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1. Introduction. If K is a field and g, h ∈ K[x], then f = g ◦ h is
their functional composition and (g, h) is a (functional) decomposition of f
over K. The decomposition is nontrivial if g and h are of degree at least 2.
A polynomial is said to be indecomposable if it is of degree at least 2 and
does not have a nontrivial decomposition. Given f ∈ K[x] with deg f > 1, a
complete decomposition of f over K is a decomposition f = f1◦· · ·◦fm, where
the polynomials fi ∈ K[x] are indecomposable over K for all i = 1, . . . ,m.
Two decompositions f = g1 ◦ h1 = g2 ◦ h2 are said to be equivalent over K,
written g1 ◦ h1 ∼K g2 ◦ h2, if there exists a linear polynomial l ∈ K[x] such
that

g2 = g1 ◦ l and h2 = l−1 ◦ h1.

Clearly a complete decomposition of a polynomial of degree greater
than 1 always exists. However it is not unique and not even up to equivalence.
Nonuniqueness of prime factorization in (C[x], ◦) was of central interest to
J. F. Ritt, who proved remarkable results on this topic in his fundamen-
tal 1922 paper [16]. In particular, he showed the “essential uniqueness”
of factorization in (C[x], ◦), by showing that the sequence of the degrees
of the indecomposable polynomials in a complete decomposition over C of
a polynomial f ∈ C[x] is uniquely determined by f up to permutation.
Ritt’s results have been extended to any field of characteristic zero by En-
gstrom [11] and Levi [13] in the 1940s, and to any field K of positive char-
acteristic, provided that the degree of the polynomial under consideration
is not divisible by the characteristic of K, by Dorey and Whaples [10] in
1974. For an exhaustive explanatory work on this topic, we refer the reader
to [18].

Ritt’s polynomial decomposition results have been applied to a great
variety of topics. Fried [12] was the first to notice a connection with rational

2010 Mathematics Subject Classification: Primary 11D41; Secondary 11B68.
Key words and phrases: Euler polynomials, higher degree equations.

DOI: 10.4064/aa161-3-5 [267] c© Instytut Matematyczny PAN, 2013



268 D. Kreso and Cs. Rakaczki

points on curves. In 2000, Bilu and Tichy [7] succeeded in fully combining
polynomial decomposition with the classical theorem of Siegel on finiteness
of integral points on curves of genus greater than 0, to give a complete
ineffective criterion for the finiteness of the number of integer solutions x, y
of diophantine equations of the form f(x) = g(y), where f(x) and g(x) are
polynomials with rational coefficients. Their result led to a great number
of papers over the past decade, in which the question of finiteness of the
number of integer solutions has been solved for many concrete diophantine
equations in two separated variables. In particular, we mention the work
of Bilu, Brindza, Kirschenhofer, Pintér and Tichy [6] with an appendix by
Schinzel on equations with power sums of consecutive integers Sk(x) = 1k +
· · ·+xk, the related paper [14], where the finiteness of the number of integer
solutions of the equation 1k + · · · + xk = g(y), with arbitrary g(x) ∈ Q[x],
has been investigated, as well as the most recent work of Bazsó, Kreso,
Luca and Pintér [3] on a direct generalization of the problem treated in
[6] to the case of the power sum of elements of an arithmetic progression.
We mention that the study of diophantine equations involving power sums
of consecutive integers has a long history, dating back to the 1956 work of
Schäffer [17].

In the present paper, we study a related problem, with the power sum of
consecutive integers being replaced by the alternating power sum, Tk(n) =
−1k + 2k − · · · + (−1)nnk. The quantity Tk(n) is related to the kth Euler
polynomial via the identity

Tk(n) =
Ek(0) + (−1)nEk(n+ 1)

2
.

The Euler polynomials are defined by the following generating function:
∞∑
k=0

Ek(x)
tk

k!
=

2etx

et + 1
.

Our main result is a full classification of complete decompositions of
Euler polynomials over the set of complex numbers. Since the Euler poly-
nomials appear in many classical results and play an important role in var-
ious approximation and expansion formulas in discrete mathematics and in
number theory (see for instance [1], [8]), our result might be of broader
interest. We emphasize that there is a novelty in our approach to this de-
composition task. In Section 2, we recall and develop lemmas which are
interesting in the context of polynomial decomposition. We then combine
these results with the properties of Euler polynomials to prove the following
theorem.

Theorem 1.1. The Euler polynomials Ek(x) are indecomposable over
C for all odd k. If k = 2m is even, then every nontrivial decomposition of
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Ek(x) over C is equivalent to

(1.1) Ek(x) = Ẽm

((
x− 1

2

)2)
, where Ẽm(x) =

m∑
j=0

(
2m

2j

)
E2j

22j
xm−j ,

and Ej is the jth Euler number defined by Ej = 2jEj(1/2). In particular,

the polynomial Ẽm(x) is indecomposable over C for any m ∈ N.

Theorem 1.1 combined with the aforementioned criterion of Bilu and
Tichy enables us to characterize those polynomials g(x) ∈ Q[x] for which
the diophantine equation

(1.2) − 1k + 2k − · · ·+ (−1)xxk = g(y)

may have infinitely many integer solutions, provided k ≥ 7. Apart from five
exceptional cases we list, the equation (1.2) has only finitely many integer
solutions. More precisely, the following theorem holds.

Theorem 1.2. Let k ≥ 7 be an integer and g(x) ∈ Q[x] with deg g ≥ 2.
Then the diophantine equation (1.2) has only finitely many solutions x ∈ N,
y ∈ Z unless one of the following holds:

(i) g(x) = f(Ek(p(x))),

(ii) g(x) = f(Ẽs(p(x)2)),

(iii) g(x) = f(Ẽs(δ(x)p(x)2)),

(iv) g(x) = f(Ẽs(γδ(x)t)),

(v) g(x) = f
(
Ẽs((aδ(x)2 + b)p(x)2)

)
,

where t ≥ 3 is odd, a, b, γ ∈ Q \ {0}, p(x) ∈ Q[x],

f(x) = ±x/2 + Ek(0)/2 and Ẽs(x) =

s∑
j=0

(
2s

2j

)
E2j

22j
xs−j .

In the proof of Theorem 1.2, in each of these exceptional cases, we find
a choice of parameters leading to an infinite family of integer solutions
to (1.2).

In relation to our problem, we mention a paper by Dilcher [9] where an
effective finiteness theorem has been established for the diophantine equa-
tion

(1.3) − 1k + 3k − · · · − (4x− 3)k + (4x− 1)k = yn,

viewed as a “character-twisted” analogue of Schäffer’s equation, and a recent
paper by Bennett [4], where the same equation has been completely solved
for 3 ≤ k ≤ 6 using methods from diophantine approximations as well as
techniques based upon the modularity of Galois representations. We point
out that by using our techniques, an ineffective finiteness theorem on the
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number of integer solutions can be obtained for the diophantine equation

(1.4) − 1k + 3k − · · · − (4x− 3)k + (4x− 1)k = g(y)

with k ∈ N and an arbitrary g(x) ∈ Q[x].

2. Decomposition of Euler polynomials. In this section, we recall
and establish some results on polynomial decomposition, and then use them
to classify decomposition properties of Euler polynomials over the complex
numbers.

The following lemma describes the structure of the set of all decomposi-
tions of a fixed monic polynomial into two factors when the corresponding
field is either of characteristic 0 or of positive characteristic but the degree
of the polynomial is not divisible by the characteristic, the case known as
“tame” in the literature. In the “wild” case, when the degree is divisible
by the characteristic, Ritt’s first theorem does not hold in general, as is
shown by an example due to Dorey and Whaples [10]. Similarly, the follow-
ing lemma fails in the wild case.

Lemma 2.1. Let F (x) ∈ K[x] be a monic polynomial such that degF is
not divisible by the characteristic of the field K. Then for every nontrivial
decomposition F = F1 ◦ F2 over any field extension L of K, there exists a
decomposition F = F̃1 ◦ F̃2 such that:

• F1 ◦ F2 ∼L F̃1 ◦ F̃2,
• F̃1(x) and F̃2(x) are monic with coefficients in K,
• coeff(xdeg F̃1−1, F̃1(x)) = 0.

Moreover, the decomposition F̃1 ◦ F̃2 is unique.

Proof. Let L be an arbitrary extension field of K and let F (x)=F1(F2(x))
be a nontrivial decomposition over L. There exists an equivalent decompo-
sition F̄1 ◦ F̄2 such that F̄1(x) and F̄2(x) are monic polynomials in L[x].
Indeed, let k be the degree of F2(x) and bk ∈ L be the leading coefficient
of F2(x). Then

F1 ◦ F2 ∼L F̄1 ◦ F̄2,

where F̄1(x), F̄2(x) ∈ L[x] are given by

F̄1(x) = F1(bkx), F̄2(x) = b−1k F2(x),

and are clearly monic.

Hence, we may assume that F1(x) and F2(x) are monic polynomials.
Furthermore, let t be the degree of F1 and at−1 be the coefficient of xt−1

in F1(x). Then

F1 ◦ F2 ∼L F̃1 ◦ F̃2,
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where F̃1(x), F̃2(x) ∈ L[x] are given by

F̃1(x) = F1(x− t−1at−1), F̃2(x) = F2(x) + t−1at−1.

It is easy to verify that the coefficient of xt−1 in F̃1(x) is 0 and since F1 and
F2 are monic, so are F̃1 and F̃2. Let F̃1(x) = xt + at−1x

t−1 + · · ·+ a0 ∈ L[x]
and F̃2(x) = xk + bk−1x

k−1 + · · · + b0 ∈ L[x], where at−1 = 0. Further, let
F (x) = cnx

n + · · ·+ c1x+ c0. Clearly, n = kt and t, k ≥ 2 by assumption.
Now we will show that F̃1 and F̃2 have coefficients in K. From

(2.1) F (x) = F̃1(F̃2(x)) = F̃2(x)t + at−2F̃2(x)t−2 + · · ·+ a1F̃2(x) + a0,

by expanding F̃2(x)t we get the following system of equations which com-
pletely determine the coefficients of F̃2(x):

(2.2)



cn−1 = tbk−1,

cn−2 = tbk−2 +
(
t
2

)
b2k−1,

...

cn−k = tb0 +
∑

i1+2i2+···+(k−1)ik−1=k

di1,i2,...,ik−1
bi1k−1b

i2
k−2 . . . b

ik−1

1 ,

where

di1,i2,...,ik−1
=

(
t

i1, i2, . . . , ik−1

)
.

Since ci ∈ K, it follows that bi ∈ K for all i = 0, 1, . . . , k − 1 and hence
F̃2(x) ∈ K[x]. Furthermore, from (2.1), it is clear that the coefficients of
F̃1 are uniquely determined by F and F̃2. Recursively, ai ∈ K for all i =
t−2, . . . , 1, 0. Together with at = 1 and at−1 = 0, it follows that F̃1(x) ∈ K[x]
as well.

Remark 2.2. The proof fails in the wild case, when the degree is di-
visible by the characteristic, since in this case there does not exist a multi-
plicative inverse of the degree in the relevant field. Note that in the proof
we assume that t−1 ∈ K.

Remark 2.3. We also remark that our restriction to monic polynomials
is not a restriction at all. For a nonmonic polynomial F , we may apply
Lemma 2.1 to the polynomial obtained by multiplying the coefficients of F ∈
K[x] with the multiplicative inverse in K of the leading coefficient of F . Also,
Lemma 2.1 implies that indecomposability over any field extension implies
indecomposability over the original field, provided that we are in the tame
case. This result is attributed to Schinzel. In fact, our proof of Lemma 2.1
is based on the proof of this fact from [18, Theorem 6, Chapter 1.3].

Further, we will need the following lemma.

Lemma 2.4. Let F ∈ K[x] be such that degF is not divisible by the
characteristic of the field K. If g1 ◦ g2 and h1 ◦ h2 are two decompositions of
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F over K satisfying

deg g1 = deg h1 and hence deg g2 = deg h2,

then these decompositions are equivalent over K.

Proof. Already in Ritt’s fundamental paper [16], this fact is shown for
K = C via Riemann surface techniques, and was later proved by Levi [13]
in an elementary way. See also [19] for a recently found elementary proof.

The following observation will be of great help in the proof of Theo-
rem 1.1.

Lemma 2.5. Let n be an even positive integer. If

(x+ 1)n − xn = G(x)H(x)

with G(x), H(x) ∈ R[x], then the coefficients of G(x) and H(x) are either
all positive or all negative.

Proof. We have (x + 1)n − xn =
∏n
i=1(x + 1 − ωix), where ωi = e2πi/n,

i = 1, . . . , n, are the nth roots of unity. Hence, ωn = 1, ωn/2 = −1, and
ωn−j = ωj for all j = 1, . . . , n/2− 1. Therefore we have

(2.3) (x+ 1)n − xn = (2x+ 1)

n/2−1∏
j=1

(x+ 1− ωjx)(x+ 1− ωjx)

= (2x+ 1)

n/2−1∏
j=1

((2− (ωj + ωj))x
2 + (2− (ωj + ωj))x+ 1).

Clearly 2 − (ωj + ωj) > 0 for all j ∈ {1, . . . , n/2 − 1}. Now the assertion
follows from the fact that R[x] is a unique factorization domain.

Finally, to prove Theorem 1.1 we need some well known properties of
Euler polynomials; they will sometimes be used without explicit reference.

Lemma 2.6 ([8]).

(a) En(x) = (−1)nEn(1− x).
(b) En(x+ 1) + En(x) = 2xn.
(c) E′n(x) = nEn−1(x).
(d) E5(x) is the only Euler polynomial with a multiple root.
(e) En(x) =

∑n
k=0

(
n
k

)
Ek

2k
(x− 1

2)n−k, wherefrom En(x) =
∑n

k=0 ckx
k with

ck =

n−k∑
j=0

(
n

j

)
Ej
2j

(
n− j
k

)(
−1

2

)n−k−j
, k = 0, 1, . . . , n,

where Ej is the jth Euler number. In particular,

cn = 1, cn−1 = −1

2
n, cn−2 = 0, cn−3 =

1

4

(
n

3

)
, . . . .
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Proof of Theorem 1.1. Let n ∈ N and suppose

(2.4) En(x) = G(H(x))

is a nontrivial decomposition of the Euler polynomial En(x) ∈ Q[x] over C.
According to Lemma 2.1, we may assume that G(x) and H(x) are monic
polynomials with rational coefficients; let G(x) = xt + at−1x

t−1 + · · ·+ a0 ∈
Q[x] and H(x) = xk + bk−1x

k−1 + · · · + b0 ∈ Q[x]. We furthermore assume
at−1 = 0. Clearly t, k ≥ 2 by assumption.

Now, since En(1− x) = (−1)nEn(x), we have

G(H(1− x)) = (−1)nG(H(x)).

Case 1: n is even. Then G(H(1−x)) = G(H(x)) and Lemma 2.4 implies
that either H(1− x) = H(x), or H(1− x) = −H(x) and G(x) = G(−x).

In the former case degH = k is even and bk−1 = −k/2. Furthermore,
Lemma 2.6 and decomposition (2.4) imply

2((x+ 1)n − xn) = En(−x− 1)− En(x) = G(H(−x− 1))−G(H(x)),

from which we deduce that H(−x− 1)−H(x) divides (x+ 1)n−xn in Q[x].
Since the leading coefficient of H(−x − 1) −H(x) is 2k, Lemma 2.5 shows
that all the coefficients of H(−x − 1) − H(x) must be positive. Suppose
k ≥ 4. The coefficient of xk−4 in H(−x− 1)−H(x) is found to be

(2.5)

(
k

4

)
−
(
k − 1

3

)
bk−1 +

(
k − 2

2

)
bk−2 −

(
k − 3

1

)
bk−3 > 0.

From (2.2) we can determine the coefficients bk, bk−1, . . . , b0 of H(x) in terms
of the coefficients cn, cn−1, . . . , c0 of the nth Euler polynomial. The latter are
given in Lemma 2.6(e). Hence

(2.6) bk−1 = −k
2
, bk−2 = −(t− 1)k2

8
, bk−3 =

1

4

(
k

3

)
+

(t− 1)k2(k − 2)

16
.

Substituting these values in (2.5), we obtain

(2.7)

(
k

4

)
>

(t− 1)k2(k − 2)(k − 3)

16
,

which implies t ≤ 1, contradicting our assumption. Since k is even, we
conclude k = 2 and hence t = n/2. Now Lemma 2.4 implies that this
decomposition is equivalent to (1.1).

In the case when H(1−x) = −H(x) and G(x) = G(−x) one can deduce
that k is odd, t is even,

G(x) = xt + at−2x
t−2 + · · ·+ a2x

2 + a0

and

En(x) = G(H(x)) = G1(H1(x)),
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where G1(x) = xt/2 + at−2x
t/2−1 + · · ·+ a2x+ a0, H1(x) = H(x)2. But then

H1(x) = H1(1−x) and we can use the above argument to get a contradiction
provided that deg(G1(x)) = t/2 ≥ 2. In the remaining case t = 2 we have
G(x) = x2 + a0 and so

(2.8) En(x) = H(x)2 + a0.

By Theorem 3.2 below on simple zeros of shifted Euler polynomials, (2.8)
holds only if n = 6. But a simple calculation shows that E6(x) is not of the
form (2.8).

Case 2: n is odd. Then k and t are also odd and G(H(1 − x)) =
−G(H(x)). Lemma 2.4 implies H(1−x) = −H(x). Furthermore, Lemma 2.6
and decomposition (2.4) yield

2xn = En(x)− En(−x) = G(H(x))−G(H(−x)),

from which we deduce that H(x) − H(−x) divides 2xn in Q[x]. Hence,
H(x) −H(−x) = qxl with q ∈ Q and l ≤ n. By expanding H(x) −H(−x)
we obtain l = k, q = 2 and bk−2 = 0, which together with (2.6) implies t = 1
or k = 0, contradicting the assumption k, t ≥ 2. Hence, Euler polynomials
with odd index are indecomposable.

3. Finiteness result for −1k + 2k − · · · + (−1)xxk = g(y). For the
proof of Theorem 1.2 we need some auxiliary results. The first one is a
complete ineffective finiteness criterion for diophantine equations of the form
f(x) = g(y) which is due to Bilu and Tichy [7].

We say that the equation f(x) = g(y) has infinitely many rational solu-
tions with bounded denominator if there exists a positive integer λ such that
f(x) = g(y) has infinitely many rational solutions x, y satisfying λx, λy ∈ Z.
Clearly if f(x) = g(y) does not have infinitely many rational solutions with
bounded denominator, then it has only finitely many integer solutions.

Theorem 3.1 (Bilu and Tichy, 2000). Let f(x), g(x) ∈ Q[x] be non-
constant polynomials. Then the following assertions are equivalent:

• The equation f(x) = g(y) has infinitely many rational solutions with
bounded denominator.
• f(x) = ϕ(f1(λ(x))) and g(x) = ϕ(g1(µ(x))), where λ(x), µ(x) ∈ Q[x]

are some linear polynomials, ϕ(x) ∈ Q[x], and (f1(x), g1(x)) is a stan-
dard pair over Q such that the equation f1(x) = g1(y) has infinitely
many rational solutions with bounded denominator.

There are five kinds of standard pairs over Q and they are listed in the
following table. Note a, b ∈ Q \ {0}, q, s, t ∈ N, r ∈ Z+, q(x) ∈ Q[x] \ {0}
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and Ds(x, a) is the sth Dickson polynomial defined by

(3.1) Ds(x, a) =

bs/2c∑
i=0

s

s− i

(
s− i
i

)
(−a)ixs−2i.

Kind Explicit form of (f1, g1) or
switched pair (g1, f1)

Parameter restrictions

first (xt, axrq(x)t) 0 ≤ r < t, (r, t) = 1, r + deg q(x) > 0

second (x2, (ax2 + b)q(x)2) –

third (Ds(x, at), Dt(x, a
s)) (s, t) = 1

fourth (a−s/2Ds(x, a), b−t/2Dt(x, b)) (s, t) = 2

fifth ((ax2 − 1)3, 3x4 − 4x3) –

Now, the theorem of Bilu and Tichy can be summarized as follows: the
equation f(x) = g(y) with f, g ∈ Q[x] has infinitely many integer solutions
x, y if up to certain transformations on the set of polynomials with ratio-
nal coefficients, the pairs of polynomials (f, g) belong to one of five well
understood families.

We will make an extensive use of the following theorem from [15].

Theorem 3.2 (Rakaczki, 2011). Let m ≥ 7 be an integer. Then the
shifted Euler polynomial Em(x) + b has at least three simple zeros for every
complex number b.

The following theorem is a classical effective result of Baker [2] related
to hyperelliptic equations.

Theorem 3.3 (Baker, 1969). Let f(x) ∈ Q[x] be a polynomial having
at least three simple roots. Then all the solutions x, y ∈ Z of the equation
f(x) = y2 satisfy max{|x|, |y|} ≤ C, where C is an effectively computable
constant depending only on the coefficients of f .

For P (x) ∈ C[x], a complex number c is said to be an extremum if
P (x) − c has multiple roots. If P (x) − c has s multiple roots, the type of
c is the tuple (α1, . . . , αs) of multiplicities of its roots in increasing order.
Obviously, s < degP , (α1, . . . , αs) 6= (1, . . . , 1) and α1 + · · ·+ αs = degP .

The following result concerns Dickson polynomials defined by (3.1). The
proof can be found in [5, Proposition 3.3].

Theorem 3.4. For a 6= 0 and k ≥ 3, Dk(x, a) has exactly two extrema
±2ak/2. If k is odd, then both are of type (1, 2, . . . , 2). If k is even, then
2ak/2 is of type (1, 1, 2, . . . , 2) and −2ak/2 is of type (2, . . . , 2).

What follows is a technical lemma which will be needed in the proof of
Theorem 1.2. Everywhere below, c, u ∈ Q \ {0} and d, v ∈ Q.
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Lemma 3.5. The polynomial En(cx + d) is neither of the form uxq + v
with q ≥ 3, nor of the form uDk(x, a)+v, where Dk(x, a) is the kth Dickson
polynomial with k > 4 and a ∈ Q \ {0}.

Proof. Suppose that En(cx+d) = uxq+v, where q ≥ 3. Since degEn(x)
= n we have q = n. The number of roots, as well as the root multiplicities,
of an algebraic equation in variable x remain unchanged if we replace x by
a linear polynomial in x, so it follows that the polynomial (En(x) − v)′ =
nEn−1(x) has a zero of multiplicity at least q − 1. This is not possible due
to Lemma 2.6(d).

Now assume that En(cx+ d) = uDk(x, a) + v and n ≥ 7. Then

k = n and Dn(x, a)± 2an/2 =
1

u
(En(cx+ d)− v ± 2uan/2).

From Theorem 3.2 we infer that Dn(x, a)± 2an/2 has at least three simple
zeros, contradicting Theorem 3.4. In the cases n = 5 and n = 6 a direct
calculation shows that En(cx+ d) cannot be of the form uDn(x, a) + v. We
remark that

E4

(
cx+

1

2

)
= c4D4

(
x,

3

8c2

)
+

1

32
.

Proof of Theorem 1.2. We recall that

(3.2) Tk(n) = −1k + 2k − · · ·+ (−1)nnk =
Ek(0) + (−1)nEk(n+ 1)

2
.

Now clearly

(3.3) Tk(2n) =
Ek(0) + Ek(2n+ 1)

2
and Tk(2n− 1) =

Ek(0)− Ek(2n)

2

for k, n ∈ N. Hence we can write (1.2) in the form

(3.4) Fk(x) = g(y),

where

(3.5) Fk(x) = f(Ek(h(x)))

with f(x) = x/2 + Ek(0)/2 and h(x) = 2x + 1, or f(x) = −x/2 + Ek(0)/2
and h(x) = 2x.

We first treat the case when deg g = 2. Then (3.4) transforms into

(3.6) df(Ek(h(x))) = ay2 + by + c with a, b, c, d ∈ Z, a, d 6= 0,

and then simply into

(3.7) uEk(h(x)) + v = (2ay + b)2,

where u 6= 0 and v are rational numbers. Combining Theorems 3.3 and 3.2,
we infer that (3.7) has only finitely many integer solutions x, y which can
be effectively determined, provided that k ≥ 7.
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Now let deg g > 2. Suppose that (3.4) has infinitely many solutions x ∈
N, y ∈ Z. Then by Theorem 3.1, there exist ϕ(x) ∈ Q[x], linear polynomials
λ(x), µ(x) ∈ Q[x] and a standard pair (f1(x), g1(x)) over Q such that

(3.8) Fk(x) = ϕ(f1(λ(x))) and g(x) = ϕ(g1(µ(x))).

Since degFk(x) = k, from decomposition properties of Euler polynomials
(Theorem 1.1) and from (3.5) we see that degϕ=1, degϕ=k/2, or degϕ=k.

Case 1: degϕ = k. Then from (3.8) we get deg f1 = 1. Therefore
Fk(x) = ϕ(t(x)), where t(x) ∈ Q[x] is a linear polynomial. Hence clearly

(3.9) Fk(t
−1(x)) = ϕ(t(t−1(x))) = ϕ(x).

From (3.5), (3.8) and (3.9) we obtain

g(x) = ϕ(g1(µ(x))) = Fk(t
−1(g1(µ(x)))) = f(Ek(p(x))),

where p(x) = h(t−1(g1(µ(x)))) ∈ Q[x]. Hence (3.4) may have infinitely many
solutions x ∈ N, y ∈ Z only if g(x) = f(Ek(p(x))), where p(x) = τ(g1(µ(x)))
with τ(x), µ(x) ∈ Q[x] linear polynomials and (f1(x), g1(x)) a standard pair
over Q with deg f1 = 1. In this particular case, (3.4) is of the form

(3.10) Fk(x) = Fk(p(y)) in integers x ∈ N, y ∈ Z.

Obviously, if p(y) ∈ N for infinitely many integers y, we have infinitely many
solutions x ∈ N, y ∈ Z of (3.4). For example, one can take an arbitrary
polynomial p(x) ∈ Z+[x].

Case 2: degϕ = 1. Let ϕ(x) = ϕ1x+ϕ0, where ϕ1, ϕ0 ∈ Q and ϕ1 6= 0.
From (3.8) it follows that

(3.11) Fk(λ
−1(x)) = ϕ(f1(x)) = ϕ1f1(x) + ϕ0,

and (3.5) yields

(3.12) f(Ek(h(λ−1(x)))) = Fk(λ
−1(x)) = ϕ1f1(x) + ϕ0.

Since f(x), h(x), λ−1(x) ∈ Q[x] are linear polynomials, we have

(3.13) Ek(cx+ d) = uf1(x) + v for some c, d, u, v ∈ Q, c, u 6= 0.

Now we study the five types of standard pairs over Q.

First, consider the case when (f1(x), g1(x)) in (3.8) is a standard pair over
Q of the first kind. From (3.13), either Ek(cx+d) = uxt+v, or Ek(cx+d) =
uaxrq(x)t+v, where 0 ≤ r < t, (r, t) = 1 and r+deg q(x) > 0. In the former
case we get a contradiction by Lemma 3.5 since k = t ≥ 3. In the latter case,
Theorem 3.2 yields deg g = t ≤ 2, a contradiction.

Let now (f1(x), g1(x)) be of the second kind. Then either Ek(cx+ d) =
ux2 +v, or Ek(cx+d) = u(ax2 +b)q(x)2 +v. The former case is not possible
since k ≥ 7, and the latter since Theorem 3.2 applies.
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Next, let (f1(x), g1(x)) be of the third or fourth kind. Then by (3.13) it
follows that

(3.14) Ek(cx+ d) = uDk(x,w) + v,

where w = at or w = a. However, from Lemma 3.5 we obtain a contradiction
since k ≥ 7.

Finally, it is easy to see that (f1(x), g1(x)) cannot be of the fifth kind
either because k ≥ 7.

Case 3: degϕ=k/2. Obviously, in this case k=2s is even and deg f1=2.
From (3.5) and (3.8) we see that

(3.15) Ek(x) = f−1(ϕ(f1(τ(x)))),

where τ(x) = cx+d is a linear polynomial in Q[x]. Since deg f1 = 2 and k ≥ 7
we have a nontrivial decomposition of Ek(x) in (3.15). By Theorem 1.1, this

decomposition is equivalent to the decomposition Ek(x) = Ẽs((x − 1/2)2),
so there exists a linear polynomial u(x) = u1x+ u0 such that

(3.16) ϕ(x) = f(Ẽs(u(x))) and u(f1(τ(x))) = (x− 1/2)2,

which together with (3.8) implies that (3.4) may have infinitely many integer
solutions only if

(3.17) g(x) = f(Ẽs(q(x))), where q(x) = u(g1(µ(x))).

Now again we study the five types of standard pairs over Q.

First, consider the case when (f1(x), g1(x)) is of the first kind. Since
deg f1 = 2, if f1(x) = xt we have (f1(x), g1(x)) = (x2, axq(x)2). From (3.16),
we infer that u(x) = x/c2 and

(3.18) g(x) = f

(
Ẽs

(
aµ(x)q(µ(x))2

c2

))
,

which we can write as g(x) = f(Ẽs(δ(x)p(x)2)), where δ(x), p(x) ∈ Q[x] and
deg δ(x) = 1. Now (3.4) turns into

(3.19) f(Ẽs((h(x)− 1/2)2)) = f(Ẽs(δ(y)p(y)2)).

If δ(y) is the square of a rational number for infinitely many integers y,
and for these y,

√
δ(y) p(y) + 1/2 are all positive even integers or all posi-

tive odd integers, then x =
√
δ(y) p(y)/2 ± 1/4, y are solutions of (3.4),

respectively. For example, let δ(x) = x, r(x) be a polynomial which takes
a positive odd integer value for every x ∈ N and p(x) = r(x) − 1/2. Then
for every positive integer k the pairs of integers x = ((4k + 3)r((4k + 3)2)
− 2k − 1)/2, y = (4k + 3)2 and x = ((4k + 1)r((4k + 1)2) − 2k − 1)/2,
y = (4k + 1)2 are solutions of (3.4).
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Since 0 ≤ r < t, (r, t) = 1 and r + deg q(x) > 0, if the two components
are switched, that is, when (f1(x), g1(x)) = (axrq(x)t, xt), there are two
possibilities: either

(i) r = 0, t = 1 and deg q(x) = 2, or
(ii) r = 2, t ≥ 3 odd and q(x) is a constant polynomial.

In the former case, we have g1(x) = x and thus

(3.20) g(x) = f(Ẽs(u(µ(x)))) = f(Ẽs(δ(x)p(x)2)) with p(x) ≡ 1.

In the latter case, from (3.16) we deduce that f1(x) = bx2 and u(x) =
x/(bc2), where b ∈ Q \ {0}. Then

(3.21) g(x) = f

(
Ẽs

(
(µ(x))t

bc2

))
= f(Ẽs(γδ(x)t)),

where γ = 1/(bc2), δ(x) = µ(x). Now (3.4) is of the form

(3.22) f(Ẽs((h(x)− 1/2)2)) = f(Ẽs(γδ(y)t)).

If there are infinitely many integers y for which
√
γδ(y)t + 1/2 are all

positive even integers or all positive odd integers, then x =
√
γδ(y)t/2±1/4,

y are solutions of (3.4), respectively. For example, let γ = 1/4, δ(x) = x,
t ≥ 3 odd. Then, for k ∈ N, the pairs of integers x = ((4k − 1)t + 1)/4,
y = (4k−1)2 and x = ((4k+1)t−1)/4, y = (4k+1)2 are solutions of (3.22).

Next suppose that (f1(x), g1(x)) in (3.8) is of the second kind. If f1(x) =
(ax2 + b)q(x)2, then g1(x) = x2 and q(x) is a constant polynomial. Hence

(3.23) g(x) = f(Ẽs(u1µ(x)2 + u0)) = f(Ẽs((aδ(x)2 + b)p(x)2))

with a = u1, b = u0, δ(x) = µ(x) and p(x) ≡ 1. When f1(x) = x2 an easy
calculation shows that u(x) = x/c2 and

(3.24) g(x) = f

(
Ẽs

(
(aµ(x)2 + b)q(µ(x))2

c2

))
= f(Ẽs((aδ(x)2+b)p(x)2)),

where p(x) = q(µ(x))/c and δ(x) = µ(x). Then (3.4) is of the form

(3.25) f(Ẽs((h(x)− 1/2)2)) = f(Ẽs((aδ(y)2 + b)p(y)2)).

Let δ(x) = x, r(x) be a positive integer valued polynomial and p(x) =
4r(x) + 1. Let a = 1/2, b = 1/4. Then (3.25) has infinitely many integer
solutions

x =
a2n+1(4r(y) + 1) + 1

4
, y = b2n+1; x =

a2n(4r(y) + 1)− 1

4
, y = b2n,

respectively, where an and bn are defined by

an + bn
√

2 = (3 + 2
√

2)n,

that is,

(a1, b1) = (3, 2), (an+1, bn+1) = (3an + 4bn, 2an + 3bn), n ∈ N.
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Let now (f1(x), g1(x)) be of the third kind. In this case (f1(x), g1(x)) =
(D2(x, a

t), Dt(x, a
2)) with odd t. Substituting f1(x) = D2(x, a

t) = x2 − 2at

into (3.16), we obtain u(x) = (x+ 2at)/c2. Hence

(3.26) g(x) = f

(
Ẽs

(
Dt(µ(x), a2) + 2at

c2

))
.

From Theorem 3.4 we know that the polynomial Dt(µ(x), a2)/c2 has exactly
two extrema and those are ±2at/c2. Since t is odd, both extrema are of the
type (1, 2, . . . , 2). We deduce

g(x) = f(Ẽs(δ(x)p(x)2)),

where δ(x), p(x) ∈ Q[x] with deg δ(x) = 1.

Finally, let (f1(x), g1(x)) be of the fourth kind. Then (f1(x), g1(x)) =
(a−1D2(x, a), b−t/2Dt(x, b)) with t even. Using again (3.16), one can deduce
that u(x) = (ax+ 2a)/c2 and so

(3.27) g(x) = f(Ẽs(u(g1(µ(x))))) = f

(
Ẽs

(
ab−t/2Dt(µ(x), b) + 2a

c2

))
.

Now, the extrema of the polynomial ab−t/2Dt(µ(x), b)/c2 are ±2bt/2ab−t/2/c2

= ±2a/c2, and the extremum −2a/c2 is of the type (2, . . . , 2) by Theo-
rem 3.4. Therefore

g(x) = f(Ẽs(p(x)2)),

where p(x) ∈ Q[x]. Let r(x) be a positive integer valued polynomial and
p(x) = 2r(x)∓ 1/2. It is easy to see that the equation

(3.28) f(Ẽs((h(x)− 1/2)2)) = f(Ẽs(p(x)2))

has infinitely many integer solutions, for example (x, y) = (r(k), k), where
k ∈ N. Since deg f1 = 2, clearly (f1(x), g1(x)) cannot be of the fifth kind.
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