A measure-theoretic approach to the invariants of the Selberg class

by

J. KACZOROWSKI (Poznań) and A. PERELLI (Genova)

1. Introduction. In [6] and [7] we defined and studied the invariants of the Selberg class \mathcal{S} (to be precise, of the extended Selberg class \mathcal{S}^{\sharp}). We refer to our survey papers [3], [5], [9] and [10] for the definitions and basic properties of the classes \mathcal{S} and \mathcal{S}^{\sharp} . Here we recall that \mathcal{S}^{\sharp} is the class of non-identically vanishing Dirichlet series

(1.1)
$$F(s) = \sum_{n=1}^{\infty} \frac{a_n(F)}{n^s}$$

absolutely convergent for $\sigma > 1$, such that $(s-1)^m F(s)$ is entire of finite order for some non-negative integer m and F(s) satisfies a functional equation of the form

(1.2)
$$\Phi(s) = \omega \overline{\Phi}(1-s),$$

where $\overline{f}(s) = \overline{f(\overline{s})}$, $|\omega| = 1$ and

$$\Phi(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j) F(s) = \gamma(s) F(s),$$

say, with $r \geq 0$, Q > 0, $\lambda_j > 0$ and $\Re \mu_j \geq 0$ (r = 0 means that there are no Γ -factors). S is the subclass of the functions $F \in S^{\sharp}$ satisfying the Ramanujan conjecture $a_n(F) \ll n^{\varepsilon}$ for every $\varepsilon > 0$ and having an Euler product of type

$$\log F(s) = \sum_{n=2}^{\infty} \frac{b_n(F)}{n^s}$$

with $b_n(F) = 0$ unless $n = p^m$, and $b_n(F) \ll n^\theta$ for some $\theta < 1/2$.

We recall that the notion of invariant of S^{\sharp} arises from the fact that the data Q, λ_j, μ_j and ω of the functional equation of a function $F \in S^{\sharp}$ are not

²⁰⁰⁰ Mathematics Subject Classification: Primary 11M41.

Key words and phrases: invariants of the Selberg class, L-functions.

uniquely determined by F(s) (due, essentially, to the multiplication formula for the Γ function). Thus, an invariant is an expression defined by means of such data, but depending only on F(s); invariants are denoted by I or by I_F or I(F) (particularly when referred to a function $F \in S^{\sharp}$). We refer to [6] and [7] for the meaning of several interesting invariants, such as the degree

$$d_F = 2\sum_{j=1}^r \lambda_j,$$

the conductor

$$q_F = (2\pi)^{d_F} Q^2 \prod_{j=1}^r \lambda_j^{2\lambda_j},$$

the root number

$$\omega_F^* = \omega e^{-i\frac{\pi}{2}(\eta_F + 1)} \left(\frac{q_F}{(2\pi)^{d_F}}\right)^{i\theta_F/d_F} \prod_{j=1}^r \lambda_j^{-2i\Im\mu_j}$$

and the H-invariants

$$H_F(n) = 2 \sum_{j=1}^{r} \frac{B_n(\mu_j)}{\lambda_j^{n-1}},$$

where $B_n(z)$ denotes the *n*th Bernoulli polynomial; for example, $H_F(0) = d_F$. Note that the root number ω_F^* factors as

(1.3)
$$\omega_F^* = \left(\omega\prod_{j=1}^r \lambda_j^{-2i\Im\mu_j}\right) \left(e^{-i\frac{\pi}{2}(\eta_F+1)} \left(\frac{q_F}{(2\pi)^{d_F}}\right)^{i\theta_F/d_F}\right) = \omega_F' \omega_F'',$$

say, where ω_F'' is clearly an invariant, and hence ω_F' is an invariant as well. We further recall that an invariant I is called *numerical* if $I(F) \in \mathbb{C}$ for every $F \in S^{\sharp}$ (it is easy to construct invariants which are not numerical); in other words, a numerical invariant I is a function $I : S^{\sharp} \to \mathbb{C}$. Note that both S and S^{\sharp} are multiplicative semigroups, i.e. $FG \in S$ (resp. S^{\sharp}) if $F, G \in S$ (resp. S^{\sharp}), the H-invariants are additive, i.e. $H_{FG}(n) = H_F(n) + H_G(n)$, and the conductor and ω_F' are multiplicative, i.e. $q_{FG} = q_F q_G$ and $\omega_{FG}' = \omega_F' \omega_G'$. The set of functions $F \in S$ (resp. S^{\sharp}) with $d_F = d$ is denoted by S_d (resp. S_d^{\sharp}), and the order of the pole of F(s) at s = 1 is denoted by m_F .

A fundamental problem in the theory of the Selberg class is describing the admissible values of numerical invariants, i.e. the set of values that such a numerical invariant attains at the functions of S and S^{\sharp} . For some invariants there are nice conjectures about admissible values, for example the *degree conjecture* (asserting that $d_F \in \mathbb{N}$ for every $F \in S^{\sharp}$) and the *conductor conjecture* (asserting that $q_F \in \mathbb{N}$ for every $F \in S$). In this paper we develop a measure-theoretic approach to this problem. In order to state the results we need some definitions; we will refer to Kechris' book [8] for all the definitions and results needed from topology and measure theory. We denote by \mathbb{R}^+ and \mathbb{C}^+ the positive real numbers and the complex numbers with non-negative real part, respectively, and by T^1 the unit circle. A numerical invariant I is called *continuous* if for every non-negative integer r there exists a continuous function

$$f_{I,r}: \mathbb{R}^+ \times (\mathbb{R}^+ \times \mathbb{C}^+)^r \times T^1 \to \mathbb{C}$$

such that

(1.4)
$$I(F) = f_{I,r}(Q, \lambda, \mu, \omega)$$

if $F \in S^{\sharp}$ satisfies functional equation (1.2), where $\lambda = (\lambda_1, \ldots, \lambda_r)$ and $\mu = (\mu_1, \ldots, \mu_r)$. Examples of continuous invariants are the *H*-invariants, the conductor and the root numbers ω_F^* , ω_F' and ω_F'' . Moreover, the real and imaginary parts of a continuous invariant are also continuous invariants.

For technical reasons, it is convenient to work with a slightly more general class than S^{\sharp} , denoted by $S^{\sharp\sharp}$ and consisting of the Dirichlet series (1.1), absolutely convergent for σ sufficiently large and satisfying exactly the same meromorphic continuation and functional equation axioms of S^{\sharp} . Clearly, $S^{\sharp\sharp}$ is a multiplicative semigroup with identity 1 and S, S^{\sharp} are subsemigroups of $S^{\sharp\sharp}$. Note that the definitions and the main properties pertaining to S^{\sharp} carry over to $S^{\sharp\sharp}$. In particular, it is easy to see that Conrey–Ghosh's [1] result that the γ -factors $\gamma(s)$ of F(s) are uniquely determined up to a constant factor (see also Theorem 8.1 of [5]) holds for $S^{\sharp\sharp}$ as well, and the invariant theory of S^{\sharp} carries over to $S^{\sharp\sharp}$.

Let $\mathcal{I} = \{I_j\}_{j \in J}$ with $J \subset \mathbb{N}$ be a countable family of continuous invariants and, for $F, G \in S^{\sharp\sharp}$, write

$$\varrho_{\mathcal{I}}(F,G) = \sum_{j \in J} \frac{1}{2^j} \frac{|I_j(F) - I_j(G)|}{1 + |I_j(F) - I_j(G)|} + \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|a_n(F) - a_n(G)|}{1 + |a_n(F) - a_n(G)|}.$$

It is easy to check that $\rho_{\mathcal{I}}$ is a metric on $\mathcal{S}^{\sharp\sharp}$ (recall that if d(x, y) is a metric then so is d'(x, y) = d(x, y)/(1 + d(x, y)), and the proof for $\rho_{\mathcal{I}}$ is similar). We define the \mathcal{I} -Borel sets to be the Borel sets of the metric space ($\mathcal{S}^{\sharp\sharp}, \rho_{\mathcal{I}}$), and we denote by $\mathcal{B}(\mathcal{I})$ the set of the \mathcal{I} -Borel sets. We recall that a topological space X is σ -compact if

$$X = \bigcup_{n=1}^{\infty} K_n$$

with compact sets K_n satisfying $K_n \subset K_{n+1}$. Our first result is

THEOREM 1. Let \mathcal{I} be a countable family of continuous invariants. Then $(\mathcal{S}^{\sharp\sharp}, \varrho_{\mathcal{I}})$ is a σ -compact metric space and $\mathcal{S}, \mathcal{S}^{\sharp} \in \mathcal{B}(\mathcal{I})$.

Theorem 1 is a basic topological result from which the following measuretheoretic consequences are deduced. THEOREM 2. Let \mathcal{I} be a countable family of continuous invariants. Then I(B) is Lebesgue measurable for every $B \in \mathcal{B}(\mathcal{I})$ and every $I \in \mathcal{I}$.

In particular, from Theorems 1 and 2 we see that I(S) and $I(S^{\sharp})$ are Lebesgue measurable for every continuous invariant I. We remark that the measurability of I(B) in Theorem 2 is obtained via Lusin's theorem (see Theorem 21.10 of [8]), and therefore I(B) is in fact measurable for every σ -finite Borel measure, although we will only consider the Lebesgue measure in this paper.

B = S or $B = S^{\sharp}$ are probably the most interesting cases of Theorem 2, and can be proved by starting directly from a single invariant I (instead of a family \mathcal{I} containing I); the same remark applies to most cases where a specific set and invariant are involved. However, the definition of the metric by means of a family of invariants allows a convenient and wider choice of Borel sets, and hence a larger range of applications of our results. In fact, for example, adding a continuous invariant I to a family \mathcal{I} we have $\mathcal{B}(\mathcal{I}) \subset \mathcal{B}(\mathcal{I} \cup \{I\})$. As an illustration we state the following simple corollary (examples are given later on).

COROLLARY 1. Let I_0 be a continuous invariant and $B \in \mathcal{B}(I_0)$. Then I(B) is Lebesgue measurable for every continuous invariant I.

The condition that B is a Borel set in Theorem 2 can be relaxed if we assume more about the invariants of the family \mathcal{I} . Given $B \in \mathcal{B}(\mathcal{I})$, let G be the subsemigroup of $\mathcal{S}^{\sharp\sharp}$ generated by B; we say that G is an \mathcal{I} -Borel generated semigroup.

THEOREM 3. Let \mathcal{I} be a countable family of continuous invariants such that every $I \in \mathcal{I}$ is additive or multiplicative. Then I(G) is Lebesgue measurable for every \mathcal{I} -Borel generated semigroup G and every $I \in \mathcal{I}$.

In analogy with Corollary 1, here is a corollary illustrating the usefulness of the family \mathcal{I} .

COROLLARY 2. Let I_0 be an additive or multiplicative continuous invariant, $B \in \mathcal{B}(I_0)$, and G the semigroup generated by B. Then I(G) is Lebesgue measurable for every additive or multiplicative continuous invariant I.

Of course, the set B in Corollaries 1 and 2 can be intersected with S or S^{\sharp} , and the conclusions still hold.

Of particular interest are the subsemigroups G of $S^{\sharp\sharp}$ such that I(G) is Lebesgue measurable for an invariant I (not necessarily continuous). In such a case, G is called an *I-measurable* semigroup. In view of Theorem 3, a first class of examples of such semigroups is given by the \mathcal{I} -Borel generated semigroups with all $I \in \mathcal{I}$ additive or multiplicative. Another class of examples (not disjoint from the previous one) is provided by Theorem 2

and consists of the \mathcal{I} -Borel semigroups, that is, the \mathcal{I} -Borel sets which are semigroups themselves. Explicit examples of measurable semigroups are as follows. First of all, by Theorem 1, \mathcal{S} and \mathcal{S}^{\sharp} are *I*-measurable for every continuous *I* are \mathcal{S}_0 and \mathcal{S}_0^{\sharp} . In fact, these sets are semigroups and Corollary 1 can clearly be applied. We recall (see [1] and [4]) that $\mathcal{S}_0 = \{1\}$ and \mathcal{S}_0^{\sharp} is a certain set of Dirichlet polynomials. Moreover, thanks to Corollary 2, the following are examples of semigroups *I*-measurable for every additive or multiplicative continuous *I*. Recalling that *d* denotes the degree, G^{Dir} , generated by $d^{-1}(\{1\}) \cap \mathcal{S} = \mathcal{S}_1$, is the semigroup generated by the Riemann zeta function and the shifted Dirichlet *L*-functions (see [4]). $G^{(1)}$, generated by $d^{-1}(\{1\}) \cap \mathcal{S}^{\sharp} = \mathcal{S}_1^{\sharp}$, can also be explicitly described (see [4]). Finally, we also mention $G^{(2)}$, generated by $d^{-1}(\{2\}) \cap \mathcal{S}^{\sharp} = \mathcal{S}_2^{\sharp}$.

In the case of *I*-measurable semigroups *G* with *I* additive or multiplicative we can say more about $\mu(I(G))$, where μ denotes the Lebesgue measure. Indeed, we have the following simple 0-1 *laws* for additive and multiplicative invariants.

THEOREM 4. Let G be an I-measurable semigroup. If I is additive and real-valued, then either $\mu(I(G)) = 0$ or I(G) contains a half-line. If I is multiplicative and takes values in T^1 (resp. \mathbb{R}^+), then either $\mu(I(G)) = 0$ or $I(G) = T^1$ (resp. I(G) contains a half-line).

As is clear from the above discussion, Theorem 4 is closely related to Theorems 2 and 3. In fact, from Theorems 2–4 we easily deduce the following consequences. In view of the degree conjecture, the first part of Theorem 4 is particularly interesting in the case of the degree d, where $\mu(d(\mathcal{S}^{\sharp})) = 0$ is expected. Examples of measurable semigroups G with $\mu(d(G)) = 0$ are \mathcal{S}_0 , \mathcal{S}_0^{\sharp} , G^{Dir} and $G^{(1)}$.

The most interesting special case of the second part of Theorem 4 is the conductor q, and the conductor conjecture suggests that $\mu(q(\mathcal{S})) = 0$. For example, it follows from the characterization of the functions of degree 0 and 1 of \mathcal{S} and \mathcal{S}^{\sharp} (see [4]) that

$$\mu(q(\mathcal{S}_0)) = \mu(q(\mathcal{S}_0^{\sharp})) = \mu(q(G^{\mathrm{Dir}})) = \mu(q(G^{(1)})) = 0.$$

However, probably $q(S^{\sharp})$ contains a half-line. In fact, in view of Hecke's theory for the groups $G(\lambda)$ (see Hecke's book [2]), already $q(G^{(2)})$ will probably contain a half-line.

Another interesting multiplicative invariant is the root number ω'_F defined by (1.3). In view of [4] we have $\mu(\omega'(S_1)) = 0$, while $\omega'(G^{(1)}) = T^1$. Moreover, since the weight k in Hecke's theory with $\lambda > 2$ is arbitrary, it is very likely that $\omega'(G^{(2)}) = T^1$. We finally remark that in all known or conjectural cases, if the set of values of a continuous invariant has 0-measure, then it is countable. We therefore state the following conjecture, clearly related to Theorem 4.

CONJECTURE. Let I be a continuous invariant and G be an I-measurable semigroup. If I is additive or multiplicative with values in \mathbb{R}^+ , then either I(G) is countable or it contains a half-line.

A similar conjecture can be made for multiplicative continuous invariants with values in T^1 ; in this case, either I(G) is countable or $I(G) = T^1$.

2. Proofs. In order to prove Theorem 1 we need three lemmas.

LEMMA 1. Let \mathcal{I} be a countable family of continuous invariants. Then for every n = 1, 2, ... and every $I \in \mathcal{I}$, the functions $F \mapsto a_n(F)$ and $F \mapsto I(F)$ are continuous with respect to the metric $\varrho_{\mathcal{I}}$.

Proof. Given a sequence $F_m \to F_0$ in $(\mathcal{S}^{\sharp\sharp}, \varrho_{\mathcal{I}})$ we have $\varrho_{\mathcal{I}}(F_m, F_0) \to 0$, hence, in particular,

$$\frac{|a_n(F_m) - a_n(F_0)|}{1 + |a_n(F_m) - a_n(F_0)|} \to 0 \quad \text{and} \quad \frac{|I_j(F_m) - I_j(F_0)|}{1 + |I_j(F_m) - I_j(F_0)|} \to 0,$$

whence $a_n(F_m) \to a_n(F_0)$ and $I_j(F_m) \to I_j(F_0)$.

For $R \geq 2$ integer, let $S^{\sharp\sharp}(R)$ be the set of $F \in S^{\sharp\sharp}$ such that

$$r \le R$$
, $\frac{1}{R} \le Q, \lambda_j \le R$, $|\mu_j| \le R$, $m_F \le R$, $\sum_{n=1}^{\infty} \frac{|a_n(F)|}{n^R} \le R$

and

$$|F(s)| \le e^{|s|^R} \quad \text{for } |s| \ge 2.$$

Clearly, $\mathcal{S}^{\sharp\sharp}(R) \subset \mathcal{S}^{\sharp\sharp}(R+1)$ and

(2.1)
$$\mathcal{S}^{\sharp\sharp} = \bigcup_{R=2}^{\infty} \mathcal{S}^{\sharp\sharp}(R).$$

LEMMA 2. Let \mathcal{I} be a countable set of continuous invariants. Then for $R = 2, 3, \ldots, S^{\sharp\sharp}(R)$ is a compact subset of $(S^{\sharp\sharp}, \varrho_{\mathcal{I}})$.

Proof. Let $F_m \in S^{\sharp\sharp}(R)$, $m = 1, 2, \ldots$ By the compactness of closed bounded intervals of \mathbb{R} , there exists a subsequence, which for ease of notation we still denote by (F_m) , such that $r_m = r_0 \leq R$ and $m_{F_m} = m_0 \leq R$ for every m, and the sequences (Q_m) , $(\lambda_{j,m})$, $(\mu_{j,m})$, (ω_m) and $(a_n(F_m))$ are convergent to Q_0 , $\lambda_{j,0}$, $\mu_{j,0}$, ω_0 and $a_{n,0}$, respectively, all satisfying the above bounds. For $\sigma > R$ we put

$$F_0(s) = \sum_{n=1}^{\infty} \frac{a_{n,0}}{n^s}$$

which is well defined since as $m \to \infty$,

(2.2)
$$\sum_{n=1}^{\infty} \frac{|a_n(F_m)|}{n^R} \to \sum_{n=1}^{\infty} \frac{|a_{n,0}|}{n^R} \le R.$$

Our aim now is to prove that $F_0 \in S^{\sharp\sharp}(R)$ and $F_m(s) \to F_0(s)$ as $m \to \infty$, with respect to the metric $\varrho_{\mathcal{I}}$, thus showing that $S^{\sharp\sharp}(R)$ is compact.

We first prove that $F_0 \in S^{\sharp\sharp}(R)$. By the definition of $S^{\sharp\sharp}(R)$ and the choice of m_0 the functions

$$H_m(s) = (s-1)^{m_0} F_m(s)$$

are entire of order $\leq R$. Moreover, by the functional equation, for $t \in \mathbb{R}$ we have

$$|H_m(1 - R + it)| \le (R + |t|)^R \frac{|\gamma_{F_m}(R + it)|}{|\gamma_{F_m}(1 - R + it)|} |F_m(R + it)| \le c_0(R)(|t| + 2)^{c_1(R)}$$

for some constants $c_j(R)$, j = 0, 1, hence by the Phragmén–Lindelöf theorem we get

$$|H_m(\sigma + it)| \le c_0(R)(|t|+2)^{c_1(R)}, \quad \sigma \ge 1 - R$$

Hence there exists a subsequence of $(H_m(s))$ which converges to

$$H_0(s) = (s-1)^{m_0} \widetilde{F_0}(s)$$

uniformly over compact sets in $\sigma \geq 1 - R$; note that $F_0(s)$ is meromorphic for $\sigma > 1 - R$ with at most a pole of order $\leq R$ at s = 1. But $(H_m(s))$ is convergent to $(s - 1)^{m_0} F_0(s)$ for $\sigma > R$, thus $F_0(s) = \widetilde{F_0}(s)$ for $\sigma > R$, giving a meromorphic continuation of $F_0(s)$ to $\sigma \geq 1 - R$ with at most a pole of order $\leq R$ at s = 1. Writing

$$\gamma_0(s) = Q_0^s \prod_{j=1}^{r_0} \Gamma(\lambda_{j,0}s + \mu_{j,0}),$$

we have

$$\gamma_0(s) = \lim_{m \to \infty} \gamma_m(s), \quad \gamma_m(s) = Q_m^s \prod_{j=1}^{r_0} \Gamma(\lambda_{j,m}s + \mu_{j,m})$$

uniformly over compact sets of \mathbb{C} not containing the poles of the $\gamma_m(s)$'s, and for $1 - R \leq \sigma \leq R$ the function $F_0(s)$ satisfies the functional equation

(2.3)
$$\gamma_0(s)F_0(s) = \omega_0\overline{\gamma}_0(s)\overline{F}_0(s).$$

This provides a meromorphic continuation of $F_0(s)$ to \mathbb{C} . Moreover, the bound

(2.4)
$$|F_0(s)| \le e^{|s|^R}, \quad |s| \ge 2,$$

follows by a limiting process from the same bounds for the $F_m(s)$'s. Thus, $F_0 \in S^{\sharp\sharp}(R)$ in view of (2.2)–(2.4).

Finally, since the I_j are continuous invariants and $a_n(F_m) \to a_n(F_0)$, from (1.4) we have for every positive ε

$$\begin{split} \varrho_{\mathcal{I}}(F_m, F_0) &= \sum_{j \in J} \frac{1}{2^j} \frac{|I_j(F_m) - I_j(F_0)|}{1 + |I_j(F_m) - I_j(F_0)|} + \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|a_n(F_m) - a_n(F_0)|}{1 + |a_n(F_m) - a_n(F_0)|} \\ &\leq \sum_{j \in J \cap [1,N]} |f_{I_j,r_0}(Q_m, \lambda_m, \mu_m, \omega_m) - f_{I_j,r_0}(Q_0, \lambda_0, \mu_0, \omega_0)| \\ &+ \sum_{j=1}^N |a_n(F_m) - a_n(F_0)| + \frac{\varepsilon}{3} \leq \varepsilon \end{split}$$

for N and $m \ge m_0(N)$ sufficiently large, so $\varrho_{\mathcal{I}}(F_m, F_0) \to 0$ and the lemma follows.

LEMMA 3. Let \mathcal{I} be a countable set of continuous invariants. Then $\mathcal{S}, \mathcal{S}^{\sharp} \in \mathcal{B}(\mathcal{I}).$

Proof. From the well known formula for the abscissa of absolute convergence of Dirichlet series we see that a function $F \in S^{\sharp\sharp}$ belongs to S^{\sharp} if and only if for every $\varepsilon > 0$ and $N \in \mathbb{N}$, $N > N(\varepsilon)$,

$$\sum_{n \le N} |a_n(F)| \le N^{1+\varepsilon}$$

Therefore, for $\varepsilon > 0$ and $N \in \mathbb{N}$ we consider the function $f_{N,\varepsilon} : \mathcal{S}^{\sharp\sharp} \to \mathbb{R}$ defined by

$$f_{N,\varepsilon}(F) = \frac{1}{N^{1+\varepsilon}} \sum_{n \le N} |a_n(F)|.$$

Since $F \mapsto a_n(F)$ is continuous with respect to $\varrho_{\mathcal{I}}, f_{N,\varepsilon}(F)$ is also continuous with respect to $\varrho_{\mathcal{I}}$. Moreover, \mathcal{S}^{\sharp} can be characterized as

(2.5)
$$\mathcal{S}^{\sharp} = \bigcap_{\varepsilon \in \mathbb{Q}^+} \bigcup_{M=1}^{\infty} \bigcap_{N=M}^{\infty} f_{N,\varepsilon}^{-1}([0,1]),$$

where \mathbb{Q}^+ denotes the positive rational numbers. Since $f_{N,\varepsilon}^{-1}([0,1])$ is a closed subset of $\mathcal{S}^{\sharp\sharp}$, (2.5) shows that \mathcal{S}^{\sharp} is a Borel subset of $\mathcal{S}^{\sharp\sharp}$.

In order to deal with \mathcal{S} we first consider

$$\mathcal{S}^{\sharp}(1) = \{F \in \mathcal{S}^{\sharp} : a_1(F) = 1\} = \mathcal{S}^{\sharp} \cap a_1^{-1}(\{1\}).$$

In view of the first part of the lemma, $S^{\sharp}(1)$ is a Borel subset of $S^{\sharp\sharp}$. For

 $F \in \mathcal{S}^{\sharp}(1)$ let $\sigma_1(F) \ge 1$ be such that

$$\sum_{n=2}^{\infty} \frac{|a_n(F)|}{n^{\sigma}} < 1 \quad \text{for } \sigma > \sigma_1(F).$$

Then for $\sigma > \sigma_1(F)$ the function log F(s) is well defined, and by Taylor's expansion we have

$$\log F(s) = \sum_{n=2}^{\infty} \frac{b_n(F)}{n^s}$$

with

$$b_n(F) = \sum_{m=1}^{\Omega(n)} \frac{(-1)^{m+1}}{m} \sum_{\substack{n_1 \ge 2, \dots, n_m \ge 2\\n_1 \cdots n_m = n}} a_{n_1}(F) \cdots a_{n_m}(F),$$

where $\Omega(n)$ denotes the total number of prime factors of n. Thus the functions $F \mapsto b_n(F)$, $n = 2, 3, \ldots$, are continuous on $\mathcal{S}^{\sharp}(1)$ with respect to $\varrho_{\mathcal{I}}$. In order to deal with the Euler product axiom, for (n, m) = 1 we put

$$g_{n,m}(F) = a_n(F)a_m(F) - a_{nm}(F),$$

and for $\theta < 1/2$ we write

$$h_{n,\theta}(F) = n^{-\theta} |b_n(F)|;$$

note that $b_n(F) \ll n^{\theta}$ for some $\theta < 1/2$ is equivalent to $|b_n(F)| \leq n^{\theta}$ for some $0 < \theta < 1/2$ and $n \geq n(\theta)$. Moreover, in order to deal with the Ramanujan conjecture axiom, for every $\varepsilon > 0$ we define

$$l_{n,\varepsilon}(F) = n^{-\varepsilon} |a_n(F)|.$$

The three functions $g_{n,m}(F)$, $h_{n,\theta}(F)$, $l_{n,\varepsilon}(F)$ are continuous on $\mathcal{S}^{\sharp}(1)$ with respect to $\varrho_{\mathcal{I}}$, and \mathcal{S} can be characterized as

$$\begin{split} \mathcal{S} &= \mathcal{S}^{\sharp}(1) \cap \bigcap_{(n,m)=1} g_{n,m}^{-1}(\{0\}) \cap \bigcup_{\substack{0 < \theta < 1/2 \\ \theta \in \mathbb{Q}}} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} h_{n,\theta}^{-1}([0,1]) \\ &\cap \bigcap_{\varepsilon \in \mathbb{Q}^+} \bigcup_{K=1}^{\infty} \bigcap_{n=1}^{\infty} l_{n,\varepsilon}^{-1}([0,K]), \end{split}$$

and the result follows as for S^{\sharp} , thus proving the lemma.

Theorem 1 follows at once from (2.1) and Lemmas 2 and 3.

To prove Theorem 2, let $I \in \mathcal{I}, B \in \mathcal{B}(\mathcal{I})$ and $\mathcal{S}^{\sharp\sharp}(R)$ be as in (2.1). Writing

(2.6)
$$B_R = B \cap \mathcal{S}^{\sharp\sharp}(R),$$

we see that B_R is a Borel set of the compact metric space $(\mathcal{S}^{\sharp\sharp}(R), \varrho_{\mathcal{I}})$. Moreover, by Proposition 4.2 of [8], $(\mathcal{S}^{\sharp\sharp}(R), \varrho_{\mathcal{I}})$ is a Polish space (see Definition 3.1 of [8]). Hence, by Theorem 13.7 (see also p. 85) of [8], B_R is analytic (in Suslin's sense, see Definition 14.1 of [8]). Therefore, by Proposition 14.4 of [8], $I(B_R)$ is analytic as well since I is continuous from $(\mathcal{S}^{\sharp\sharp}(R), \varrho_{\mathcal{I}})$ to \mathbb{C} (and hence is a Borel map, see pp. 70–71 of [8]) and \mathbb{C} is obviously a Polish space. Finally, by Theorem 21.10 of [8], $I(B_R)$ is Lebesgue measurable, and hence

$$I(B) = \bigcup_{R=2}^{\infty} I(B_R)$$

is Lebesgue measurable as well.

The proof of Corollary 1 is very simple. Let I be a continuous invariant and $\mathcal{I} = \{I_0, I\}$. Since $B \in \mathcal{B}(I_0)$, it follows that $B \in \mathcal{B}(\mathcal{I})$, hence I(B) is Lebesgue measurable by Theorem 2. \blacksquare

We need two lemmas for the proof of Theorem 3. We recall that a *topological semigroup* (G, \cdot) is a semigroup where the multiplication \cdot from $G \times G$ to G is continuous.

LEMMA 4. Let \mathcal{I} be a countable family of continuous invariants and suppose that every $I \in \mathcal{I}$ is additive or multiplicative. Then $(\mathcal{S}^{\sharp\sharp}, \varrho_{\mathcal{I}})$ is a topological semigroup.

Proof. We have to prove that the usual multiplication in $S^{\sharp\sharp}$ is continuous with respect to the metric $\varrho_{\mathcal{I}}$. Let $I \in \mathcal{I}$ and write * for the sum (resp. product) if I is additive (resp. multiplicative). Let $F_m \to F_0$ and $G_m \to G_0$ be two convergent sequences in $(S^{\sharp\sharp}, \varrho_{\mathcal{I}})$. Since the functions in Lemma 1 are continuous, we see that as $m \to \infty$,

$$I(F_m G_m) = I(F_m) * I(G_m) \to I(F_0) * I(G_0) = I(F_0 G_0)$$

for every $I \in \mathcal{I}$, and

$$a_n(F_m G_m) = \sum_{d|n} a_d(F_m) a_{n/d}(G_m) \to \sum_{d|n} a_d(F_0) a_{n/d}(G_0) = a_n(F_0 G_0)$$

for every $n \in \mathbb{N}$. Hence $F_m G_m \to F_0 G_0$ with respect to $\varrho_{\mathcal{I}}$, and the lemma follows.

Recalling that B_R is defined by (2.6), we have

LEMMA 5. Let \mathcal{I} be a countable family of continuous invariants, let $B \in \mathcal{B}(\mathcal{I})$ with $1 \in B$, and G be the semigroup generated by B. Then

$$G = \bigcup_{R=2}^{\infty} \bigcup_{k=1}^{\infty} B_R^k$$

Proof. The inclusion \supset is obvious. To prove the opposite inclusion, given $F \in G$ we have $F(s) = \prod_{j=1}^{k} F_j(s)$ with some $k \in \mathbb{N}$ and $F_j \in B$. Then $F_j \in S^{\sharp\sharp}(R_j)$ for some R_j , hence writing $R = \max\{R_1, \ldots, R_k\}$ we have $\{F_1, \ldots, F_k\} \subset B_R$. Therefore $F \in B_R^k$, and the lemma follows.

In order to prove Theorem 3, we first note that clearly $\{1\} \in \mathcal{B}(\mathcal{I})$, and we may always assume that G is generated by a set $B \in \mathcal{B}(\mathcal{I})$, where $1 \in B$ (in fact, if B is an \mathcal{I} -Borel set then $B \cup \{1\}$ is an \mathcal{I} -Borel set as well and generates the same semigroup). The proof of Theorem 3 now follows the lines of the proof of Theorem 2, hence we only give a sketch. B_R is a Borel set of the Polish space $(\mathcal{S}^{\sharp\sharp}(R), \varrho_{\mathcal{I}})$, hence it is analytic in Suslin's sense. Moreover, by Lemma 4, multiplication is a continuous function, therefore B_R^k is also analytic. Since the invariant I is continuous, $I(B_R^k)$ is analytic as well, and hence Lebesgue measurable. Thus, by Lemma 5, I(G) is Lebesgue measurable.

The proof of Corollary 2 is similar to the proof of Corollary 1.

Given a set $\mathcal{A} \subset \mathbb{R}$, $\mathcal{A} + \mathcal{A}$ denotes as usual the set of real numbers of the form a + a' with $a, a' \in \mathcal{A}$. In order to prove the first part of Theorem 4 we recall that if \mathcal{A} is measurable with $\mu(\mathcal{A}) > 0$, then $\mathcal{A} + \mathcal{A}$ contains an open interval; see Exercise 19 of Ch. 9 of Rudin [11]. Suppose now that $\mu(I(G)) > 0$. Since G is a semigroup and I is additive, we have

$$I(G) + I(G) \subset I(G),$$

hence there exists an interval $(a, b) \subset I(G)$. Therefore, again since G is a semigroup, for every positive integer k we have $(ka, kb) \subset I(G)$. Thus I(G) contains arbitrarily long intervals. Let $F_0 \in G$ with $I(F_0) \neq 0$ and let $U_0 \subset I(G)$ be an interval of length $> |I(F_0)|$. Then

$$\bigcup_{k=1}^{\infty} (kI(F_0) + U_0) \subset I(G),$$

and such a union is a half-line, thus proving the first part of Theorem 4.

The second option of the second part of Theorem 4 follows at once from the first part. In fact, let I be multiplicative with values in \mathbb{R}^+ . Write $\log I(G) = \{\log I(F) : F \in G\}$. The function $F \mapsto \log I(F)$ is a real-valued additive continuous invariant. Moreover, if $\mu(I(G)) > 0$ then $\mu(\log I(G)) > 0$ as well, so $\log I(G)$ contains a half-line by the first part of Theorem 4, and hence I(G) contains a half-line too.

In order to prove the first option of the second part of Theorem 4, we first remark that a variant of the above mentioned exercise reads as follows. Let $\mathcal{A} \subset T^1$ and write $\mathcal{A}\mathcal{A} = \{aa' : a, a' \in \mathcal{A}\}$; if \mathcal{A} is measurable and $\mu(\mathcal{A}) > 0$, then $\mathcal{A}\mathcal{A}$ contains an arc. Suppose now that $\mu(I(G)) > 0$ and argue as in the first part. Since I is multiplicative we have

$$I(G)I(G) \subset I(G),$$

thus I(G) contains an arc. Hence there exists $F_0 \in G$ such that $I(F_0) = e^{2\pi i \theta_0}$ with $\theta_0 \notin \mathbb{Q}$, therefore the set $\{I(F_0^k)\}_{k \in \mathbb{N}}$ is dense in T^1 . But then

$$T^{1} = \bigcup_{k=1}^{\infty} I(F_{0}^{k})I(G) \subset I(G),$$

and Theorem 4 is proved. \blacksquare

Acknowledgments. This research was partially supported by a MIUR grant Cofin2004, by the Foundation for Polish Science and by KBN grant 1 PO3A 008 26.

References

- J. B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72 (1993), 673–693.
- [2] E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Vandenhoeck & Ruprecht, 1983.
- [3] J. Kaczorowski, Axiomatic theory of L-functions: the Selberg class, in: Analytic Number Theory, C.I.M.E. Summer School (Cetraro, 2002), A. Perelli and C. Viola (eds.), Lecture Notes in Math. 1891, Springer, 2006, 133–209.
- [4] J. Kaczorowski and A. Perelli, On the structure of the Selberg class, I: 0 ≤ d ≤ 1, Acta Math. 182 (1999), 207–241.
- [5] —, —, The Selberg class: a survey, in: Number Theory in Progress, Proc. Conf. in Honor of A. Schinzel, ed. by K. Győry et al., de Gruyter, 1999, 953–992.
- [6] —, —, On the structure of the Selberg class, II: invariants and conjectures, J. Reine Angew. Math. 524 (2000), 73–96.
- [7] —, —, On the structure of the Selberg class, IV: basic invariants, Acta Arith. 104 (2002), 97–116.
- [8] A. S. Kechris, *Classical Descriptive Set Theory*, Grad. Texts in Math. 156, Springer, 1995.
- [9] A. Perelli, A survey of the Selberg class of L-functions, part I, Milan J. Math. 73 (2005), 19–52.
- [10] —, A survey of the Selberg class of L-functions, part II, Riv. Mat. Univ. Parma (7) 3* (2004), 83–118.
- [11] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, 1987.

Faculty of Mathematics and Computer Science	Dipartimento di Matematica
A. Mickiewicz University	Università di Genova
Umultowska 87	via Dodecaneso 35
61-614 Poznań, Poland	16146 Genova, Italy
E-mail: kjerzy@amu.edu.pl	E-mail: perelli@dima.unige.it

Received on 14.11.2006 and in revised form on 24.7.2008

(5323)