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A measure-theoretic approach to the invariants of
the Selberg class

by

J. Kaczorowski (Poznań) and A. Perelli (Genova)

1. Introduction. In [6] and [7] we defined and studied the invariants
of the Selberg class S (to be precise, of the extended Selberg class S]). We
refer to our survey papers [3], [5], [9] and [10] for the definitions and basic
properties of the classes S and S]. Here we recall that S] is the class of
non-identically vanishing Dirichlet series

(1.1) F (s) =
∞∑
n=1

an(F )
ns

absolutely convergent for σ > 1, such that (s−1)mF (s) is entire of finite or-
der for some non-negative integer m and F (s) satisfies a functional equation
of the form

(1.2) Φ(s) = ωΦ(1− s),
where f(s) = f(s), |ω| = 1 and

Φ(s) = Qs
r∏
j=1

Γ (λjs+ µj)F (s) = γ(s)F (s),

say, with r ≥ 0, Q > 0, λj > 0 and <µj ≥ 0 (r = 0 means that there
are no Γ -factors). S is the subclass of the functions F ∈ S] satisfying the
Ramanujan conjecture an(F ) � nε for every ε > 0 and having an Euler
product of type

logF (s) =
∞∑
n=2

bn(F )
ns

with bn(F ) = 0 unless n = pm, and bn(F )� nθ for some θ < 1/2.
We recall that the notion of invariant of S] arises from the fact that the

data Q, λj , µj and ω of the functional equation of a function F ∈ S] are not
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uniquely determined by F (s) (due, essentially, to the multiplication formula
for the Γ function). Thus, an invariant is an expression defined by means of
such data, but depending only on F (s); invariants are denoted by I or by
IF or I(F ) (particularly when referred to a function F ∈ S]). We refer to [6]
and [7] for the meaning of several interesting invariants, such as the degree

dF = 2
r∑
j=1

λj ,

the conductor

qF = (2π)dFQ2
r∏
j=1

λ
2λj
j ,

the root number

ω∗F = ωe−i
π
2
(ηF+1)

(
qF

(2π)dF

)iθF /dF r∏
j=1

λ
−2i=µj
j

and the H-invariants

HF (n) = 2
r∑
j=1

Bn(µj)
λn−1
j

,

where Bn(z) denotes the nth Bernoulli polynomial; for example, HF (0)=dF .
Note that the root number ω∗F factors as

(1.3) ω∗F =
(
ω

r∏
j=1

λ
−2i=µj
j

)(
e−i

π
2
(ηF+1)

(
qF

(2π)dF

)iθF /dF)
= ω′Fω

′′
F ,

say, where ω′′F is clearly an invariant, and hence ω′F is an invariant as well.
We further recall that an invariant I is called numerical if I(F ) ∈ C for
every F ∈ S] (it is easy to construct invariants which are not numerical); in
other words, a numerical invariant I is a function I : S] → C. Note that both
S and S] are multiplicative semigroups, i.e. FG ∈ S (resp. S]) if F,G ∈ S
(resp. S]), the H-invariants are additive, i.e. HFG(n) = HF (n)+HG(n), and
the conductor and ω′F are multiplicative, i.e. qFG = qF qG and ω′FG = ω′Fω

′
G.

The set of functions F ∈ S (resp. S]) with dF = d is denoted by Sd (resp. S]d),
and the order of the pole of F (s) at s = 1 is denoted by mF .

A fundamental problem in the theory of the Selberg class is describing
the admissible values of numerical invariants, i.e. the set of values that such a
numerical invariant attains at the functions of S and S]. For some invariants
there are nice conjectures about admissible values, for example the degree
conjecture (asserting that dF ∈ N for every F ∈ S]) and the conductor
conjecture (asserting that qF ∈ N for every F ∈ S). In this paper we develop
a measure-theoretic approach to this problem. In order to state the results we
need some definitions; we will refer to Kechris’ book [8] for all the definitions
and results needed from topology and measure theory.
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We denote by R+ and C+ the positive real numbers and the complex
numbers with non-negative real part, respectively, and by T 1 the unit circle.
A numerical invariant I is called continuous if for every non-negative integer
r there exists a continuous function

fI,r : R+ × (R+ × C+)r × T 1 → C

such that

(1.4) I(F ) = fI,r(Q,λ,µ, ω)

if F ∈ S] satisfies functional equation (1.2), where λ = (λ1, . . . , λr) and
µ = (µ1, . . . , µr). Examples of continuous invariants are the H-invariants,
the conductor and the root numbers ω∗F , ω′F and ω′′F . Moreover, the real and
imaginary parts of a continuous invariant are also continuous invariants.

For technical reasons, it is convenient to work with a slightly more gen-
eral class than S], denoted by S]] and consisting of the Dirichlet series (1.1),
absolutely convergent for σ sufficiently large and satisfying exactly the same
meromorphic continuation and functional equation axioms of S]. Clearly, S]]
is a multiplicative semigroup with identity 1 and S, S] are subsemigroups
of S]]. Note that the definitions and the main properties pertaining to S]
carry over to S]]. In particular, it is easy to see that Conrey–Ghosh’s [1] re-
sult that the γ-factors γ(s) of F (s) are uniquely determined up to a constant
factor (see also Theorem 8.1 of [5]) holds for S]] as well, and the invariant
theory of S] carries over to S]].

Let I = {Ij}j∈J with J ⊂ N be a countable family of continuous invari-
ants and, for F,G ∈ S]], write

%I(F,G) =
∑
j∈J

1
2j

|Ij(F )− Ij(G)|
1 + |Ij(F )− Ij(G)|

+
∞∑
n=1

1
2n

|an(F )− an(G)|
1 + |an(F )− an(G)|

.

It is easy to check that %I is a metric on S]] (recall that if d(x, y) is a metric
then so is d′(x, y) = d(x, y)/(1 + d(x, y)), and the proof for %I is similar). We
define the I-Borel sets to be the Borel sets of the metric space (S]], %I), and
we denote by B(I) the set of the I-Borel sets. We recall that a topological
space X is σ-compact if

X =
∞⋃
n=1

Kn

with compact sets Kn satisfying Kn ⊂ Kn+1. Our first result is

Theorem 1. Let I be a countable family of continuous invariants. Then
(S]], %I) is a σ-compact metric space and S,S] ∈ B(I).

Theorem 1 is a basic topological result from which the following measure-
theoretic consequences are deduced.
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Theorem 2. Let I be a countable family of continuous invariants. Then
I(B) is Lebesgue measurable for every B ∈ B(I) and every I ∈ I.

In particular, from Theorems 1 and 2 we see that I(S) and I(S]) are
Lebesgue measurable for every continuous invariant I. We remark that the
measurability of I(B) in Theorem 2 is obtained via Lusin’s theorem (see
Theorem 21.10 of [8]), and therefore I(B) is in fact measurable for every
σ-finite Borel measure, although we will only consider the Lebesgue measure
in this paper.

B = S or B = S] are probably the most interesting cases of Theorem 2,
and can be proved by starting directly from a single invariant I (instead of
a family I containing I); the same remark applies to most cases where a
specific set and invariant are involved. However, the definition of the metric
by means of a family of invariants allows a convenient and wider choice
of Borel sets, and hence a larger range of applications of our results. In
fact, for example, adding a continuous invariant I to a family I we have
B(I) ⊂ B(I ∪{I}). As an illustration we state the following simple corollary
(examples are given later on).

Corollary 1. Let I0 be a continuous invariant and B ∈ B(I0). Then
I(B) is Lebesgue measurable for every continuous invariant I.

The condition that B is a Borel set in Theorem 2 can be relaxed if we
assume more about the invariants of the family I. Given B ∈ B(I), let G
be the subsemigroup of S]] generated by B; we say that G is an I-Borel
generated semigroup.

Theorem 3. Let I be a countable family of continuous invariants such
that every I ∈ I is additive or multiplicative. Then I(G) is Lebesgue mea-
surable for every I-Borel generated semigroup G and every I ∈ I.

In analogy with Corollary 1, here is a corollary illustrating the usefulness
of the family I.

Corollary 2. Let I0 be an additive or multiplicative continuous invari-
ant , B ∈ B(I0), and G the semigroup generated by B. Then I(G) is Lebesgue
measurable for every additive or multiplicative continuous invariant I.

Of course, the set B in Corollaries 1 and 2 can be intersected with S
or S], and the conclusions still hold.

Of particular interest are the subsemigroups G of S]] such that I(G)
is Lebesgue measurable for an invariant I (not necessarily continuous). In
such a case, G is called an I-measurable semigroup. In view of Theorem 3,
a first class of examples of such semigroups is given by the I-Borel gen-
erated semigroups with all I ∈ I additive or multiplicative. Another class
of examples (not disjoint from the previous one) is provided by Theorem 2
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and consists of the I-Borel semigroups, that is, the I-Borel sets which are
semigroups themselves. Explicit examples of measurable semigroups are as
follows. First of all, by Theorem 1, S and S] are I-measurable for every
continuous I. Other examples of semigroups I-measurable for every contin-
uous I are S0 and S]0. In fact, these sets are semigroups and Corollary 1
can clearly be applied. We recall (see [1] and [4]) that S0 = {1} and S]0
is a certain set of Dirichlet polynomials. Moreover, thanks to Corollary 2,
the following are examples of semigroups I-measurable for every additive or
multiplicative continuous I. Recalling that d denotes the degree, GDir, gen-
erated by d−1({1}) ∩ S = S1, is the semigroup generated by the Riemann
zeta function and the shifted Dirichlet L-functions (see [4]). G(1), generated
by d−1({1})∩S] = S]1, can also be explicitly described (see [4]). Finally, we
also mention G(2), generated by d−1({2}) ∩ S] = S]2.

In the case of I-measurable semigroups G with I additive or multiplica-
tive we can say more about µ(I(G)), where µ denotes the Lebesgue measure.
Indeed, we have the following simple 0-1 laws for additive and multiplicative
invariants.

Theorem 4. Let G be an I-measurable semigroup. If I is additive and
real-valued , then either µ(I(G)) = 0 or I(G) contains a half-line. If I is
multiplicative and takes values in T 1 (resp. R+), then either µ(I(G)) = 0 or
I(G) = T 1 (resp. I(G) contains a half-line).

As is clear from the above discussion, Theorem 4 is closely related to
Theorems 2 and 3. In fact, from Theorems 2–4 we easily deduce the following
consequences. In view of the degree conjecture, the first part of Theorem 4
is particularly interesting in the case of the degree d, where µ(d(S])) = 0 is
expected. Examples of measurable semigroups G with µ(d(G)) = 0 are S0,
S]0, GDir and G(1).

The most interesting special case of the second part of Theorem 4 is the
conductor q, and the conductor conjecture suggests that µ(q(S)) = 0. For
example, it follows from the characterization of the functions of degree 0
and 1 of S and S] (see [4]) that

µ(q(S0)) = µ(q(S]0)) = µ(q(GDir)) = µ(q(G(1))) = 0.

However, probably q(S]) contains a half-line. In fact, in view of Hecke’s the-
ory for the groups G(λ) (see Hecke’s book [2]), already q(G(2)) will probably
contain a half-line.

Another interesting multiplicative invariant is the root number ω′F de-
fined by (1.3). In view of [4] we have µ(ω′(S1)) = 0, while ω′(G(1)) = T 1.
Moreover, since the weight k in Hecke’s theory with λ > 2 is arbitrary, it is
very likely that ω′(G(2)) = T 1.
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We finally remark that in all known or conjectural cases, if the set of
values of a continuous invariant has 0-measure, then it is countable. We
therefore state the following conjecture, clearly related to Theorem 4.

Conjecture. Let I be a continuous invariant and G be an I-measurable
semigroup. If I is additive or multiplicative with values in R+, then either
I(G) is countable or it contains a half-line.

A similar conjecture can be made for multiplicative continuous invariants
with values in T 1; in this case, either I(G) is countable or I(G) = T 1.

2. Proofs. In order to prove Theorem 1 we need three lemmas.

Lemma 1. Let I be a countable family of continuous invariants. Then
for every n = 1, 2, . . . and every I ∈ I, the functions F 7→ an(F ) and
F 7→ I(F ) are continuous with respect to the metric %I .

Proof. Given a sequence Fm → F0 in (S]], %I) we have %I(Fm, F0)→ 0,
hence, in particular,

|an(Fm)− an(F0)|
1 + |an(Fm)− an(F0)|

→ 0 and
|Ij(Fm)− Ij(F0)|

1 + |Ij(Fm)− Ij(F0)|
→ 0,

whence an(Fm)→ an(F0) and Ij(Fm)→ Ij(F0).

For R ≥ 2 integer, let S]](R) be the set of F ∈ S]] such that

r ≤ R, 1
R
≤ Q,λj ≤ R, |µj | ≤ R, mF ≤ R,

∞∑
n=1

|an(F )|
nR

≤ R

and
|F (s)| ≤ e|s|R for |s| ≥ 2.

Clearly, S]](R) ⊂ S]](R+ 1) and

(2.1) S]] =
∞⋃
R=2

S]](R).

Lemma 2. Let I be a countable set of continuous invariants. Then for
R = 2, 3, . . . , S]](R) is a compact subset of (S]], %I).

Proof. Let Fm ∈ S]](R), m = 1, 2, . . . . By the compactness of closed
bounded intervals of R, there exists a subsequence, which for ease of notation
we still denote by (Fm), such that rm = r0 ≤ R and mFm = m0 ≤ R for
every m, and the sequences (Qm), (λj,m), (µj,m), (ωm) and (an(Fm)) are
convergent to Q0, λj,0, µj,0, ω0 and an,0, respectively, all satisfying the above
bounds. For σ > R we put

F0(s) =
∞∑
n=1

an,0
ns

,
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which is well defined since as m→∞,

(2.2)
∞∑
n=1

|an(Fm)|
nR

→
∞∑
n=1

|an,0|
nR

≤ R.

Our aim now is to prove that F0 ∈ S]](R) and Fm(s) → F0(s) as m → ∞,
with respect to the metric %I , thus showing that S]](R) is compact.

We first prove that F0 ∈ S]](R). By the definition of S]](R) and the
choice of m0 the functions

Hm(s) = (s− 1)m0Fm(s)

are entire of order ≤ R. Moreover, by the functional equation, for t ∈ R we
have

|Hm(1−R+ it)| ≤ (R+ |t|)R |γFm(R+ it)|
|γFm(1−R+ it)|

|Fm(R+ it)|

≤ c0(R)(|t|+ 2)c1(R)

for some constants cj(R), j = 0, 1, hence by the Phragmén–Lindelöf theorem
we get

|Hm(σ + it)| ≤ c0(R)(|t|+ 2)c1(R), σ ≥ 1−R.
Hence there exists a subsequence of (Hm(s)) which converges to

H0(s) = (s− 1)m0F̃0(s)

uniformly over compact sets in σ ≥ 1− R; note that F̃0(s) is meromorphic
for σ > 1 − R with at most a pole of order ≤ R at s = 1. But (Hm(s))
is convergent to (s − 1)m0F0(s) for σ > R, thus F0(s) = F̃0(s) for σ > R,
giving a meromorphic continuation of F0(s) to σ ≥ 1 − R with at most a
pole of order ≤ R at s = 1. Writing

γ0(s) = Qs0

r0∏
j=1

Γ (λj,0s+ µj,0),

we have

γ0(s) = lim
m→∞

γm(s), γm(s) = Qsm

r0∏
j=1

Γ (λj,ms+ µj,m)

uniformly over compact sets of C not containing the poles of the γm(s)’s,
and for 1−R ≤ σ ≤ R the function F0(s) satisfies the functional equation

(2.3) γ0(s)F0(s) = ω0γ0(s)F 0(s).

This provides a meromorphic continuation of F0(s) to C. Moreover, the
bound

(2.4) |F0(s)| ≤ e|s|R , |s| ≥ 2,



26 J. Kaczorowski and A. Perelli

follows by a limiting process from the same bounds for the Fm(s)’s. Thus,
F0 ∈ S]](R) in view of (2.2)–(2.4).

Finally, since the Ij are continuous invariants and an(Fm) → an(F0),
from (1.4) we have for every positive ε

%I(Fm, F0) =
∑
j∈J

1
2j

|Ij(Fm)− Ij(F0)|
1 + |Ij(Fm)− Ij(F0)|

+
∞∑
n=1

1
2n

|an(Fm)− an(F0)|
1 + |an(Fm)− an(F0)|

≤
∑

j∈J∩[1,N ]

|fIj ,r0(Qm,λm,µm, ωm)− fIj ,r0(Q0,λ0,µ0, ω0)|

+
N∑
j=1

|an(Fm)− an(F0)|+ ε

3
≤ ε

for N and m ≥ m0(N) sufficiently large, so %I(Fm, F0)→ 0 and the lemma
follows.

Lemma 3. Let I be a countable set of continuous invariants. Then
S,S] ∈ B(I).

Proof. From the well known formula for the abscissa of absolute conver-
gence of Dirichlet series we see that a function F ∈ S]] belongs to S] if and
only if for every ε > 0 and N ∈ N, N > N(ε),∑

n≤N
|an(F )| ≤ N1+ε.

Therefore, for ε > 0 and N ∈ N we consider the function fN,ε : S]] → R
defined by

fN,ε(F ) =
1

N1+ε

∑
n≤N
|an(F )|.

Since F 7→ an(F ) is continuous with respect to %I , fN,ε(F ) is also continuous
with respect to %I . Moreover, S] can be characterized as

(2.5) S] =
⋂
ε∈Q+

∞⋃
M=1

∞⋂
N=M

f−1
N,ε([0, 1]),

where Q+ denotes the positive rational numbers. Since f−1
N,ε([0, 1]) is a closed

subset of S]], (2.5) shows that S] is a Borel subset of S]].
In order to deal with S we first consider

S](1) = {F ∈ S] : a1(F ) = 1} = S] ∩ a−1
1 ({1}).

In view of the first part of the lemma, S](1) is a Borel subset of S]]. For
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F ∈ S](1) let σ1(F ) ≥ 1 be such that
∞∑
n=2

|an(F )|
nσ

< 1 for σ > σ1(F ).

Then for σ > σ1(F ) the function logF (s) is well defined, and by Taylor’s
expansion we have

logF (s) =
∞∑
n=2

bn(F )
ns

with

bn(F ) =
Ω(n)∑
m=1

(−1)m+1

m

∑
n1≥2,...,nm≥2
n1···nm=n

an1(F ) · · · anm(F ),

where Ω(n) denotes the total number of prime factors of n. Thus the func-
tions F 7→ bn(F ), n = 2, 3, . . . , are continuous on S](1) with respect to %I .
In order to deal with the Euler product axiom, for (n,m) = 1 we put

gn,m(F ) = an(F )am(F )− anm(F ),

and for θ < 1/2 we write

hn,θ(F ) = n−θ|bn(F )|;

note that bn(F ) � nθ for some θ < 1/2 is equivalent to |bn(F )| ≤ nθ for
some 0 < θ < 1/2 and n ≥ n(θ). Moreover, in order to deal with the
Ramanujan conjecture axiom, for every ε > 0 we define

ln,ε(F ) = n−ε|an(F )|.

The three functions gn,m(F ), hn,θ(F ), ln,ε(F ) are continuous on S](1) with
respect to %I , and S can be characterized as

S = S](1) ∩
⋂

(n,m)=1

g−1
n,m({0}) ∩

⋃
0<θ<1/2
θ∈Q

∞⋃
m=1

∞⋂
n=m

h−1
n,θ([0, 1])

∩
⋂
ε∈Q+

∞⋃
K=1

∞⋂
n=1

l−1
n,ε([0,K]),

and the result follows as for S], thus proving the lemma.

Theorem 1 follows at once from (2.1) and Lemmas 2 and 3.

To prove Theorem 2, let I ∈ I, B ∈ B(I) and S]](R) be as in (2.1).
Writing

(2.6) BR = B ∩ S]](R),
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we see that BR is a Borel set of the compact metric space (S]](R), %I). More-
over, by Proposition 4.2 of [8], (S]](R), %I) is a Polish space (see Definition
3.1 of [8]). Hence, by Theorem 13.7 (see also p. 85) of [8], BR is analytic
(in Suslin’s sense, see Definition 14.1 of [8]). Therefore, by Proposition 14.4
of [8], I(BR) is analytic as well since I is continuous from (S]](R), %I) to C
(and hence is a Borel map, see pp. 70–71 of [8]) and C is obviously a Polish
space. Finally, by Theorem 21.10 of [8], I(BR) is Lebesgue measurable, and
hence

I(B) =
∞⋃
R=2

I(BR)

is Lebesgue measurable as well.

The proof of Corollary 1 is very simple. Let I be a continuous invariant
and I = {I0, I}. Since B ∈ B(I0), it follows that B ∈ B(I), hence I(B) is
Lebesgue measurable by Theorem 2.

We need two lemmas for the proof of Theorem 3. We recall that a topo-
logical semigroup (G, ·) is a semigroup where the multiplication · from G×G
to G is continuous.

Lemma 4. Let I be a countable family of continuous invariants and
suppose that every I ∈ I is additive or multiplicative. Then (S]], %I) is a
topological semigroup.

Proof. We have to prove that the usual multiplication in S]] is continu-
ous with respect to the metric %I . Let I ∈ I and write ∗ for the sum (resp.
product) if I is additive (resp. multiplicative). Let Fm → F0 and Gm → G0

be two convergent sequences in (S]], %I). Since the functions in Lemma 1
are continuous, we see that as m→∞,

I(FmGm) = I(Fm) ∗ I(Gm)→ I(F0) ∗ I(G0) = I(F0G0)

for every I ∈ I, and

an(FmGm) =
∑
d|n

ad(Fm)an/d(Gm)→
∑
d|n

ad(F0)an/d(G0) = an(F0G0)

for every n ∈ N. Hence FmGm → F0G0 with respect to %I , and the lemma
follows.

Recalling that BR is defined by (2.6), we have

Lemma 5. Let I be a countable family of continuous invariants, let B ∈
B(I) with 1 ∈ B, and G be the semigroup generated by B. Then

G =
∞⋃
R=2

∞⋃
k=1

Bk
R.
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Proof. The inclusion ⊃ is obvious. To prove the opposite inclusion, given
F ∈ G we have F (s) =

∏k
j=1 Fj(s) with some k ∈ N and Fj ∈ B. Then

Fj ∈ S]](Rj) for some Rj , hence writing R = max {R1, . . . , Rk} we have
{F1, . . . , Fk} ⊂ BR. Therefore F ∈ Bk

R, and the lemma follows.

In order to prove Theorem 3, we first note that clearly {1} ∈ B(I), and
we may always assume that G is generated by a set B ∈ B(I), where 1 ∈ B
(in fact, if B is an I-Borel set then B ∪ {1} is an I-Borel set as well and
generates the same semigroup). The proof of Theorem 3 now follows the
lines of the proof of Theorem 2, hence we only give a sketch. BR is a Borel
set of the Polish space (S]](R), %I), hence it is analytic in Suslin’s sense.
Moreover, by Lemma 4, multiplication is a continuous function, therefore
Bk
R is also analytic. Since the invariant I is continuous, I(Bk

R) is analytic as
well, and hence Lebesgue measurable. Thus, by Lemma 5, I(G) is Lebesgue
measurable.

The proof of Corollary 2 is similar to the proof of Corollary 1.

Given a set A ⊂ R, A + A denotes as usual the set of real numbers of
the form a+ a′ with a, a′ ∈ A. In order to prove the first part of Theorem 4
we recall that if A is measurable with µ(A) > 0, then A + A contains an
open interval; see Exercise 19 of Ch. 9 of Rudin [11]. Suppose now that
µ(I(G)) > 0. Since G is a semigroup and I is additive, we have

I(G) + I(G) ⊂ I(G),

hence there exists an interval (a, b) ⊂ I(G). Therefore, again since G is
a semigroup, for every positive integer k we have (ka, kb) ⊂ I(G). Thus
I(G) contains arbitrarily long intervals. Let F0 ∈ G with I(F0) 6= 0 and let
U0 ⊂ I(G) be an interval of length > |I(F0)|. Then

∞⋃
k=1

(kI(F0) + U0) ⊂ I(G),

and such a union is a half-line, thus proving the first part of Theorem 4.
The second option of the second part of Theorem 4 follows at once

from the first part. In fact, let I be multiplicative with values in R+. Write
log I(G) = {log I(F ) : F ∈ G}. The function F 7→ log I(F ) is a real-valued
additive continuous invariant. Moreover, if µ(I(G)) > 0 then µ(log I(G)) > 0
as well, so log I(G) contains a half-line by the first part of Theorem 4, and
hence I(G) contains a half-line too.

In order to prove the first option of the second part of Theorem 4, we
first remark that a variant of the above mentioned exercise reads as follows.
Let A ⊂ T 1 and write AA = {aa′ : a, a′ ∈ A}; if A is measurable and
µ(A) > 0, then AA contains an arc. Suppose now that µ(I(G)) > 0 and
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argue as in the first part. Since I is multiplicative we have

I(G)I(G) ⊂ I(G),

thus I(G) contains an arc. Hence there exists F0 ∈ G such that I(F0) =
e2πiθ0 with θ0 /∈ Q, therefore the set {I(F k0 )}k∈N is dense in T 1. But then

T 1 =
∞⋃
k=1

I(F k0 )I(G) ⊂ I(G),

and Theorem 4 is proved.
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