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1. Introduction. This is the third and final installment in our series of
papers [22] 23] applying the method of Atkin and Swinnerton-Dyer to deduce
formulas for rank differences. The rank of a partition A is defined to be the
largest part £(A) minus the number of parts n(\). Let N (s, m,n) denote the
number of partitions of n with rank congruent to s modulo m. Responding
to a conjecture of Dyson [I4], Atkin and Swinnerton-Dyer proved elegant
formulas, in terms of modular functions and generalized Lambert series, for
the generating functions for N (r, ¢, ¢n+d)— N (s, ¢, ¢n+d) when £ = 5 and 7.
For example, they found [3, Theorem 4]:
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Here we have employed the standard basic hypergeometric series nota-
tion (see [15]),
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We follow the custom of dropping the °
other than gq.

The rank of a partition studied by Atkin and Swinnerton-Dyer is now
understood to be a special case of a more general rank which is defined on
overpartition pairs [6 21]. Recall that an overpartition of n is a partition of n
where we may overline the first occurrence of a part, while an overpartition
pair (A, ) of n is a pair of overpartitions where the sum of all of the parts
is n. The rank of an overpartition pair (A, u) is

(1.3) E((A, 1)) = n(A) =) = x((A p),
where 72(+) is the number of overlined parts only and x((A, ¢)) is defined to
be 1 if the largest part of (A, u) occurs only non-overlined and only in g,
and 0 otherwise.

When p is empty and A has no overlined parts, (|1.3)) becomes the rank of
a partition. In addition to this rank, three other special cases of have
turned out to be of particular interest: the rank of an overpartition, the
Ms-rank of a partition without repeated odd parts, and the Ms-rank of an
overpartition. For more on these three ranks and their generating functions,
see [4l, 5 [7, B, @ [TOL 1L 13, [19] 20, 22, 23]. In [22] and [23], we applied
the method of Atkin and Swinnerton-Dyer to find formulas like and
for certain rank differences for overpartitions and Ms-rank differences
for partitions without repeated odd parts. Here we complete the picture by
doing the same for Ms-rank differences for overpartitions.

This rank arises by replacing parts m in the first component of an over-
partition pair (A, ) by 2m and parts m in the second component by 2m — 1.
From , the Ms-rank of the resulting overpartition A is

Ma-rank(A) := [£(X)/2] = n(A) +n(Xo) — x(N),
where ), is the subpartition consisting of the odd non-overlined parts, and
X(A\) = 1 if the largest part of A is odd and non-overlined and y(A) = 0
otherwise. For example, the Ms-rank of the overpartition 5+4+4+3+1+1
is3—-6+3—-1=-1.
Let No(s,£,n) denote the number of overpartitions of n whose My-rank
is congruent to s modulo ¢. Using the notation

(1.4) Ry(d) =Y (Na(s,£,bn+d) — No(t, £, 4n + d))q",
n>0

q” unless the base is something

where the prime ¢ will always be clear, our main results are summarized in

Theorems [[.1] and [[.2] below.

THEOREM 1.1. For £ = 3, we have
(—0)se (@ ¢*)%
(Voo (=35 ¢33,

(1.5) Rp1(0) = -1+
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1.7) Ry (2 49
7) @)= (4% 6%) oo (43 ¢%)2% Z 1—61(””r2
THEOREM 1.2. For £ =5, we have
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(05 6%)5. (g%, 6% q19) 0o (105 ¢19)2,
2¢*(0)oo (¢ ¢")3,
(23,47 ¢'9)2% (a4, 4% ¢19)3. (¢ ¢°)3,
(1.15) R02(2): 4(q3 q7.q10) (q5.q5)2
(4;¢%)5(¢*, ¢°, qlo,qm)
10q( ,10)20
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10(4"%;¢")% (6% ¢°) oo (¢": 4% 4" oo
(¢,4% 4")oo(0)2:(6*, 475 4"%) o0
2(¢";¢") o0 (0% —¢% ¢°) s
a(—4¢, —¢* ¢°)os (qu2 7*,4°4"%) 0
2(¢% ¢°)3% (4%, 4% 4"°)3 (4" ¢' )5
a(4: 4*)3(a: 4% ¢"°) 5 (a4 ¥,
The method of Atkin and Swinnerton-Dyer may be generally described
as regarding groups of identities as equalities between polynomials of degree

¢ — 1 in ¢ whose coefficients are power series in ¢°. Specifically, we first
consider the expression

(1.14) ROQ( )

I

(1.16) Roa(3) =

(1.18) Z{Ng s,4,n) Ng(t,ﬁ,n)}q”%(z);;o.

By (2.4] . ., and ., We write as a polynomial in ¢ whose coef-

ficients are power series in ¢‘. We then alternatively express in the
same manner using the formulas in Theorem and equation or .
Finally, we use the theory of modular forms to show that these two resulting
polynomials are the same for each pair of values of s and ¢.

Some comments are in order here. First, if the number of overpartitions
of n with Ma-rank m is denoted by Na(m,n), then Na(m,n) = No(—m,n)
(see (2.3))). Hence the values of s and t considered in Theorems and
are sufficient to find any rank difference generating function Rg(d) for
¢ = 3,5. Second, the formulas in Theorems and are somewhat more
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complicated than the ones in [3], [22], and [23]. When there are exactly two
infinite products, we have verified using Euler’s algorithm [ , p. 98, Ex. 2]
that they cannot be reduced to one product. However, in and -
we cannot rule out the possibility of a simpler expression.

Finally, the formulas for Rp;(0) and Rp2(1) when ¢ = 3 match those for
the classical rank differences for overpartitions [22, egs. (1.1) and (1.2)]. In
other words, letting N(s,m,n) denote the number of overpartitions whose
rank is s modulo m, we have

N2(0,3,3n +d) — Na(1,3,3n +d) = N(0,3,3n +d) — N(1,3,3n + d)

for n > 0 and d = 0 or 1. When d = 2 it turns out that the generating
function for the difference of the rank differences is proportional to the
third order mock theta function

0 q2n(n+1)

w(q) = v
= (4:4%)n 11

COROLLARY 1.3. We have

6w(g) = Y (N2(0,3,3n +2) — N2(1,3,3n + 2))q"
n>0

=) (N(0,3,3n+2) — N(1,3,3n + 2))q"

n>0

This is not the first time that mock theta functions have appeared in
relation to rank differences. Andrews and Garvan [2], Section 4] and Hicker-
son [I7, Section 5] have already shown that certain fifth and seventh order
mock theta functions can be expressed in terms of rank differences of Atkin
and Swinnerton-Dyer. Some tenth order mock theta functions are also rank
differences. Specifically, using identities for the tenth order mock theta func-
tions ¢(q) and ¥ (q) on pages 533-534 of [12], combined with identities (1.9),
(1.11), and (1.14) of [22], we have

26(q) = > _(N(0,5,5n+ 1) — N(2,5,5n +1))¢"
n>0
2¢(g) = Y _(N(0,5,5n +4) + N(1,5,5n + 4) — 2N(2,5,5n + 4))g"+".
n>0
In general, the generalized Lambert series (i.e., Lerch sums) which arise in
the study of rank differences are known to be building blocks of mock theta
functions [26].

The paper is organized as follows. In Section 2 we collect some basic
definitions, notations and generating functions. In Section 3 we prove two key
g-series identities relating generalized Lambert series to infinite products,
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and in Section 4 we give the proofs of Theorems [I.1] and [I.2} In Section 5,
we prove Corollary [I.3]

2. Preliminaries. We begin by introducing some notation and defini-
tions, essentially following [3]. With y = ¢, let

ro(d) := > Na(s,L,tn+d)y",  ru(d) :=r(d) — ri(d).
n=0

Thus we have
—1

ZNgsﬂn er

d=0
To abbreviate the sums occurring in Theorems [I.1] and [I.2] we define
_ ) C2nqn2+2n

2(z,¢,q) ::Z( 1 22g2n

neL

Henceforth we assume that a is not a multiple of £. We write
(_1>ny2bn+€n(n+2)
E(a’ b) = Z(ya’ yb’ye) - Z 1- y2€n+2a ’
nez
' (_1)ny2bn+€n(n+2)
2(07 b) = Z 1— y2£n ’

neL

where the prime means that the term corresponding to n = 0 is omitted.
To abbreviate the products occurring in Theorems [T.1] and we define

[e.9] [e.9]

P(z,q) = [J( =2 N1 -2""¢), PO):= ] -¢*).

r=1 r=1
We also have the relations
(2.1) P(2"1q,q) = P(2,9),
(2:2) P(zq,9) = =z ' P(2,q).
In [20], it is shown that the two-variable generating function for No(m,n)
is

N 2(=0)o - 2 yofmjn 1 — ¢
2.3 No(m,n)g" = =23 (—1)rtign+2imin -2
23 Y Nalmg = 2= 3 it

n=1
From this we may easily deduce that the generating function for Na(s,m,n)
is

n q" +2n( 2sn +q 2(m— s)n)

(2.4) ;N2(S, m,n)q" = Z 1+ ¢27)(1 — gZmn)
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Hence it will be beneficial to consider sums of the form
n,n2+2bn

_ r(—1 q
neL q
We will require the relation
(2.6) So(b) = —S2(¢ —b),

which follows from the substitution n — —n in (2.5). We shall also exploit
the fact that the functions S2(¢) are essentially infinite products.

LEMMA 2.1. We have

Proof. Use the relation ) to compute —2S55(¢); then apply the case

z = —1 of Jacobi’s triple product identity,
(2.7) ST = (—20,—/2. 4% ¢P)oo-
nez

3. Two lemmas. The proofs of Theorems [I.1] and [T.2] will follow from
identities which relate the sums X(a,b) to the products P(z,q). The key
steps are the two lemmas below. The first is equation (5.4) of [9].

LEMMA 3.1. We have

i 249 C72n <2n+4
(3.1) (=1)"q" n[ 55 on 2,2 2 }
n=—oo 1_ZC qn 1—ZCQ”
— _2(C47q2ci4;q2)00(_Q)20 i (71)71 q
(=¢% =0 )0 (2?3 ), 1 — 22¢%n
(=22, =220 (¢ 2¢74, (% 272 ) (6% D)%
(_42,—QC72)oo(Z2C2aq2272472722472aq2272§b2a227272q2§q2)oo
We now specialize Lemma to the case ¢ = y?, z =y, and ¢ = y*:
P(y*, y*)P(—1,9")
P(=y?*,y")P(y—2e,y*)
. P(_bevyé)P(y4aay ) ( Qa ) ( )
P(y2bt+2a,426) P(y2b—2a, 420) P(— y2°“ yo) Py, y2)

n2+2n

+

(3.2)  yMZ(a+b,a)+ X(b—a,—a)+ X(b,0)

=0.

We define

P(2*, ¢*)P(-1,9)
P(_Z27Q)P(Z2q27q2)
n,—2n ,n(n+2)

r(—=1)"z
-y

1—gq

9(2,q) == — 2(z,1,q) — ' 2(2,2,q)
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and
e a _ P(y4aay2£)P(_1?yz)
(3.3) 9(a) = 9(y".y) = - P(—y?,y ) Py, y%)

— 1% (2a,a) — X(0, —a).

Y(a,0)

The second key lemma is the following.

LEMMA 3.2. We have

1 P 26’ 2)2 2, 2 go
(34) QQ(Z’Q) - 9(227(1) + 5 = PEZQ,Z2;2.(;Z(Z§, ;2)
_ P(%a)P(Ya) ()5
P(_Z27Q)2P(_Z47Q)P(_17Q)
and
(3.5) 9(z.0) +9(z""¢,9) = 0.

Proof. We first require a short computation involving X(z,(,q). Note
that

(3.6) 2°X(2,¢q) +q¢*2(2q,¢.q)

0o oo
B Z (_1)71 Z2<2nqn(n+2) N Z (_1)nC2n+2qn(n+2)+1
o 1— Z2q2n 1 — 22q2"+2
n=—00 n=-—00
00
_ Z (_1)nc2nqn2
n=—0o

upon writing n — 1 for n in the second sum of the first equation. Taking
¢ =1 yields

o
(3.7) 2X(2,1,0) +¢2(2q,1,9) = — Y (-1)"¢"™.

n=—0oo

Now write g(z, ¢) in the form

9(z,q) = f1(2) = fa(z) — f3(2)
where
o P(Z47q2)P(_1)Q)
fl(z) T _P(—Zz, Q)P(ZQQQ,QQ) E(Zv L, Q)7
fQ(Z) = 242(22725,(]),

n2—2n

qn(n+2)

1_q2n
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By 1), (2:2), and (3.7,
o0

Z4 2 _
B9 hen-AE)= Y (e gt T e

n=—oo

A similar argument to (3.6)) yields

(3.9) fa(zq) = fa(2) = Z (—1)ra2g,
(3.10) fa(zq) — fa3(2) = =1+ Z )22
Adding (3.9) and (3.10)), then subtracting from (3.8)) gives
(3.11) 9(z,q) —g9(2q,q) = —1.

Here we have used the identity
S > P(z*,¢*)P(~1,q)
12 —1)"q"

G122 O R e e

n=—00
:Z( n2nqn+z n72nn2

n=—00 n=—00

which follows from the triple product identity (2.7]) after writing —n for n
in the second sum. If we now define

1 P(z6 q2)2(q2.q2>2
=2 — g(2* - — d Lo
P(2%,q)*P(z*,¢)(0)%
P(—zz,q)ZP(—z“,Q)P(—l qQ)’
then from (2.1] , ., and , one can verify that
(3.13) f(ZQ) — f(2) = 0.
Now, it follows from a routine complex analytic argument similar to the
proof of Lemma 4.2 in [22] (see also Lemma 2 in [3]) that f(z) = 0. This

proves (3.4)).

To prove (3.5)), it suffices to show, after (3.11)),
(3.14) 9(z""a) +9(z,9) = —1.
Note that
(3.15) 22(«2»1,(])4'»3_22(»3_1,1,@

q" (n+2) 0 n? 0

2 Z — 22¢2n - Z (_1)n1_qZ2q2n = Z (_1)nqn2

n=—oo n=—oo n=—oo
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where we have written —n for n in the second sum in the first equation.
Thus, by (2.1)), , and (3.15)), we have

o A 2\ P(—
316)  AETAED == X (0T zf((—zéqq))i((z217$).

Again, a similar argument to (3.15) gives
(3.17) )+ RE == Y (1),
(3.18) B+ ) =1- Y (12

Adding (3.17) and (3.18)), then subtracting from (3.16|) yields (3.14). Here
we have again used (3.12)). m

Letting z = y® and ¢ = ' in Lemma we get

(319)  2g(a) - g(2a) + L = DO P)PPO)

2 P(y?e,y20)2P(yBa, y?t)
PPt ) ()%
P(—y%,y")2P(—y*, y") P(—1,9%)

and
(3.20) g(a) + gl —a)=0.

These two identities will be of key importance in the next section.

4. Proofs of Theorems and We now compute the sums
So(¢ — m). The reason for this choice is two-fold. First, we would like to
obtain as simple an expression as possible in the final formulation (4.3).
Secondly, to prove Theorem we only need to compute S5(1), whereas to
prove T heorem we need S3(1) and S5(3). The former yields S2(2) while
the latter in turn yields Sz(4) via . For ¢ = 3, we can choose m = 1,
and for £ =5, m = 1 and m = 2 respectively. As this point, we follow the
idea of Section 6 in [3]. Namely, we write

(4.1) n=~0+m-+b,

where —oo < r < oo. The idea is to simplify the exponent of ¢ in Sy(£ —m).
Thus

20n — 2mn +n® = r(r + 2) + 2blr + (b+m) (b — m + 2).
We now substitute (4.1)) into (2.5) and let b take the values 0, +a, and +m.
Here a runs through 1,2,...,(¢ —1)/2 where the value a = +m mod ¢ is
omitted. As in [3], we use the notation Zg to denote the sum over these
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values of a. We thus obtain

. >, qZ(Efm)nJrn2
Salt—m)= Y (1
n=—oo
Or(r+2)+2br
:Z Z 7’+m+b (b+m)(b—m~+2¢0) Y
1— y2£7‘+2m+2b’
b r=—o0

where b takes the values 0, +a, and +£m and the term corresponding to r = 0
and b = —m is omitted. Thus

(4.2)  Sa(f—m)
= (=1)"g™ ™ S(m, 0) + £(0, —m) + y*" £(2m, m)
N Z// m+a (a+m)(a—m~+2¢) {E(m +a a) + vy 4(12( —a, _a)}'

Here the ﬁrst three terms arise from taking b = 0, —m, and m respectively.
We now can use (3.2) to simplify this expression. By taking b = m and
dividing by »*® in (3.2)), the sum of the two terms inside the curly brackets
becomes
e P(y*,y*)P(=1,y") S(m, 0)
P(_y2a’ yf)P(y—Qa, y%) )
P(=y*™, 4" ) P(y**, y*) P(y**, y**) P(0)?
P(y2atam, y2) P(y?m=2a, y20) P(—y?*, y©) P(y>™, y*)

Similarly, if we take a = m in , then the sum of the second and third

terms in (4.2)) is

+ y74a

P(y*™, y*)P(—1,4")
2 (m,0) — g(m).

P(—y?m, y*)P(y=2m, y*) (m,0) = g(m)

In total, we have
(4.3)  Sa(l —m)

+ Z”{ m+a a+m)(afm+2€)yf4a

y P(=y*™,y" ) P(y*, y*) P(y**, y**) P(0)?

P(y2et2m 26 P(y?m=2e, y20) P(—y?, y) P(y*™, y*)

_ P(y*™, y*)P(—1,y")
—l—Em,O { 1 mqm(% m)
(m, 0)1 1) By, 40 By 2, 5

" - PO YPO)P(1yY) o
- -1 m+aq(a+m)(a m+2¢), —4a ) ) P 2a7 20 )
> (-1 y (g5 (y~2,y%)

We can simplify some of the terms appearing in (4.3) as we are interested
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in certain values of £/, m, and a. To this end, we prove the following result.
Let { } denote the coefficient of X'(m,0) in (4.3).

PropoSITION 4.1. If £ =3 and m =1, then

{ } _ _q5 (Q)OO(_q9§q9)00
(@)oo (4% ¢”)oo

If ¢t =5 m=2, and a =1, then
{ }=q"

Ift=5 m=1, a=2, then
0(0)oo(=4"% ¢*°) 0

C = ) P
Proof. This is a straightforward application of the identities

9. .9
q ¢’
(4.4) ((_;3’0 = ((_qg_q?;)” -24(¢%,4", 4% ¢"%) o0,
[e.e] b o0
25. 25
q 4> q
9 [o¢]

(=)o
+ 2646, 4%, 6% ) oo
These are Lemma 3.1 in [22]. =
We are now in a position to prove Theorems [I.1] and [I.2]

Proof of Theorem- By (2.4] . ., we have
o

(4.6) Z{M(o 3,n) — No(1,3 n)}q”2((f)q°; =355(1) + 52(3).
By (2.1] . . ., and Proposition
(@) Sa() = g(1) + Py 5L o>( Dool=0 34 )
(—=9)o0(4% ¢°) o
By Lemma
< _ _(Q)oo 1
() 0= 3. T2
We have
(@D (=" ") (@ 1
39(1) + 3¢y 5 (L 0)( Dol ) A 2

(9)oo
2(_q)oo .

= {r01(0)¢° + 701(1)q + 701(2)¢*}
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We now multiply the right hand side of the above expression using
and the Rpi(d) from Theorem (recall that ro;(d) is just Roi(d) with ¢
replaced by ¢%). We then equate coefficients of powers of ¢ and verify the
resulting identities. For ¢! and ¢? the resulting equation follows easily upon
cancelling factors in infinite products. For ¢ we obtain

1 3.3 9. 9\3 18. ,18\4 3 15 _18. .18
3g(1) + = ( il )m(qéqgog _4y(q 1q 6)ooﬁ(q Vit bl )oo
2 2(¢%¢%) o (=0%¢%)% (4% ¢%) (9% ¢%)3
Appealing to (3.19) and (3.20) and then replacing ¢ by ¢'/3, we see that
P(¢* ¢)*P(¢*, ) (&% )% (—¢; Doo(d®; 63,

P(=¢* @)*P(=¢*, *)P(=1,¢%) ~ 2(g;q)oo(—=0% ¢
(4% 4%)3 (9, 4% 4% ¢°)
(4% 4%)oo (4% 4*)3s
After making a common denominator on the left and simplifying, this equa-

tion may be verified using the case (z,(,t,q) = (—¢%,¢%,—1,¢%) of the ad-
dition theorem [3] eq. (3.7)],

P2(z,q)P(Ct,q) P(¢/t,q) — P?(C,q) P(2t,q) P(2/t,q)
+ (¢/t)P?(t,q) P(2¢, q)P(2/¢, ) = 0.
This completes the proof of Theorem .

Proof of Theorem 1.2. We begin with the rank differences Ri2(d). By

(PR X}
49) Y (Fal1,5on) - a2 55 0 = Sa(1) - 35a(3),
n=0 o0

and by , , , and Proposition

(9)oo (0% 6% ) oo

(—0)o0 (4% ¢*%) oo

R (0 —a )
(4", 0% ¢%) e (=0, —¢*°; ¢*°) o

(4.10) 5(1) = g(1) + q'y=(1,0)

(q>00(_q25§ q25)oo

(—0)20 (%% 4*) 0

Y (6% ¢™)%(=0°, —¢* 4%)o0
(qQO’ q30; q50)oo(_q10g _q15; q25)oo

By (.9)-(4.11)), we have

(4.11) S(3) = —g(2)+ @*X(2,0)
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(@)oo(—4%; %) o (¢* ) (—¢'% —¢";¢*) o
(—0)o (¢ )0 +q(qw,q40 o )

q
q
25,

—g(1) — ¢*'yX(1,0)

ESE N i q50)§o(—q5, —¢*%; ¢*)
(4%, 6% ¢°0) 00 (—¢'%, —¢'%; ¢*)
= {r12(0)g” + r12(1)q + 112(2)¢” + 112(3)q” + r12(4)q4}2((q>(;)o'
oo

We now multiply the right hand side of the above expression using (4.5)) and
the Ri2(d) from Theorem and equate coefficients of powers of ¢q. The
coefficients of ¢*, ¢', ¢, ¢, ¢* give us, respectively,

(4.12)  3g(2) —g(1)

2 (™% ¢° ) (@, 4", ", 4" ¢°°) 00 (6% 4% ) o
(0% 4°)2. (0% 4"°) 0 (—¢%°; 4%°) o
(¢%;¢%)2,
(4°:49)3.(¢"°, 4%, ¢%°, 3%, ¢°9) 00 (—42°; ¢*°)

<q50.q50)3 (q5 q45.q50)oo
) 00 ) )
(4°;4'9)2. (6%, ¢%%; ¢°) 0 (¢%%5 ¢*) oo
4 204t (@ )7 (0%, ¢ )% (¢, ¢%% ¢°)3. (¢, %, ¢°% ¢°°) o
(@°:¢°)%.(6*;¢*)%,
(qlo.qlﬂ)oo(q15 q35 q50.q50)oo
(4% ') (410, ", ¢3%, ¢10; ¢°0)3,

(@, 4", 4%, 4% )0 (0", %, % ¢°°)
(4.13)

(2% 4°)00 (0% ¢"%) o
(q

ty

+ 4y2

50. 3

;°0)20 (65, 4% ¢70)2 (¢'°, ¢*%; )3,
(4% 4°)2%
. 1
(q157q35;q50)§o(q107q40;q50)oo,
(414) 3 (=%, —4%; %) 0o (%5 ¢°*)%
' (@, 6% ¢°%) 0o (=10, =175 ¢%° ) o
(@°% ¢®)2%(¢%, 4%, % ¢°%) o
(q5’ qlo)go(qQO’ q30; q50)oo(q25. q25)
90,2 (% )7 (0, 4% ™) 2 (0", "% °)3. (0", 4%, ¢ ¢ o
(0% 7). (6% 4%°)%,

=Yy
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(6°%¢°°)2. (% 4% )0
(0% 4°)2. (4", 3% ¢°°)2. (0%, 40, ¢*°, %5 ¢°°) 5o (—¢%°; 4% ) o
(0% ¢°)2.(¢°, 4, 0% ¢°°)
5. 452 5 ,45. ,50\3 15 5,20 5,30 ,35.,50
(0°:9°)2.(a°, 45 ¢°9)3.(¢1°, ¢*°, ¢%°, ¢%%; ¢°Y) o
(@%%:4%)00(4®, 4", ¢°°; ¢°°) o
(0% 4193 (41, %%, ¢3°, 4405 ¢79) o’
(4", —4"%; ¢*°) o (¢°%; ¢°0)2,
(4%, 4% ¢%9) 0o (=%, =% ¢*°) o
(q50; q50)go(q15’ QSS7 QSO; q50)oo
(4% 0°)2 (4", 4% ¢°°)3,(¢°, 40, ¢*°, ¢*5; ¢79) o
(0% "2, (6% ¢*) o
(482 (2%, 4*; )2, (4%, 6%, 439, 4355 ¢°0) 0o (— %55 ¢*° ) 0
(@ ¢*)%
(4°;¢"9)3.(¢"°, ¢, ¢, ¢%%; ¢°°) o (—¢2%; ¢*°)
(0'% ¢ (¢, 4", 0°% ¢°*) o
(4% '9)%. (419, %%, ¢35, ¢*0; ¢°0)3,
(q50.q50)4 (q5 q10 q40 q45.q50)00(q5 q45 (150.(]50)Oo
b) o0 ) b ) ) b ) b)
(2°6°)3,(¢% ¢"%) o
(6%%;4%)00(d°, 4", 0°% ¢°*) oo
(4% 41)3. (¢, ¢%°, ¢, ¢%; ¢°0) oo
(q50; q50)2o(q15; (]357 q50; q50)oo
(@5 0°)2 (4%, 4" ¢°°)3. (417, 4%, ¢3°, ¢35 ¢7°) o
(@ 4%) 50 (0”5 ¢°°)
(0% 193 (412, ¢*%; ¢°0) oo
(4% ') o0 (%% ¢*°)
(2% a9 (410, %%, ¢3°, ¢0; ¢7)3 . (—¢?%; ¢*°)
While we cannot rule out the possibility that (4.12)—(4.16)) could be
proven with clever applications of identities involving infinite products, we
verify them using standard computational techniques from the theory of

modular forms, which we briefly summarize. First, divide each identity by
one of its terms to put it in the form

(4.17) 1= "F,

where each F; can be expressed in terms of generalized n-products [24]. (For

(4.12) we first use (3.19)) and ([3.20)) to write the left hand side as a sum of four
infinite products.) By equations (11) and (12) in [24], one establishes that

+5

+ 10

(4.15)

= — 10y

+95

+ 4y

(4.16) 0 = 5¢°

ty

+4
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each of the products F; is a modular function on some congruence subgroup.
(In our case, after letting ¢ = ¢'/%, the functions were always on I'(10).)
Using Theorem 4 in [24], we then determine the order of F; at the cusps and
multiply both sides of by an appropriate power of the Delta function,
AF(2), so that each AFF} is holomorphic at the cusps. Verifying the identity
up to g7, where T is the dimension of the appropriate space, is then sufficient
to confirm its truth. (In our case, T' = (10) [T10(1 = 1/p?) = 72k.)

We now turn to the rank differences Rog (d), proceeding as above. Again

by 7, we have
(4.18) ;:0{]\72(0,5,71)—N2(2,5,n)}q"2((z);;>o
= S9(5) +255(1) + S2(3).

By Lemma 2] (with £ = 5), ({18), (£10), and (I11),

— (@)oo 1 4 (9)oo(=6*°; ¢°°) 0
0 R T
0y2 25
25 50. [50Y2 (5 _ ,20. 25
Fare0) E = io<q ,Z%; Rlrer ey
= {r02(0)¢° + r02(1)q + r02(2)¢” + ro2(3)g” +T02(4)q4}2((_)qo; :

Again, equating coefficients of powers of ¢ yields the following identities:

(4.19) 1 +29(1) —g(2)

(q25. q25)7
—2(¢%¢')8, (¢, ¢, ¢ q35'q50)oo(q50;q5°)§o(—q25;q25)oo
12(0°; )00 (0°% 4°°) 00 (0% 4% ) oo
2(q15 q20 q q3 q )3 (q25 q25)oo(7q25;q25)00
2 5
N Y(@® %)%, (0%, 4% ") oo

(q5, ql )oo(q207 q307 qf)()7 q50)oo
5y*(0°%; )3 (471 %)
(6% 07)% (00, 479 ¢7) o (05, 4353 ¢70) 4 (4253 ¢%) oo
20°(0°; 4°) o (0”5 ¢™°)3. (4%, 4", ¢*°; ¢°°)
(4%, 6% 4°°)%. (6%, ¢°%; ¢°°)2, (425 ¢%°)2,
L 1090 )50 (6% %) o (620, 7% 7)o
(4%, 4% 0%%) o (4% 4°)3,




(4.20)

(4.21)

(4.22)

(4.23)
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2(¢"% 4”00 (=", =0 ¢*°) 0 (0", 6%, 4”1 ¢™)
(_q5, _q20; q25)oo(q57 q10, q40’ q45; q50)oo
2(¢%% %)%, (0", "% ¢™)5. (6™ °°)2. (6", 4%, ¢°% ")
(@°: 04 (0%, 4% 4704 (¢19; ¢'0)3,
2y(¢*; ¢*)5(¢°, "% ¢*) o
(0% 419)8 (¢, ¢ 7)o (¢7%; ¢70) 2,

0=0,

_|_

Y2 (0% 4%)oo (% ¢7°) 2,
(q15, q35; q50)oo(q20, q30; q50)go(q25; q25)go
¥(@°% ®)2 (—¢°, — 4% ¢*)
(=%, =% ¢%) 00 (4%, 3% ¢°0) oo
4y(q25, 6125)00(6157 q45’ q50; q50)oo
(@%;4'9)3. (4%, 4%, %, ¢*%; ¢7°)
5y(0™% 4™)3 (61 4% )
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(4°54°)2%(¢%, ¢%°; ¢°°)3,(¢%, ¢*0, 49, ¢*; ¢°°) 0o (— %5 ¢*° ) 0

(@"°,4%;¢°°)2.(¢*; ¢*°) %
(4554195, (¢%°, ¢35 ¢°°) oo
2(q25. q25)2
(4°:4)3.(¢"°, ¢, ¢3%, ¢*%; ¢°°) o (—4%°; ¢%°) o

2(4%5 %)% (¢, 4" )3 (% )2 (0. 4%, 675 4

_l’_

(2% ¢4 (6%, 4% ¢°0)4 (¢'0; ¢10)3,
(¢*;¢*)8.(¢°, 4%, ¢°% ™)
(¢5;'9)8 ("%, ¢, 43, ¢33; ¢50) o (¢7; ¢70)3,
_ _y2(q5; q5)oo(q50; q50)oo(q5; q45’ q50; q50>oo
(@5, 62, 4%, %% ¢%)3 (4% ¢*) oo
 4y(6%;6%)%(@% 4567 (4, 4%, 6% ¢7)

(q5; qIO)go(qQO’ q30’ q50; q50)oo
10y%(¢°% ¢°)3.(¢°, 4%, ¢°% ¢™°)
(0°50°)%. (4%, ¢%%; ¢°°) o (¢%2, ¢%5; ¢°0) 4,
4% %) (4%, 6%, % 7 oo
(q5; qIO)go(qIO’ q15’ q35’ q40; q50)oo
5((]50; q50)go(q25; q25)go(q20’q30; qSO)OO

9

(0%, 4% 0°°) 00 (0% ¢°) 3. (415, 437 499) oo (— 4% %%) o
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(@ 6o (1%, —¢%%: %) 0 (62 4% ) oo
Y(=0°, =% 4%) 0 (4%, 4'%, 4", 4% ¢7°) oo (=43 4%
(4% 4%)3. (4", "% ¢°)3. (¢°%; ¢™)%
y(@5 4% (¢% 47 ¢0) 4 (0% 410)3 (%% 4P) o
These equations were verified using modular forms as with f
above. m

5. Proof of Corollary [1.3] We first recall the two “universal mock

theta functions” (see Section 6 in [16])
( ) ( )nqn(n+1)
x,q) == E )
92( Q) (q)oo = 1 — q"

n3n(n+1)/2

93(‘7"’(]) = ! Z (_1) a

(Q)oo nez 1- an
Watson [25] p. 66] showed that
(5.1) w(q) = 93(a, %)
By Theorem 1.1 in [18],

4

n(27) ~1/4
5.2 = 2 ;27).
( ) Qfgg(l‘, q) 7’]2(7')19(206, 27_) +zq M( Q,T; 7-)
Here

al/2 (_b)nqn(n-i-l)/?

s vs7) = s % o

and Y(v; ) is the classical theta series with product representation

d(v;7) = g"Bo 2T - ) (1 = bg" (1 = b7,

n=1

where x = 2™, g = 2””, a = e?™ and b = e?>™™. Now by Theorem 1.1,
Theorem 1.1 in [22] and (5.2)), we have

(5.3) > (N2(0,3,3n+2) — Na(1,3,3n + 2))q"

n>0
=) (N(0,3,3n+2) — N(1,3,3n + 2))q"
n>0
66] C] q o n 3n +6n q q o n 3n2+3n
B Z 6n+2 Z 3n+1
6n*(67)

= 6¢~ /4 (27, 37;67) + 692(q, ¢°) = 1292(q,¢°) —

n2(31)9(27;67)"
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Identity (6.1) in [16] states that

q92(2°¢,4%) | 2?92 (21, ¢%)
(54)  gs(ahd) =T+ p

(% 030" 6 oed (7, 41 (2245, ¢*P)
(g% q*) oo (45 ¢%) %5 (24, ¢%)j(28¢ 1, ¢2)
where j(2,q) = (2)00(q/2)oc (q)oe- Letting ¢ — ¢*/2, 2 — ¢*/* in (5.4) and
using the fact that g2(¢?, ¢%) = g2(q, ¢°) gives us

6. 6\4
(5:5) 98(0:4%) = 2020, ) - (qQ;;g);oq(q)?’o;oq?’)io'

Thus the result follows after substituting (5.5 into ([5.3)) and using (5.1)). =
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