
ture Theorem for Sets of Lengths also holds for H.

By [13, Propositon 4.2], c(H) < ∞, and by [12, Proposition 3.7], H is
locally tame (however, see the remark below).

Remark 6.2. The second inequality in [12, Proposition 3.7] is not cor-
rect as it stands. It must read

tH(H ′, u) ≤ tB(β(H ′), β(u)) +D(G0) + δ.

Since A(B) = {β(u) | u ∈ A(H)}, this inequality shows that the local
tameness of B implies that of H.

We indicate the necessary modifications in the proof of [12, Proposi-
tion 3.7]. Let a ∈ H ′ ∩ uH and z ∈ Z(a) be given. Set U = β(u) ∈
A(B) and Z = β(z) ∈ Z(B). If U |Z one can argue as in [12] (there it
is Case 2) to obtain a factorization z′ ∈ Z(a) ∩ uZ(H) such that d(z, z′) ≤
D(G0) + δ. If U -Z, there exists a factorization Z1 ∈ Z(β(a)) ∩ UZ(B) such
that d(Z,Z1) ≤ dB(β(H ′), U). As in the proof of Proposition 4.2 in [13], we
find a factorization z1 ∈ Z(a) such that β(z1) = Z1 and d(z, z1) = d(Z,Z1).
Since U |Z1, we can apply the case already done and obtain a factorization
z′ ∈ Z(a)∩uZ(H) satisfying d(z′, z1) ≤ D(G0)+δ. Now the assertion follows
by the inequality d(z, z′) ≤ d(z, z1) + d(z1, z

′).
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