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On ranks of Jacobian varieties in prime degree extensions
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1. Introduction and statement of results. Let C be a curve (which
will be smooth, irreducible and projective unless otherwise stated) defined
over a number field K and with genus g(C) ≥ 1. We can associate with C an
abelian variety Jac(C) called the Jacobian of C. This variety has dimension
equal to g(C) and if C(K) 6= ∅ then there is an embedding of C into Pic0(C)
defined over K and an isomorphism, also defined over K, between Jac(C)
and Pic0(C). Let us assume that C(K) 6= ∅ so that we can identify Jac(C)
and Pic0(C) throughout.

The celebrated Mordell–Weil Theorem tells us that Jac(C)(K) has the
structure of a finitely generated abelian group. We define the rank of Jac(C)
to be the number of copies of Z appearing in Jac(C)(K) and denote this by
rk(C/K). In this paper we shall be interested in how rk(C/L) behaves as we
vary the field L. When C is an elliptic curve and K = Q then a conjecture
of Goldfeld [4] asserts that as we let L range across all quadratic extensions
of Q then the rank should remain the same as rk(C/Q) 50% of the time and
increase by one 50% of the time with the remaining 0% accounting for other
behaviour. This is as yet unproved, however it is known that the rank both
increases infinitely often and remains the same infinitely often. From this
position it is a natural question to ask if this behaviour persists when we
make two generalisations:

(1) Replacing Q by K, and
(2) Considering L/K such that [L : K] = p for some prime p.

In this first case the analogue of Goldfeld’s conjecture clashes with other
standard conjectures which predict that there are elliptic curves defined
over number fields whose rank increases in every quadratic extension (for
details, see [2]). With this in mind we ask two questions:
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Question 1. Given a curve C, of positive genus, defined over a num-
ber field K such that C(K) 6= ∅ and a prime p, are there infinitely many
extensions L/K with [L : K] = p such that rk(C/L) > rk(C/K)?

We will also be interested in the following related question:

Question 2. Given a curve C, of positive genus, defined over a number
field K such that C(K) 6= ∅, is there an N > 0 such that if p is a prime and
p ≥ N then are there infinitely many extensions L/K with [L : K] = p such
that rk(C/L) > rk(C/K)?

Our main result is a partial answer to Question 2 for a certain family of
curves.

Theorem 1. Let C be a smooth, irreducible curve of positive genus de-
fined over a number field K and with C(K) 6= ∅. Suppose further that C is
birational to a plane curve C′ of the form

C′ : g(y) = f(x)

where f and g are polynomials whose degrees are coprime. Then there is an
integer N(C) > 0, effective and depending on C, such that for all primes
p ≥ N(C) we have an affirmative answer to Question 1.

This theorem has some interesting corollaries. First we note that the
family includes all hyperelliptic curves of odd degree.

Corollary 1. Let C be birational to the plane curve cut out by the
equation

C′ : y2 = g(x)

where g is a polynomial and k = deg(g) is odd. Then there is an N(C) such
that for all primes p ≥ N(C) Question 1 has an affirmative answer. What
is more, we can take N(C) = k + 1.

This has the following pleasing corollary.

Corollary 2. Question 1 has an affirmative answer for every prime p
when C is an elliptic curve.

2. Strategy of proof. The strategy we shall employ for proving these
theorems is wholly inspired by the paper [1] of Tim Dokchitser where he
proves that Question 1 has an affirmative answer for elliptic curves over
number fields when the prime p is 3. Moreover, he shows that this is true
even if one restricts the number fields L to be of the form K( 3

√
m) for some

m ∈ K.
The idea is as follows. Let us call an element of L \ K a strictly-L el-

ement of L. We note that for a prime p, the ‘yes’ answer to Question 1 is
equivalent to there being infinitely many extensions L/K of degree p such



Ranks of Jacobian varieties 243

that Jac(C)(L) contains a strictly-L point, i.e., Jac(C)(L) \ Jac(C)(K) 6= ∅.
This is essentially shown in [1] but we shall prove it now for the sake of
completeness.

Lemma 1. Let C be a smooth, projective curve defined over K with
g(C) ≥ 1 and p a prime number. Let J = Jac(C). Then there are in-
finitely many degree p extensions L/K such that rk(C/L) > rk(C/K) if and
only if there are infinitely many such L/K such that J (L) has a strictly-L
point.

Proof. Clearly if the rank increases then a new point has been obtained,
so one direction is clear. For the other direction we note that the only way
in which a new point does not lead to an increase in rank is if the point
divides a point in J (K). We claim this can only happen in finitely many
degree p extensions. First of all, let F be the compositum of all the degree
p fields. Then the torsion of J (F ) is finite since the residue field for each
prime of F is finite. Hence there are only finitely many degree p extensions
in which we obtain new torsion.

Having dealt with new points which divide the identity we need to con-
sider points which divide other points in E(K). Such points in an extension
L/K would lead to the map

f :
J (K)

`J (K)
→ J (M)

`J (M)

failing to be injective for some prime ` where M is the Galois closure of L.
The kernel of f is contained in the cohomology group H1(Gal(M/K),J [`]).
Since Gal(M/L) has order dividing p! we see that if ` > p then this coho-
mology group vanishes, implying that f is injective. For ` ≤ p it suffices to
observe that there are only finitely many degree p extensions L in which we
can gain a point Q ∈ J (L) such that `Q = R for some R ∈ E(K). To see
this note that `Q = R = a1P1 + · · ·+arPr where the Pi generate J (K) and
by repeatedly subtracting multiples of `Pi for each i we can assume that
ai < `. There are only finitely many such R and hence only finitely many
degree p extensions in which they become divisible by `.

Thus we see that an infinitude of new points all in different degree p
extensions implies that the rank must increase in infinitely many of those
extensions.

The next step is to find infinitely many L/K of degree p such that J (L)
has a strictly-L point. This is achieved by constructing such points on C
itself and then carrying them over to J via the embedding

j : C(K)→ Pic0(C)(K) = J (K), R 7→ (R)− (Q),

where Q ∈ C(K) and (R) denotes the divisor class of R. We note that since
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Q ∈ C(K) it follows that if R is a strictly-L point on C then j(R) is a
strictly-L point on J . So all that remains is to construct the points on C.

It is a fact that every such C is birational over K to a plane curve C′
which has the same genus but is not necessarily smooth. We can resolve these
singularities by blowing up to obtain a smooth curve C′s. Blowing up carries
strictly-L points on C′ to strictly-L points on C′s and since C is birational to
C′s over K we have rk(C/L) = rk(C′s/L) for all L/K. Thus it is sufficient to
construct strictly-L points on C′.

We do this by constructing covering maps φ : C1 → C′ where C1 has
degree p and where the map φ and the curves C1 are explicit. Indeed C1 and
φ will be constructed so that the strictly-L points we find on C1(L) are in
fact S-integers (for a fixed set of places S) and such that φ carries strictly-L
points on C1 to strictly-L points on C′. This will allow us to apply Siegel’s
Theorem (e.g., [5, Part D]) to assert that C1(L) can have only finitely many
S-integer points and so we can deduce that the infinitely many points on C1
we generate must lie inside infinitely many different degree p extensions, as
desired.

3. Proof of Theorem 1. Let us suppose that we have an irreducible
curve C defined over K and with genus g(C) ≥ 1. We shall suppose that C
is birational to a plane curve C′ of the form

C′ : g(y) = f(x)

where f and g are polynomials having degree k and d respectively. We
suppose further that (d, k) = 1, which allows us to assume that f and g are
both monic, and also, given some q ∈ OK , that their non-leading coefficients
are divisible by qn for any n ≥ 0. Since (d, k) = 1 there are a, b ∈ Z such
that bk − ad = 1. Interchanging x and y if necessary, we can assume that
a, b > 0.

Consider the following rational map:

φ : A2
K → A2

K , (u, t) 7→
(
u+

qb

tn
, qatm

)
,

where n,m > 0 are integers to be specified later and q ∈ OK is a generator
of any prime ideal. We shall construct a cover of C′ by taking the Zariski
closure of the preimage of C′ under φ. Call this curve C1. It is cut out by the
following equation:

C1 : h(u, t) := g(qatm)tkn − f(u)tnk − f (1)(u)qbtn(k−1)

− f (2)(u)

2!
tn(k−2)q2b − · · · − qkb = 0.

Note that h is of degree dm+ kn in t, has leading coefficient qad and has all
its coefficients in OK . The most important fact for us is the following.
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Lemma 2. The polynomial h is irreducible over K.

Proof. Let us first of all assume (after perhaps performing a change
of variables on our base curve C′) that the non-leading coefficients of g(y)
and f(x) are all divisible by qda+1. Suppose that h is reducible. Then for
any specialisation of the variable u to an element m ∈ K the resulting
polynomial h(m, t) must be reducible into two polynomials in t of degree at
least one. Consider then the polynomial h(0, t). Since (1/i!)f (i)(0) is just the
ith coefficient of f we see that every coefficient of h(0, t) is divisible by qda.
Hence h(0, t) = qdah1(t). Since kb− ad = 1 we note that the constant term
in h1(t) is q, the leading term is 1 and every other coefficient is divisible
by q. Hence h1(t) is Eisenstein and thus irreducible. Therefore, h(0, t) and
thus h(u, t) are irreducible also.

We are now in a position to complete the proof of Theorem 1.

Proof of Theorem 1. We want to find an N(C) > 0 such that for all
primes p ≥ N(C) we have an affirmative answer to Question 1. We formed a
cover C1 of C′ which is given by C1 : h(u, t) = 0 where h has degree md+nk.
Now (k, d) = 1, therefore if we let n range in 0 ≤ n ≤ d−1 then nk occupies
all the congruence classes modulo d. This is easily seen: if ak ≡ bk (mod d)
then a ≡ b (mod d). Therefore we can express every number greater than
k(d−1) in the form md+nk and in particular we can represent every prime
p > k(d− 1) by p = md+ kn with 0 < m and 0 < n ≤ d− 1.

Now we are in a good position. We can form a curve C1 : h(u, t) = 0 of
degree p with h(u, t) ∈ OK and irreducible for all primes p ≥ k(d − 1) + 1
= N(C). By Hilbert’s Irreducibility Theorem we can find infinitely many
m ∈ K such that h(m, t) is an irreducible polynomial of degree p in t. Take
such an m and let αm be a root of h(m, t). Then Qm = (m,αm) ∈ C1(Lm)
where Lm = K(αm). Note that [Lm : K] = p. We can form infinitely
many such points and since φ|C1 : C1 → C′ has degree strictly less than p
we see that strictly-Lm points on C1 are taken to strictly-Lm points on C′.
(This is in virtue of the fact that if p is prime and l < p then l and p
are coprime—this is the only place we use the primality of p in our argu-
ment.)

By Lemma 1, all we need to show now is that the extensions Lm do not
coincide too often. To see this we note that if S = {P ∈ SpecOLm : q ∈ P}
then the roots of the polynomial g(m, t) are all S-integers and by Siegel’s
Theorem there are only finitely many S-integers lying on C′. Therefore, there
must be infinitely many different extensions Lm and so by Lemma 1 we are
done.

We can now use this result to prove some interesting corollaries as stated
in the introduction.
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Corollary 1. Let C be birational over K to the plane curve cut out by
the equation C′ : y2 = g(x) where k = deg(g) is odd. Then there is an N(C)
such that for all primes p ≥ N(C) Question 1 has an affirmative answer.
What is more, we can take N(C) = k + 1.

Proof. This is a straightforward application of Theorem 1. The proof of
the theorem gives N(C) = k(d− 1) + 1 = k + 1.

This has the following pleasing corollary.

Corollary 2. Question 1 has an affirmative answer for every prime p
when C is an elliptic curve.

Proof. Since elliptic curves can be written in the form C : y2 = x3+Ax+B
= g(x), Corollary 1 gives us the result for all primes p ≥ 5. The cases of the
primes 2 and 3 are not hard to prove. For p = 2, if we take m ∈ OK then
Pm = (m,

√
f(m)) lies on C. The value f(m) cannot be a square infinitely

often or else E(OK) would be infinite, contradicting Siegel’s Theorem. The
same theorem also tells us that the points Pm must lie in infinitely many
different quadratic extensions. For p = 3, we apply the same argument by
putting y = m ∈ OK . This gives a monic cubic polynomial in x. If this is
reducible then there must be a linear factor and since the cubic is monic
this yields an OK point on C. Thus the cubics obtained this way must be
irreducible almost all of the time and so give us our desired degree 3 points.

Remark. It is worth remarking that the degree p extensions for p > 3
which are constructed in the proof of Theorem 1 take on, for elliptic curves,
a particularly simple form. For a curve of the shape y2 = x3 + Ax+ B the
constructed degree p extensions are of the form K[t]/g(k, t) where

g(k, t) = q2tp − (k3 +Ak +B)t3 − (3k2 +A)qt2 − 3q2kt− q3,
q is any prime in OK and k is to be considered as an element of OK so
that g(k, t) ∈ K[t]. If we specify k so that g(k, t) is irreducible then the
extension is generated by a root of a polynomial of the form q2tp − f(t)
where f ∈ OK [t] is a cubic.

4. A result when the degrees are not coprime. A major hypothesis
in the statement of Theorem 1 is that the degrees of the two polynomials
involved be coprime. In this final section we shall consider an example of a
class of curves not fitting this restriction but where something can still be
said.

Theorem 2. Let C be a smooth, irreducible curve of positive genus,
defined over K and birational to a plane curve of the shape

C′ : yd = xk +D
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where D ∈ O×K (and with no restrictions on d or k). Then there is an
N(C) > 0 such that for all primes p > N(C) there are infinitely many
extensions L/K of degree p where rk(C/L) > rk(C/K).

Proof. We follow our usual strategy of constructing points on C′. We
begin by covering C′ by the curve

C1 : yn = xn +D

where n = lcm(d, k). Note that we can assume that qn divides D exactly for
any q outside of a finite set. Let us assume then that q2n exactly divides D
for some prime q. Let w = y − x; then by factorising yn − xn we have

C1 : wn + wn−1x+ · · ·+ wxn−1 = D.

Now, we are going to form a cover of C1 by looking at its preimage under
the map φ : A2

(u,t) → A2
(x,w) given by

φ(u, t) = (qts + u, qntr).

As we have seen, the key point is showing that the curve C2 : h(u, t) = 0 given
as the Zariski closure of φ−1(C1) is irreducible. Consider the specialisation
h(0, t). This is given by

h(0, t) = (qntr)n + (qntr)n−1(qts) + · · ·+ (qntr)(qts)n−1 −D

and one can observe that every coefficient is divisible by q2n except for
the coefficient of t(n−1)s+r (the last non-constant monomial in the equation
above). This has a coefficient of q2n−1 and so we can divide out by this to
get an Eisenstein polynomial, showing that h(0, t) is irreducible and thus so
is h(u, t).

If we have s > r in φ then h(u, t) is of degree (n − 1)s + r in t. We
can express every prime p ≥ (n − 1)(n − 2) as p = (n − 1)s + r for some
r, s with r > s and so we see, by Hilbert’s Irreducibility Theorem, that for
such a p we can specialise h(u, t) to h(m, t) for infinitely many m ∈ K to
get an irreducible polynomial of degree p. The roots of this polynomial will
then correspond to points strictly in a degree p extension L/K. These points
are then mapped to our original plane curve C′. Since p is larger than the
degrees of any of the covering maps involved we see that the end point is
still strictly-L. Thus we are done by Lemma 1.
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