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1. Introduction: A geometric interpretation of iterated Galois
behavior. The study of the Galois behavior of iterates of rational polyno-
mials, begun by Odoni [13], provides a wealth of interesting unsolved prob-
lems linking arithmetic, geometry, and dynamics. Even in the most studied
and basic case, the quadratic polynomial, much remains a mystery. We begin
by describing the generic situation. Suppose that f ∈ Q[x] is a polynomial
of degree d whose iterates are separable (the polynomials obtained from suc-
cessive composition of f have distinct roots in an algebraic closure). If Tn
denotes the set of roots of f, f2, . . . , fn together with 0, then Tn carries a
natural d-ary rooted tree structure: α, β ∈ Tn share an edge if and only if
f(α) = β. As f is a polynomial with rational coefficients, the Galois group
of fn, which we denote by Gal(fn), acts via graph automorphisms on Tn.
Such a framework provides an arboreal representation, Gal(fn) ↪→ Aut(Tn),
and we can ask about the size of the image. In the quadratic case, it has
been conjectured that the image is “large”, under mild assumptions on f : if
all iterates of f are irreducible and f is critically infinite, then it has been
conjectured that the image of the inverse limit, G(f) := lim←−Gal(fn), is of
finite index in the automorphism group of the full preimage tree Aut(T )
(here critically infinite means the orbit of the unique root of f ’s derivative,
also known as the critical point, is infinite). This is an analog of Serre’s re-
sult for the Galois action on the prime-powered torsion points of a non-CM
elliptic curve; see [2] for a more complete description.

For integer values c, Stoll has given congruence relations which ensure
that the Galois groups of iterates of fc(x) = x2 + c are as large as possible
[23]. However, much is unknown as to the behavior of integer values not
meeting these criteria, not to mention the more general setting of rational
c (for instance c = 3 and −2/3). In fact, the state of the art seems to be to
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analyze the prime divisibility of the critical orbit, {f(0), f2(0), f3(0), . . .},
from which one may be lucky enough to force the Galois groups to be as
large as possible [2].

Remark 1.1. Assuming the ABC conjecture, Gratton, Nguyen, and
Tucker [8] have deduced the existence of primitive prime divisors in the
critical sequence of rational quadratic maps.

Note that Hilbert’s irreducibility theorem implies that Gal(fnc ) ∼=
Aut(Tn) outside of a thin set of c’s, and it is precisely this thin set that
we wish to characterize. To do this, it suffices to understand those poly-
nomials f for which Gal(fn) is smaller than expected for the first time at
level n, leading to the following definition:

Definition 1.1. Suppose n ≥ 2. If f is a quadratic polynomial such
that Gal(fn−1) ∼= Aut(Tn−1), yet Gal(fn) � Aut(Tn), then we say that f
has a small nth iterate.

Let
fγ,c(x) := (x− γ)2 + c

be a monic quadratic polynomial over the rational numbers (this seems to be
the appropriate parametrized family of quadratic polynomials for studying
the Galois theory of iterates, since the critical orbit encodes much of the
relevant information: irreducibility, discriminant, etc. [10]). In this paper, we
will usually view the critical point as given and study the Galois behavior
of fγ,c as c varies. With this in mind, we also have the following notation.

Definition 1.2. For γ ∈ Q, let

S(n)
γ := {c ∈ Q : fγ,c has a small nth iterate}

be the set of rational c’s giving rise to a polynomial with a small nth iterate.

In Section 4, we will show that S
(3)
γ is infinite for all but finitely many γ,

utilizing the theory of elliptic surfaces. However, we will first compute two

complete examples, S
(3)
0 and S

(3)
1 , in order to illustrate sensitivity to the

choice of the critical point γ.
To begin our study, fix a critical point γ∈Q and consider fγ,t=ft with t

an indeterminate. Define a set of polynomials Gm in Q[t] recursively by

G1 = {−t} and Gm = Gm−1∪{fmt (γ)g : g ∈ Gm−1}∪{fmt (γ)} for m ≥ 2.

Suppose c ∈ Q is such that Gal(fmc ) ∼= Aut(Tm), the generic situation.
Then the collection of fields Q(

√
g(c)) for g ∈ Gm comprises all quadratic

subfields of Km,c, a splitting field for fmc .

Remark 1.2. To see that this list of quadratic subfields is exhaustive in
the generic setting, note that there are at most 2m−1 such subfields, coming
from our embedding of the Galois group of Km,c into the m-fold wreath
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product of the cyclic group of order 2. On the other hand, one can show
inductively that Km,c is as large as possible if and only if the elements of
the critical orbit, and their products with each other, form distinct quadratic
extensions of Q; see Theorem 1 in [23] or Lemma 2.2 in [11].

We will now define the curves which parametrize certain Galois phe-
nomena arising in the dynamics of quadratic polynomials. For a given γ,
set

Cγ,n = Cn := {(t, y) : y2 = fnt (γ) = ((((((t−γ)2+t)−γ)2+t)−· · ·−γ)2+t)},

an affine curve. We also define

Vn,γ = Vn := Cn ∪
⋃

g∈Gn−1

{(t, y) : g(t)y2 = fnt (γ)}.

If all iterates of fc are irreducible and c ∈ S(n)
γ , then Lemma 3.2 of [11]

implies

|Gal(Kn,c/Kn−1,c)| 6= 22
n−1

and (c, y) ∈ Vn,γ(Q),

which is to say, Gal(fnc ) is not maximal for the first time at the nth stage if
and only if (c, y) gives a rational point on some curve(s). Note that g(t)y2

= fnt (γ) maps into the potentially singular hyperelliptic curve y2 =
g(t) · fnt (γ). As we will see later, one can implement various algorithms
with these hyperelliptic curves, which facilitate computations.

Now, if π : Vn → Q is the map that sends (t, y) to t, then we make the
following conjecture.

Conjecture 1. For all γ ∈ Q, if c ∈ Q is such that fc is critically
infinite and every iterate of fc is irreducible, then

{n : c ∈ π(Vn(Q))}

is finite. In particular, if γ = 0 and c is an integer not equal to −2 with −c
not a square, then the above set is finite.

Remark 1.3. Note that Conjecture 1 implies that for every γ and c

there exists an n(γ, c) = n(c) such that c /∈ S(m)
γ for m ≥ n(c), a slightly

weaker statement than the one presuming Gal(f) has finite index in Aut(T ).
In other words, if one wishes to establish that Gal(fnγ,c) is as large as possible
for every n, one need only check it to some bounded stage.

Forcing f to satisfy the hypothesis of Conjecture 1 is relatively easy;
see [11]. Hence a first step to prove such a result would be to to understand
the varieties Vn for a fixed γ. Are the Vn nonsingular? If singular, what
do their normalizations look like? Note that Vn(Q) will be finite for n large
enough [5]. After normalizing, can one say anything about the simple factors
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or ranks of the corresponding Jacobians? How much bigger is Vn(Q) than
the points coming from small nth iterates?

We answer these questions for the first nontrivial case γ = 0 and n = 3
in Theorem 3 of Section 3, which states that V3(Q) = E1(Q) ∪ E2(Q), and
each Ei is an elliptic curve whose rational points have rank one. Moreover,

the points on V3(Q) not coming from those in S
(3)
0 have t-coordinate either

0 or −2.

Before establishing this result, we show how the theory of quadratic
twists of hyperelliptic curves relates to the dynamics of quadratic polyno-
mials.

2. Twists of hyperelliptic curves and the finite index conjecture.
As a first illustration of using curves to study the dynamics of quadratic
polynomials, we show how one can use a theorem of Granville’s on the
rational points on quadratic twists of a hyperelliptic curve, assuming the
ABC conjecture over Q, to prove a finite index result in the case when
γ = 0 and c is an integer.

Theorem 2. Assume the ABC conjecture over Q, and suppose that c is
an integer such that fc(x) = x2 + c is critically infinite and every iterate of

fc irreducible. Then for all but finitely many n, |Gal(Kn,c/Kn−1,c)| = 22
n−1

.
In particular, the full arboreal representation of Gal(f) inside Aut(T ) has
finite index.

Remark 2.1. If c is an integer not equal to −2 such that −c is not a
square, then c will satisfy the hypotheses of Theorem 2; see [11].

Proof of Theorem 2. We fix c and suppress it in all notation. First
note that the adjusted critical orbit {−c, f2(0), f3(0), . . .} of f can con-
tain at most finitely many squares, for otherwise we would obtain infinitely
many integer points {(fnk−2(0), ynk)}∞k=1 on the smooth hyperelliptic curve
y2 = f2(x), and moreover this set of points is unbounded (f is critically in-
finite). This contradicts Siegel’s theorem on the finiteness of integral points
on curves of genus at least one [18].

Remark 2.2. For this particular family of quadratic polynomials, one
can show that the critical orbit in fact does not contain any squares (see
Corollary 1.3 of [23]). However, this sort of argument generalizes.

Therefore, we may assume that if |Gal(Kn/Kn−1)| 6= 22
n−1

, then for
some y ∈ Q,

dy2 = fn(0) with Q(
√
d) ⊂ Kn−1

(see [23, Lemma 1.6]). It is our goal to show that n is bounded. Note that
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the curve

C := {dy2 = f2(x)} has a rational point (fn−2(0), y)

and C is smooth since all iterates of f are assumed to be separable. Moreover,
d =

∏
i pi, where the pi’s are distinct primes dividing 2 ·

∏n−1
j=1 f

j(0). To see
this latter fact, we use a formula for the discriminant ∆m of fm,

∆m = ±∆2
m−1 · 22

m · fm(0),

given in Lemma 2.6 of [11]. It follows that the only rational primes which
ramify in Kn−1 are the primes dividing 2 ·

∏n−1
j=1 f

j(0). Since the primes
which divide d must ramify in Kn−1, we obtain the desired description of
the pi.

Now we apply a theorem of Granville’s on the rational points on twists
of a hyperelliptic curve, which assumes the ABC conjecture, to C (Theorem
1 of [7]). This yields

(1) |fn−2(0)| � |d|1/(2+o(1)).
We claim that each pi must also divide fn(0). To see this, write v = a/b,

for coprime integers a and b, so that p1 · · · pta2 = b2fn(0). Hence each pi
divides b or fn(0). If pi divides b, then the fact that these primes are assumed
to be distinct also implies that pi must divide a. It follows that v must be
an integer, and that pi divides fn(0) as claimed.

However, we also observe that the odd pi divide f j(0) for some j ≤ n−1,
so that such pi must divide fn−j(0). Therefore, we can choose j ≤ bn/2e
for every odd pi, where bxe denotes the nearest integer function. Since d is
assumed to be square free, we obtain

(2) |fn−2(0)| � |d|1/(2+o(1)) ≤ |2 · f(0) · f2(0) . . . f bn/2e(0)|1/(2+o(1)),
which is violated for sufficiently large n. For example, if c > 0, then fm(0) >
f(0) · f2(0) · · · fm−1(0) for all m. Our inequality then becomes

|fn−2(0)| � |d|1/(2+o(1)) ≤ |2 · f(0) · f2(0) . . . f bn/2e(0)|1/(2+o(1))(3)

≤ |2 · f bn/2e(0)|2/(2+o(1)),
a more obviously violated relation. On the other hand, if c ≤ −3, then we
use the fact that |fm(0)| ≥ (fm−1(0)− 1)2, as seen in [23, Corollary 1.3], to
show that

|f(0) · (f(0)− 2) · (f2(0)− 2) . . . (fn−3(0)− 2)|
≤ |fn−2(0)| � |d|1/(2+o(1)) ≤ |2 · f(0) · f2(0) . . . f bn/2e(0)|1/(2+o(1)).

This is impossible for large enough n, and we conclude that n is bounded
as claimed.

Remark 2.3. Also assuming the ABC conjecture, Gratton, Nguyen, and
Tucker have deduced the existence of primitive prime divisors in the critical
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orbit of fc. This result, when coupled with the description of the primes that
ramify in the quadratic extensions of Km, also implies a finite index result;
see [8].

For a given f , as seen in the proof of Theorem 2, an understanding of
the hyperelliptic curves

Bn,f := {(x, y) : y2 = fnγ,c(x)},
and their quadratic twists coming from elements of the critical orbit, can
provide information about the Galois behavior of f ’s iterates. If m ≥ n,
then Bm,f maps to Bn,f via (x, y) 7→ (fm−n(x), y)), and so we have a de-
composition Jac(Bm,f ) ∼ Jac(Bn,f ) × Am,n for some abelian variety Am,n.
Determining the factorization of Am,n into simple abelian varieties could be
a step towards understanding the dynamical Galois groups associated to f .

As an example, note that Bn,f also maps to the curve

Bn−1,f := {(x, y) : y2 = (x− c) · fn−1γ,c (x)},
via (x, y) 7→ (f(x), (x − γ) · y). Moreover, we have similar maps for any
quadratic twist of Bn,f . Let C(d) denote the quadratic twist of a hyperelliptic
curve C by d ∈ Q/(Q)2. We conclude this section with an example that
links the dynamics of quadratic polynomials with the ranks of the Jacobians

of B(d)2,f , a curve of genus 2, using the method of Chabauty and Coleman [12].

Remark 2.4. It is worth reporting that experimentally, at least in the
γ = 0 case, Bn,f has a simple Jacobian for most values of c.

Example 1. Consider f = x2 + 3 and the corresponding hyperelliptic
curve

B2 := {(x, y) : y2 = (x− 3) · (x4 + 6x+ 12)},
suppressing f , γ and c in the notation. We study this example in partic-
ular because the Galois groups of the iterates of f are not known in this
case. Note that B2 has good reduction at p = 5, and |B2(F5)| = 6 (in
fact it is supersingular). Fix a twist d =

∏
i pi, where the pi’s are distinct

primes dividing 2 ·
∏n−1
j=1 f

j(0), and note that B(d)2 also has good reduction
at p= 5, since otherwise 5 | d and 2 is a quadratic residue in F5. It follows

that |B(d)2 (F5)| = 6.
Suppose d is such that dy2 = fn(0) has a rational solution y for some n

(such a rational point forces the nth iterate of f to have smaller than ex-
pected Galois group). Then [12, Theorem 5.3(b)] implies that either

rank(Jac(B(d)2 )(Q)) ≥ 2 or #{n : dy2 = fn(0)} ≤ 3, since each n would

give a point (fn−2(0), fn−3(0) · ±y) on B(d)2 .

A detailed examination of these curves and their twists may very well
provide a link between Galois phenomena and curves whose Jacobians have
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large rank. We will not address this here, but rather we begin a concrete
study of a particular family of quadratic polynomials and a particular n,
parametrizing their Galois behavior using the rational points on elliptic
curves.

3. Classification of small third iterates when γ = 0. Throughout
this section, we fix the critical point γ = 0, hence study the family fc = x2+c,
and suppress γ in all notation.

A particularly interesting example is c = 3 and n = 3. Although

Gal((x2 + 3)2 + 3) ∼= D4
∼= Aut(T2),

one computes that |Gal(((x2 +3)2 +3)2 +3)| = 64, and hence f3 has a small
3rd iterate (generically Aut(Tn) is a wreath product of many copies of Z/2Z,
an order 22

n−1 Sylow 2-subgroup of S2n). In fact, we will show c = 3 is the
only integer such that fc has a small third iterate. To prove this, consider
the curves

E1 : −y2 = t3 + 2t2 + t+ 1, E2 : y2(t+ 1) = t3 + 2t2 + t+ 1,

and

V3 = E1 ∪ E2 ⊂ A2
Q,

where V3 is the union of two elliptic curves (or rather the union of their
affine models). The following theorem provides an association of rational
numbers with small 3rd iterate and the rational points of V3. As before, π
denotes the projection onto the first coordinate.

Theorem 3.1. There is an inclusion

(4) S
(3)
0 := {c ∈ Q : Gal(f3c ) � Aut(T3), Gal(f2c ) ∼= Aut(T2)} ⊂ π(V3(Q)).

Moreover, the complement of S
(3)
0 in π(V3(Q)) is {0,−2}. In words, the

rational t-coordinates of V3(Q), excluding t = −2 and t = 0, are in bijection
with the rational numbers having small third iterate.

Proof. We first establish that if c ∈ Q∗, then f3c (0) /∈ (Q)2. To do this,
we study the rational points on the quartic curve

C3 : y2 = f3t (0) = (t2 + t)2 + t = t4 + 2t3 + t2 + t.

Then C3 is birational (over Q) to the elliptic curve given by the Weierstrass
equation

C ′3 : y2 = x3 + x2 + 2x+ 1, (t, y) 7→ (1/t, y/t2).

Next we compute the rank of the rational points on C ′3. There are vari-
ous ways to show rank(C ′3(Q)) = 0, either by employing a 3-descent [3],
or computing its analytic rank (a theorem of Gross–Zagier and Kolyvagin
implies the algebraic rank and analytic rank are equal in this case, given
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the modularity theorem of Wiles). Finally, by reducing our curve at various
primes of good reduction (discriminant is −24 · 23), we determine that the
size of C ′3(Q)Tor = C ′3(Q) is three, and conclude C ′3(Q) = {(0,±1),∞}. For
a reference on computing various objects associated to elliptic curves, see
either [3] or [18]. It follows that the only c ∈ Q with f3c (0) a rational square
is c = 0.

Now, the proof of Theorem 3 will come in two parts: first showing that
S(3) ⊂ π(V3(Q)), followed by the computationally more difficult part, deter-
mining the complement of S(3). The latter task is equivalent to finding all
rational points on certain higher genus curves.

Suppose c ∈ S(3); then in particular −c /∈ Q2 and f2c (0) = c2 + c /∈
Q(
√
−c)2. In fact this is a necessary and sufficient condition for Gal(f2c ) ∼=

Aut(T2); see [23] or [10]. Let K2,c be the splitting field of f2c , by assumption a
degree eight extension of the rationals. In this generic case, there is a simple
description of the Galois group, namely Gal(K2,c/Q) ∼= Aut(T2) ∼= D4. It
follows that K2,c contains exactly three quadratic subfields:

K1
2,c = Q(

√
−c), K2

2,c = Q(
√
c2 + c), K3

2,c = Q(
√
−(c+ 1)).

LetK3,c be the splitting field of the third iterate of fc. Since the set{−c,f2c (0),
f3c (0)} does not contain a rational square, f3c is necessarily irreducible (see
Theorem 2.2 in [10]). It follows that Gal(K3,c/Q) � Aut(T3) if and only if
f3c (0) = c4 + 2c3 + c2 + c ∈ (K2,c)

2 (Lemma 2.2 of [11]).

Hence, c ∈ S(3) implies that there exists a y ∈ K2,c such that y2 = f3c (0),
i.e., (c, y) ∈ C3(K2,c). In particular y ∈ Q or Q(y) = Ki

2,c for some 1 ≤
i ≤ 3. Since the first case is impossible (by c 6= 0 and the opening remark),
Q(y) = Ki

2,c for some i. Also C3(Q) = {(0, 0)} implies y = y′
√
−c, y′

√
c2 + c

or y′
√
−(c+ 1) for some y′ ∈ Q.

For example, if y = x′ + y′
√
−c with x′, y′ ∈ Q, then

2x′y′
√
−c = (y′)2c− (x′)2 + c4 + 2c3 + c2 + c ∈ Q,

so that either x′ or y′ is zero. But y′ cannot be zero, since this would yield
a nontrivial rational point on C3.

Replacing y with y′ and dividing by c if convenient, we obtain a rational
point on one of the following curves:

E1 : −y2 = t3 + 2t2 + t+ 1,

E2 : y2(t+ 1) = t3 + 2t2 + t+ 1,

C : −y2(t+ 1) = t4 + 2t3 + t2 + t.

Remark 3.1. Using the group law on E1 and E2, we obtain an easy
way to compute interesting rational numbers whose third iterate has a Ga-
lois group which is smaller than expected: (−2/3, 25/9), (6/19, 515/361) ∈
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E2(Q) and (−2, 1), (−17/4,−53/8) ∈ E1(Q), corresponding to Gal(f3c ) of
sizes 16, 64, 8, and 64 respectively.

We show that we need not consider rational points on C.

Lemma 3.1. C(Q) = {(0, 0)}, and so we need not consider the case that
(c, y) is a point on C3(K

3
2,c).

Proof. C maps birationally to the hyperelliptic curve y2 = x(x−1)(x3−
2x2 + x− 1) of genus two via (t, y) 7→ (−t, y(t+ 1)). Let J be the Jacobian
of the hyperelliptic curve. Following the 2-descent procedure described in
[22], we determine that the 2-Selmer group of J is isomorphic to Z/2Z ⊕
Z/2Z. Since we also have J(Q)Tor ∼= Z/2Z⊕Z/2Z, it follows from the usual
inequality

rank(J(Q)) ≤ dimF2 Sel(2)(Q, J)− dimF2 J(Q)[2]

that rank(J(Q)) = 0 (see Stoll’s paper on implementing 2-descent for various
computational heuristics, many of which have been made available in Magma
[22]). In the rank zero case the method of Chabauty and Coleman can be
used to prove that the only rational points on our hypereliptic curve are the
Weierstrass points. In fact, in this special case, Magma can be used to prove
it [1]. Computing preimages of these points, we determine that (0, 0) is the
only non-infinite rational point on C.

Returning to the proof of Theorem 3, we have seen that if c ∈ S(3), then
we obtain a rational point (c, y) on V3. Now we determine the complement
of S(3) ⊂ π3(V3(Q)). Fix a point P = (c, y) ∈ V3(Q) and assume c /∈ S(3).
We can, without loss of generality, assume c 6= 0.

If −c, −(c + 1), and c2 + c are not in Q2, then c ∈ S(3) (otherwise
Gal(f2c ) ∼= Aut(T2) and Gal(f3c ) � Aut(T3); see [4] and [10]). Hence there
are six cases to check, corresponding to whether P ∈ E1(Q) or E2(Q) and
−c,−(c + 1), or c2 + c are rational squares. We will see, applying Faltings’
theorem on the finiteness of rational points of curves with genus at least
two [5], that there are only finitely many such P ’s in each case. Explicitly
finding these points remains a difficult task in general, but in our case all
points can be found by some standard methods; see [6], [21].

Consider first the case P ∈ E1.
(1) If P = (c, y) ∈ E1(Q) and −c ∈ Q2, write −c = x2. Then (x, y) is a

rational point on the hyperelliptic curve H : y2 = x6 − 2x4 + x2 − 1, which
has genus two. Fortunately, H has no non-infinite rational points. To see
this, we note that H covers the elliptic curve E′ : y2 = a3 + a2 + 2a + 1
via the map (x, y) 7→ (−1/x2, y/x3). Since E′ contains a rational subgroup
{(0,±1),∞} of order three, with a little work one can do a 3-descent on E′

by hand [3]. Alternatively, a more standard 2-descent on E′ using Sage [15]
shows that (0,±1) are the only non-infinite rational points on E′, which,
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combined with the fact that x = 0 does not give a rational point on H,
shows that H has no non-infinite rational points. So we add no points to
the complement of S(3) in this case.

(2) Similarly, if −(c+1) ∈ Q2, say −(c+1) = X2, then (X, y) is a rational
point on C : y2 = X6 +X4 − 1, again a curve of genus two. However, unlike
the previous case, one must work harder to describe completely the rational
points on this curve. The obstruction is that we can only say its Jacobian
has rank at most two, precluding the possibility of applying the method of
Chabauty and Coleman [12] directly to C. However, C covers the elliptic
curves E : y2 = x3 + x2 − 1 and E ′ : y2 = −x3 + x + 1, each of rank one,
and we may apply a method of Flynn–Wetherell [6] to compute the rational
points on C.

Lemma 3.2. C(Q) = {(±1,±1),∞±}.
Proof. We outline this approach here, conforming to the notation and

conventions of [6]. A 2-descent on E yields E(Q)/2E(Q) = {∞, (1, 1)}, so
that if α satisfies α3 + α2 − 1 = 0, we study the two elliptic curves

E1 : y2 = x(x2 + (α+ 1)x+ (α2 + α)),

E2 : y2 = (1− α)x(x2 + (α+ 1)x+ (α2 + α)),

defined over Q(α). Suppose (X, y) is a rational point on C, from which it
follows that (x, y) = (X2, y) is a rational point on E . Taking the image of
(x, y) in

E(Q)/2E(Q) ⊂ Q(α)∗/(Q(α)∗)2,

and using the fact that x ∈ Q2, we find that (x, y) ∈ Ei(Q(α)) for a unique
choice of i (see Lemma 1.1 in [6]). We now use the elliptic curve Chabauty
method to find all points on E(Q(α)) having rational x-coordinate, exploiting
the formal groups of the curves over specified completions.

This more sophisticated method is not necessary for determining if x
gives a Q(α)-point on E1. A 2-descent on E1 yields

E1(Q(α)) ∼= Z/2Z and E1(Q(α)) = {(0, 0),∞}.
However, x = 0 does not give a rational point on E , and so is irrelevant in
determining C(Q).

As for the second curve E2, the situation is more interesting. Magma [1]
computes that

Sel(2)(E2,Q(α)) ∼= Z/2Z⊕ Z/2Z and E2(Q(α))Tor ∼= Z/2Z,
so that E2(Q(α)) ∼= Z/2Z ⊕ Z. In fact P0 = (1, 1) and (0, 0) generate the
Q(α)-points on E2.

Remark 3.2. To show this fact, one can use bounds on the difference be-
tween canonical heights and the Weil height, followed by a point search [19],
or new lower bounds on the canonical heights over number fields [25].
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Now, E2 has good reduction at p = 3 (inert in Q(α)), and the reduction
of P0 has order three. Let Q = 3P0, so that every P ∈ E2(Q(α)) can be
written as S + nQ, where S ∈ S = {∞, (0, 0),±P0, (0, 0)±P0}. We see that
p = 3 satisfies the necessary criteria of 2.13 in [6], and that if x(P ) ∈ Q,
then one of the following three possibilities must be true:

(a) P = nQ, (b) P = (0, 0) + nQ, (c) P = nQ± P0

for some n. We now use the formal group law on E2(Q3(α)) to compute the x-
coordinates of nQ, and hence of P , determining which rational x-coordinates
are permitted (the key idea being that rank(E2(Q(α))) < |Q(α) : Q|, a
Chabauty-like condition).

Remark 3.3. This can actually be made into exactly a Chabauty con-
dition using Weil’s restriction of scalars functor. Let E/K be an elliptic
curve and let L/K be a finite extension. Then there is an abelian variety
A/K, called the L/K-restriction of scalars of E/K, having the following
properties: (1) A(K) ∼= E(L), (2) dimA = [L : K]. So in particular, if
rankE(L) < [L : K], then A/K exactly satisfies the Chabauty condition
rankA(K) < dimA.

Let us recall the relevant power series from [6]. If y2 = g3x
3 + g2x

2 + g1x
is an elliptic curve, and z = −x/y, then

1/x = g3z
2 + g2g3z

4 + (g1g
2
3 + g3g

2
2)z6 + (g32g3 + 3g1g

2
3g2)z

8 +O(z10).

Moreover, if (x0, y0) is not in the kernel of reduction, and(x0, y0)+(z/w,−1/w)
= (x3, y3), then

x3 = x0 + 2y0z + (3x20g3 + 2x0g2 + g1)z
2 + (4x0g3y0 + 2g2y0) + z3

+ (4x30g
2
3 + 6x20g3g2 + 2x0g3g1 + 2x0g

2
2 + g3y

2
0 + g2g1)z

4 +O(z6)

and

log(z) := z+ 1
3g2z

3 +
(
1
5g

2
2 + 2

5g1g3
)
z5 +

(
1
7g

3
2 + 3

7g0g
2
3 + 6

7g2g1g3
)
z7 +O(z9),

exp(z) := z− 1
3g2z

3 +
(−2

5 g1g3 + 2
15g

2
2

)
z5 +

(−17
315 g

3
2 + 22

105g2g1g3
)
z7 +O(z9).

Case (a). If P = (x, y) = nQ and z = −x/y, then set (xn, yn) = nQ and
zn = −xn/yn. We use zn = exp(n log(z)), and group terms to write

1/xn = φ0 + φ1α+ φ2α
2, φi ∈ Z3[[n]].

Now,

zn = n log(z)− 1
3(1− α2)n3 log(z)3

+ 1
15(2(1− α2)2 − 6(1− α)(1− α2)(α2 + α))n5 log(z)5 + · · · ,

and it will suffice to work modulo 34. One computes

z ≡ 3(5α2 +20α+9) (mod 34), zn ≡ (15α2 +60α+18)n+72n3 (mod 34).
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It follows that

1/xn ≡ (72α2 + 63)n2 + (54α2 + 54α+ 27)n4

≡ (63n2 + 27n4) + (54n4)α+ (72n2 + 54n4)α2 (mod 34).

Hence, 1/xn ∈ Q implies φ2 = O(n2) ∈ Z3[[n]], and φ2 ≡ 72n2 + 54n4

(mod 34). Note that φ2 has a double root at 0, and |72|3 = 3−2, which is
strictly larger than the 3-adic norm of all subsequent coefficients. Applying
a theorem of Strassmann’s, we see that there are no other n ∈ Z3 (and so
no other n ∈ Z) satisfying φ2(n) = 0 (see [6]).

For cases (b) and (c), replace (x0, y0) by (0, 0) in case (b) and (x0, y0)
by (1, 1) in case (c) in the addition formula above. As in case (a), work
(mod 34) and use the same theorem of Strassmann to deduce n = 0. We
conclude that if P = (x, y) is such that P ∈ Ei(Q(α)) and x ∈ Q, then
x = 0, 1. It follows that X = ±1 as claimed.

Remark 3.4. The solutions X = ±1 correspond to D = −2. Indeed, −2
is not in S(3).

(3) Suppose c2 + c is a rational square. The conic c2 + c = x2 is rational,
with point (0, 0). It follows that such c are parametrized by c = 1/(a2 − 1)
for a ∈ Q. Then by sending (t, y) to (1/t, y/t2), we obtain rational points
on v2 = −w(w3 + w2 + 2w + 1). We make the change of variables a2 − 1 =
1/c = w, so that (a, v) is a rational point on

C′ : v2 = −(a− 1)(a+ 1)(a6 − 2a4 + 3a2 − 1),

a curve of genus three. We study unramified covers of C′ to find all rational
points.

Lemma 3.3. C′ = {∞±, (±1, 0)}.

Proof. Let

D : u2 = −(a2 − 1), s2 = a6 − 2a4 + 3a2 − 1.

Then D is an unramified Z/2Z-covering of C′, with map π : D → C′ given
by (a, u, s) 7→ (a, us). The twists of D are

Dd : du2 = −(a2 − 1), ds2 = a6 − 2a4 + 3a2 − 1, d ∈ Q∗/(Q∗)2.
and every rational point on C′ lifts to a rational point on one of these twists
[21]. If p is a prime divisor of d, then Dd has no p-adic points (hence no
rational points) unless both −(a2− 1) and a6− 2a4 + 3a2− 1 have common
roots modulo p (see [21]). Since the resultant of−(a2−1) and a6−2a4+3a2−1
is 1, we need only consider D and its twist D−1. However, we can easily
describe both D(Q) and D−1(Q):

D(Q) = {(±1, 0,±1)}, D−1(Q) = ∅.
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To see this, note that the equation −s2 = a6−2a4+3a2−1 in the definition of
D−1 covers the elliptic curve E : b2 = z3+2z2+3z+1, and a 2-descent shows
that E(Q) = {(0,±1),∞}. This forces the equality −u2 = −(02 − 1), which
has no rational solutions. Similarly for D, the equation s2 = a6−2a4+3a2−1
covers the elliptic curve E′ : b2 = z3 − 2z2 + 3z − 1, and a 2-descent yields
E′(Q) = {(1,±1),∞}. Putting these statements together we deduce that
C′ = {∞±, (±1, 0)} as claimed.

Note that a = ±1 implies c is infinite, and so we add no rational (c, y)
on E1 with c /∈ S(3) in this case.

We now summarize the computations arising in the E2 cases below:
(1) For the points P = (c, y) ∈ E2(Q) with either −c, c2+c, or −(c+1) a

rational square, we use a similar approach. If −(c+ 1) = x2, then x satisfies
v2 = x6 + x4 − 1 for a rational v. Notice that in case (2) for E1 above,
we have already determined the rational points on this curve: (±1,±1),
corresponding to c = −2 as before.

(2) Similarly, if P ∈ E2(Q) and c2 + c = x2, then c is parametrized by
1/(a2 − 1) = c. One makes a change of variables to find that a lies on the
curve

A : v2 = a6 − 2a4 + 3a2 − 1,

for a rational v. The hyperelliptic curve A covers the elliptic curve F : c2 =
b3 − 2b2 + 3b − 1, via (a, v) 7→ (a2, v). A standard 2-descent and torsion
algorithm show that rank(F (Q)) = 0, and F (Q) = {(1,±1),∞}. It follows
that

A(Q) = {(±1,±1),∞±},
yet again yielding no finite c’s.

(3) The last case, −c = x2, requires more care. In this case, one finds
that x lies on

B : y2 = (1− x2)(−x6 + 2x4 − x2 + 1),

a curve of genus three. We again use unramified covers of B to reduce the
problem.

Lemma 3.4. B(Q) = {(0,±1), (±1, 0),∞±}.
Proof. The relevant covers are

D : u2 = 1− x2, s2 = −x6 + 2x4 − x2 + 1,

and its twist

Dd : du2 = 1− x2, ds2 = −x6 + 2x4 − x2 + 1, d ∈ Q∗/(Q∗)2,
(see case (3) above). Again the resultant of 1− x2 and −x6 + 2x4 − x2 + 1
is 1, and so we need only compute D(Q) and D−1(Q) as before. We will show
that D−1(Q) = ∅. To see this, note that the second defining equation of D−1
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is s2 = x6−2x4 +x2−1, which covers the elliptic curve c2 = b3 +b2 +2b+1,
having only b = 0 as a possible solution (2-descent). This leaves only the
infinite points on D−1, which we disregard.

It therefore suffices to find all rational points on D to recover the points
on B (see [21]). To do this we find all rational points on

U : s2 = −x6 + 2x4 − x2 + 1.

Unfortunately, the rational points of the Jacobian of U have rank two, and
so we must apply the elliptic Chabauty method to U , as in case (2) for E1,
to describe the rational points on B (see [6]). It follows that only c = 0 is
added to the complement of S(3) in this case.

In summary, we have shown that for all but c ∈ {−2, 0}, if (c, y) ∈ V3(Q)
then Gal(f2c ) ∼= Aut(T2). It remains to show Gal(f3c ) � Aut(T3), to ensure
that c has a small third iterate. This is easy. Since f3c (0) ∈ (K2,c)

2, it suffices
to show that f3c is irreducible. But it is, as {−c, f2c (0), f3c (0)} are all not
rational squares (Theorem 2.2 in [10] and Lemma 2.2 in [11]). This completes
the proof of Theorem 3.

As an immediate application of the correspondence described in our the-
orem, we determine completely the integers having small third iterate, an-
swering a question of Rafe Jones. This is made possible by David’s theorem
on bounds in elliptic logarithms.

Corollary 3.1. S(3)∩Z = {3}. That is, 3 is the only integer with small
third iterate.

Proof. Applying the theorem above, it suffices to list the points with
integral t-coordinates on E1(Q) and E2(Q). We will show that the only
such c ∈ Z are (−2,±1) ∈ E1 and (3, 7/2), (0,±1), (−2,±1) on E2. As
c = 0,−2 are not in S(3) (−2 has a small second iterate), we will have
proved S(3) ∩ Z = {3} as claimed.

Suppose (c, y) ∈ V3(Q) and c is an integer. We consider the case (c, y) ∈
E2(Q) here. Then, via the rational map (t, y) 7→ (t, y(t + 1)), we have a
point on the elliptic curve y2 = (x + 1)(x3 + 2x2 + x + 1) that has both
coordinates integral. This curve has a rational point (0, 1), so we may apply
the birational map

(x, y) 7→ (2(x2 − y) + 3x, x(4x2 + 6x− 4y + 3/2))

to obtain a rational point on the Weierstrass equation y2 + 3xy + 4y =
x3 + 3

4x
2 − 4x − 3, having integral x-coordinate (see Chapter 7 of [3] for

methods of transforming various curves into standard form). Finally, by
sending (x, y) to (x+ 1, y+ 3

2x+ 2), we get an integral point on the minimal
Weierstrass equation E : y2 = x3 − x + 1. We now use David’s theorem on
elliptic logarithms and the LLL-algorithm to list all integral points on E;
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see [3, §8.8]. However, there are other ways of finding the integral points on
genus one equations, not necessarily in standard form; see [24].

A standard 2-descent shows E(Q) has rank one and no torsion. Using
Silverman’s bounds on the difference between the logarithmic and canonical
heights [17], we see that P = (1, 1) is a generator for E(Q). Furthermore
disc(E) = −24 · 23 < 0, so that E(R) is connected, and we need not worry
about certain subtleties that arise when this is not the case. We keep track
of various constants, in keeping with the notation used in [3, §8.8]:

h(E) = 8.841, µ(E) = 2.9356, c1 = 160.07, c2 = 0.099617, c3 = 8,

c5 = 35.785, c7 = .555, c8 = 24.032, c9 = 3.962, ω1 = 4.767,

ψ(P ) = 3.676, hm(P ) = 8.841, n = 2, c10 = 4.074 · 1040.

We deduce from David’s theorem and [3, Corollary 8.73] that if Q = NP
and Q ∈ E(Z) then,

− log(ψ(Q)) ≥ (0.049805)N2 − 3.578

and

− log(ψ(Q)) ≤ 4.074 ·1040 · (log(N) + 1.377) ·
(
log(log(N)) + 8.841 + 1.377

)2
.

Such a system of inequalities is violated when N > 1025, hence N ≤ 1025.
At first glance, such an astronomical bound seems useless. However, the
mere existence of a bound allows us to employ reduction techniques via the
LLL-algorithm. In practice we can reduce N substantially (N < 100 for
many curves with moderately sized coefficients). We input C > 1050, say
C = 1060 to Proposition 2.3.20 in [3] with matrix X, and its LLL-reduced
matrix Y :

X =

(
1 0

bCψ(P )e bCωe

)
,

Y =

(
−928309378069697515001621255593 −346795556312856677461017188696

0 −5070602400912917605986812821504

)
,

where bxe denotes the nearest integer to a real number x. This can be done
using Magma [1]. Then for m ≤ 1060,

|mω +Nψ(P )| ≥
√

8.4 · 1059 − 2 · 1050 − (1/2 + 1025)

1060
,

and hence

9 · 10−31 ≤ |mω +Nψ(P )| ≤ 35.785e−0.049805N
2
.

These inequalities are incompatible for N > 40, so we can conclude that
N ≤ 40. We could run our reduction techniques again to further reduce N ,
but this is not necessary. Searching the forty points {NP}N≤40 in Sage [15],
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we deduce that

{(t, y) ∈ E(Q) : t ∈ Z} = {(0,±1), (±1,±1), (3,±5), (5,±11), (56,±419)},

and by retracing these points to E2, we conclude that

{t ∈ Z : (t, y) ∈ E2(Q)} = {−2, 3}.

However, |Gal(f2−2)| = 4, so that −2 is not in S(3).

Similarly, E1(R) is connected, |E1(Q)Tor| = 1, and rank(E1(Q)) = 1
with generator P = (−2, 1), and we can compute E1(Z) = {(−2, 1)}. The
corollary follows.

It is worth noting that if one finds generators for the Mordell–Weil group,
Sage has implemented a package which computes the integer points of a
Weierstrass equation [15]. Since our equations have small coefficients and
rank one, it is easy to find a generator, and run this package. All results
were checked in this way.

4. Elliptic surface parametrized by γ and higher iterates. In
order to study the Galois theory of third iterates for general quadratic poly-
nomials, we view γ as an indeterminate and begin our study with the sur-
face C3,γ : y2 = f3γ,c(γ). Fortunately, for every γ we have the rational point
(0, fγ,0(0)), hence an elliptic surface parametrized by γ. For γ 6= 0, 1 we see
that C3,γ is birational to

Eγ : y2 = x3 + a2x
2 + a4x+ a6

with

a2 = 144
13 γ

2 − 147
13 γ + 67

52 ,

a4 = 6912
169 γ

4 − 14112
169 γ

3 + 8811
169 γ

2 − 4635
338 γ + 6003

2704 ,

a6 = 110592
2197 γ

6 − 338688
2197 γ

5 + 384336
2197 γ

4 − 228889
2197 γ

3

+ 365399
8788 γ

2 − 307667
35152 γ + 169073

140608 .

The surface E → P1 has a section (−2γ2 + 2γ, 0) of infinite order. Moreover,
the Weierstrass equation for the generic fiber Eγ is minimal over Q[γ], and
so we may run Tate’s algorithm to compute the local information at the bad
fibers of E , summarized in the following table [17]:

P, place in Q(γ) vP(∆) Tamagawa # Kodaira symbol
1
γ

9 2 III∗

γ3 − 23
16
γ2 + 13

32
γ − 23

256
1 1 I1

However, E is a rational surface since deg(ai) ≤ i and the minimal projective
model of E has a singular fiber [16]. It follows from the Shioda–Tate formula
that rank(E(Q̄(γ))) = 1, and hence rank(E(Q(γ))) = 1 (see [14]). Then
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Silverman’s specialization theorem [17] implies rank(Eγ(Q)) ≥ 1 for all but
finitely many γ ∈ Q. We can thus deduce the following theorem:

Theorem 4. S
(3)
γ is infinite for all but finitely many γ ∈ Q.

Proof. As remarked above, for all but finitely many γ ∈ Q, we have
rank(Eγ(Q)) ≥ 1. For such γ, the set {c ∈ Q : f3γ,c(γ) ∈ Q2} is infinite.

However, the subset of c’s such that either −fγ,c(γ), f2γ,c(γ), or −fγ,c(γ) ·
f2γ,c(γ) is a rational square is finite (each case gives a rational point on
a genus two or higher curve). In any event, for all but finitely many c’s,

Aut(T2) ∼= Gal(f2γ,c). If f3γ,c is reducible, then certainly c ∈ S(3)
γ . On the other

hand, if f3γ,c is irreducible, then Aut(T3) � Gal(f3γ,c), since f3γ,c(γ) ∈ (K2,c)
2.

The result follows from Lemma 3.2 in [11].

There is, however, noticeable sensitivity to γ, as evidenced by the fol-
lowing proposition (compare to the γ = 0 case).

Proposition 4.1. There is an inclusion

S
(3)
1 ⊂ {t ∈ Q : (t, y) satisfies E : y2 = t4 − 2t3 + t2 + t for some y ∈ Q},

and E is a rank one elliptic curve. Moreover, the complement of S
(3)
1 is

finite, and S
(3)
1 ∩ Z = ∅.

Proof. We work with fc(x) = (x − 1)2 + c. After normalization, the
relevant curves are

E : y2 = t4 − 2t3 + t2 + t, C1 : y2 = t6 − 3t5 + 4t4 − 2t3 + t,

C2 : y2 = −t3 + 2t2 − t− 1, C3 : y2 = −t5 + 3t4 − 4t3 + 2t2 − 1,

corresponding to f3c (1) and the three quadratic subfields Q(
√

(c− 1)2 + c),

Q(
√
−c) and Q(

√
−c((c− 1)2 + c)) of K2,c respectively.

The elliptic curve C2 has rank zero with no rational points. The two
genus two curves, C1 and C3, have Jacobians of rank one. Running the
Chabauty function in Magma, we obtain

C1(Q) = {(−1,±3), (0, 0), (1,±1),∞±}, C3(Q) = {(−1,±3),∞}.

However c = 1 is not in S
(3)
1 , since its second iterate has Galois group of size

four. Similarly, c = −1, 0 are not in S
(3)
1 , as they correspond to reducible

polynomials. We conclude that E is the only relevant curve, proving the first
part of the statement.

For the integer points, note that E is birational to the elliptic curve
E′ : y2 − 2xy + 2y = x3, via the transformation (t, y) 7→ (2(t2 − y)− 2t,
t(4t2 − 4t− 4y)) (see Chapter 7 of [3]). It suffices therefore to compute the
points on E′ having integral x-coordinate. For this we use Sage and then
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compute preimages in E, finding only t = 1. Because c = 1 is not in S
(3)
1 ,

the result follows.

Remark 4.1. As for larger iterates in the γ = 0 case, we note that the
curve C4 : y2 = f4c (0) is of genus three, and its Jacobian, J4, has rank zero! It
is straightforward, therefore, to conclude that C4(Q) = {∞±, (0, 0), (−1, 0)}.
With this description, it may be possible to use methods as in the third
iterate case.
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