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Sums of positive density subsets of the primes
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1. Introduction. Let us first quickly state our main result.

Theorem 1.1. Let A and B be subsets of the primes with positive relative
lower densities α and β. Then the lower density of A + B in the natural
numbers is at least

(1.1) (1− oα+β→0(1))
α

eγ log log(1/β)
,

where γ is the Euler–Mascheroni constant.

It might look surprising that the lower bound (1.1) is not symmetric in α
and β (though of course one gets the same bound with α and β interchanged,
and could replace (1.1) by the maximum of these two bounds, which is
symmetric). However the two sets indeed have non-symmetric roles in the
situation and the lower bound is asymptotically sharp as Examples 1.2 (case
α = β) and 3.4 (general case) below demonstrate.

Studying additive properties of positive density subsets of the primes
has become much more accessible during the last decade thanks to works
of Green and Tao; first Green [4] showed that any subset of the primes
with positive relative upper density contains 3-term arithmetic progressions,
and later Green and Tao [7] generalised this to arbitrarily long arithmetic
progressions—before their celebrated theorem it was not even known that the
primes themselves contain infinitely many 4-term arithmetic progressions!

Methods used for studying primes in arithmetic progressions are typically
applicable also to studying Goldbach type problems and so is the case with
Green–Tao methods (see [9] for very general quantitative results). However,
for Goldbach type problems, that is, for sums of primes, introducing positive
density subsets cannot be straightforward as the following example shows.
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Example 1.2. Let m ∈ N and let P be the set of primes that are
1 (mod m). Then no integer 6≡ l (mod m) is the sum of l primes from P.
In this example P has relative density 1/ϕ(m), while the sum set lP has
density at most 1/m in the natural numbers.

Consider the case where m is the product of the first k primes. Then
m/ϕ(m) = (1 + om→∞(1))eγ log logϕ(m) by Lemma 4.1 below, and hence,
writing δ = 1/ϕ(m) for the relative density of P, the density of lP in the
natural numbers is only

(1 + oδ→0(1))
δ

eγ log log(1/δ)
.

However, Li and Pan [12] have managed to show that when the subsets
of the primes are dense enough, this kind of phenomenon cannot occur.
Plugging this information into an adaption of Green’s approach, they proved
the following variant of the ternary Goldbach conjecture.

Theorem. Let P1, P2 and P3 be subsets of the primes with positive
relative lower densities α1, α2 and α3. If α1 + α2 + α3 > 2, then for every
sufficiently large odd integer n there exist primes pi ∈ Pi, i = 1, 2, 3, such
that n = p1 + p2 + p3.

This is sharp in the sense that there are examples in which α1 +α2 +α3

= 2 and the conclusion is not true. However X. Shao [15] has very recently
shown that in case P1 = P2 = P3 it is enough that αi > 5/8 (which is again
sharp).

A natural question is then: What happens for smaller densities? Chipe-
niuk and Hamel [3] proved essentially the following theorem, again using an
adaption of methods of Green and Green–Tao together with arguments which
show that there cannot be too bad obstructions like that in Example 1.2.

Theorem. There exist absolute positive constants C1 and C2 such that
if A is a subset of the primes with positive relative lower (or upper) density
δ < 1/e, then the lower (or upper) density of A+ A in the natural numbers
is at least

C1δ exp
(
−C2(log(1/δ))

2/3(log log(1/δ))1/3
)
.

Notice that the bound here is in particular δ1+o(1). On the other hand
Chipeniuk and Hamel [3] pointed out Example 1.2 and anticipated that the
bound there is the right answer in the spirit of Freiman’s theorem. Theo-
rem 1.1 shows that this is indeed the case (it is clear from Theorem 2.1 below
that in case A = B lower densities can be replaced by upper densities also
in Theorem 1.1).

Sum sets of positive density subsets of the primes did actually receive
some attention already before the breakthroughs of Green and Green–Tao.
Indeed, Ramaré and Ruzsa [14] proved Theorem 1.1 with 1− o(1) replaced
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by c − o(1) for some constant c. Until recently the authors of [3] as well
as the current author have been unaware of that work. In light of [14], the
achievement of Theorem 1.1 is getting the right constant.

Ramaré and Ruzsa actually showed more general results for subsets of
“sifted sequences”, which roughly means sequences to which the Selberg sieve
can be applied. The enveloping sieve they developed to achieve this can also
be incorporated into the Green–Tao method (see [6]).

To handle congruence problems similar to the one in Example 1.2, one
needs to show a corresponding result in the cyclic group Zm. Our version of
this is the following.

Theorem 1.3. Let m be a square-free natural number and let A and B
be subsets of Z∗m with positive relative densities α and β. Then

|A+B| ≥ (1− oβ→0(1))
α

eγ log log(1/β)
m.

This is asymptotically best possible when m is the product of the first l
primes, as Example 3.4 below shows. By best possible we mean that, for any
ε > 0, one can find many pairs (α, β) (and thus A, B) such that 1 − o(1)
cannot be replaced by 1 + ε. This of course immediately implies that also
Theorem 1.1 is best possible in the same sense.

In [3] and [14] similar results to Theorem 1.3 appear with essentially the
same densities as in respective results for the primes. Proofs of those results
in [3] and [14] proceed along different lines from ours. On the other hand
our deduction of the result for the primes from a result in Z∗m follows [3]
though we need to work more carefully as we cannot afford to lose constant
multiples because we aim for an asymptotically sharp result.

Instead of Theorem 1.3 we will prove a more precise statement in which
the dependence on β is explicit rather than asymptotic (see Theorem 3.3
below). Using it we will prove the following explicit version of the main
theorem in Section 7.

Theorem 1.4. Let A and B be subsets of the primes with positive relative
lower densities α and β. Let qn denote the nth prime and let l ∈ N be such
that

β >

l∏
j=2

2

ϕ(qj)
.

Then the lower density of A+B in the natural numbers is at least

(1.2) α
ϕ(q1 · · · ql)
q1 · · · ql

.

One would expect this to hold with 2 replaced by 1 in the lower bound
for β (see the discussion after Theorem 3.3). Notice that the lower bound (1.2)
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depends very mildly on β; for instance taking l = 54 shows that if β >
2 · 10−84, then A+B has lower density at least α/10.

2. Finite case and inverse questions. Instead of Theorem 1.1, we
will show the following finite version which is also best possible as we will
show in Section 9.

Theorem 2.1. Let ε > 0. There exists γ1 = γ1(ε) such that if γ0 ∈
(0, γ1), there exists n0 = n0(γ0, ε) such that the following holds for every
n ≥ n0 and α, β ∈ (γ0, γ1).

Let A,B ⊆ P ∩ [1, n] with relative densities α and β. Then

|A+B| ≥ (1− ε) α+ β

eγ log log(1/(αβ))
n.

Notice that here A + B is a subset of [1, 2n], so the factor (α + β)/2
appears in its density. However a simple trick recovers α for Theorem 1.1:

Deduction of Theorem 1.1 from Theorem 2.1. Let ε > 0 be small and let
A and B be as in Theorem 1.1. We can assume that β ≤ α ≤ γ1(ε

2). Let n
be large and take

A′ = A ∩ [1, (1− ε2)n] and B′ = B ∩ [1, ε2n],

so that A′ and B′ have relative densities α′ ≥ (1−ε2)2α and β′ ≥ ε2(1−ε2)β
in P∩ [1, n]. Furthermore A′+B′ ⊆ (A+B)∩ [1, n], so, applying Theorem 2.1
to A′ and B′, we get

|(A+B) ∩ [1, n]| ≥ (1− ε2) α′ + β′

eγ log log(1/(α′β′))
n ≥ (1− ε) α

eγ log log(1/β)
n

when ε, α and β are small enough, and the claim follows.

Before going to the proof of Theorem 2.1 in Sections 3–6, we turn to
discussing an inverse question: As shown, Theorem 1.1 is best possible in
general and so is Theorem 2.1, but can we classify the worst case examples?
To simplify the discussion, let us consider only the finite case.

As already discussed, a major hindrance for us is bad distribution in
arithmetic progressions. To quantify this, we introduce a bit of notation
which will be used throughout the paper.

Let W � log logn be a large parameter and set m =
∏
p≤W p. We split

A and B into residue classes modulo m. For any set C ⊆ Z, integer q ≥ 1
and r ∈ Zq, write

(2.1) Cq[r] := {c ∈ C : c ≡ r (mod q)}
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and let

αm[r] :=
|Am[r]|

|Pm[r] ∩ [1, n]|
, αm := min

r∈Z∗m
αm[r],

βm[r] :=
|Bm[r]|

|Pm[r] ∩ [1, n]|
, βm := min

r∈Z∗m
βm[r].

Proposition 3.1 below immediately implies the following.

Theorem 2.2. For every ε > 0 there exists W = W (ε) such that the
following holds when

log logn�W and m =
∏
p≤W

p.

Let A,B ⊆ P ∩ [1, n] be such that αm, βm ≥ ε. Then

|A+B| ≥ (1− ε)αm + βm
2

n.

Hence we see that if A and B are not too badly distributed in residue
classes modulo a certain fixed m, we immediately get a greatly improved
lower bound for A + B. Theorem 2.2 is best possible (except for ε) as the
example A = P ∩ [1, αn] and B = P ∩ [1, βn] demonstrates. To find more
examples, for N ≥ 1, d ∈ Z∗N , θ ∈ R and δ > 0, define

(2.2) UN (d, θ, δ) =

{
k ∈ ZN :

∥∥∥∥ dN k − θ
∥∥∥∥ ≤ δ},

where we write ‖x‖ for the distance from x to the nearest integer(s). We
will abuse notation by writing UN (d, θ, δ) also for the set of integers whose
reduction modulo N is in the set.

If now

A = P ∩ [3, n] ∩ UN (d, θ, α/2) and B = P ∩ [3, n] ∩ UN (d, θ′, β/2),
then

A+B ⊆ {2k : k ≤ n} ∩ UN (d, θ + θ′, (α+ β)/2),

so such choice looks like a good candidate for an example with almost equal-
ity in Theorem 2.2.

For many subsets of the primes one can actually guarantee equidistribu-
tion in residue classes with small modulus, and so it is natural to ask when
the lower bound in Theorem 2.2 is sharp. We show that something similar
to the above example must happen.

Theorem 2.3. Let ε > 0 and K ≥ 1. There exists γ1 = γ1(K, ε) such
that for each γ0 ∈ (0, γ1), there exists W =W (γ0, ε) such that the following
holds when

log logn�W, m =
∏
p≤W

p, and N ∈ P ∩ [2n/m, 4n/m].
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Let A,B ⊆ P ∩ [1, n] be such that αm, βm ∈ (γ0, γ1). If

|A+B| ≤ K · (αmβm)1/2n,

then there exist sequences dr, d′r ∈ ZN and θr, θ′r ∈ R for r ∈ Z∗m such that∣∣∣ ⋃
r∈Z∗m

{r + km ∈ Am[r] : k ∈ UN (dr, θr, ε)}
∣∣∣ ≥ (1− ε)|A|,

∣∣∣ ⋃
r∈Z∗m

{r + km ∈ Bm[r] : k ∈ UN (d′r, θ′r, ε)}
∣∣∣ ≥ (1− ε)|B|.

This is the first result in this direction and is quite unsatisfying for several
reasons:

(i) It is inelegant.
(ii) It only works for small α and β (though one could probably prove

a weaker result for larger α and β).
(iii) It tells nothing about dr and d′r (the proof tells something).
(iv) The (hidden) dependencies are quite bad.

3. An outline of the arguments. Let us first describe the elements
of the proof of Theorem 2.1. Recalling the notation Cq[r] from (2.1), we will
prove that an analogue of Theorem 2.1 holds inside single residue classes
modulo the product of sufficiently many smallest primes.

Proposition 3.1. Let ε > 0. There exists W0 = W0(ε) such that the
following holds when

W0 ≤W � log logn, m =
∏
p≤W

p, and r, s ∈ Z∗m.

Let A ⊆ Pm[r] ∩ [1, n] and B ⊆ Pm[s] ∩ [1, n] with relative densities
α, β > ε. Then

|A+B| ≥ (1− ε)(α+ β)
n

m
.

This is proved in Section 6 refining the work of Chipeniuk and Hamel [3],
which itself, similarly to work of Hamel and Łaba [10] on sum sets of subsets
of random sets, adapts the method of Green [4] and Green–Tao [7]. The
process is roughly:

1. Embed A and B into ZN with N � n/m.
2. Convolve weighted characteristic functions f and g of these sets.
3. Split f and g into bounded and “uniform” parts.
4. Uniform parts contribute much to the convolution only rarely while

bounded parts contribute a positive main term.
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Proposition 3.1 clearly implies that, for any ε0 > 0, W0(ε0) ≤ W �
log log n and A,B ⊆ P ∩ [1, n],

|A+B| =
∑
c∈Zm

max
a+b=c
a,b∈Z∗m

|Am[a] +Bm[b]|(3.1)

≥ (1− ε0)
∑
c∈Zm

max
a+b=c

αm[a],βm[b]>ε0

{αm[a] + βm[b]}
n

m
.

The right hand side can be evaluated using the following weighted version
of Theorem 1.3.

Corollary 3.2. Let m be square-free and let ur, vr ∈ [0, 1] for each
r ∈ Z∗m. Assume that u = Er∈Z∗mur and v = Er∈Z∗mvr are positive. Then∑

c∈Zm

max
a+b=c
uavb 6=0

{ua + vb} ≥ (1− ou+v→0(1))
u+ v

eγ log log(1/(uv))
m.

This corollary is derived from Theorem 1.3 at the end of Section 5.

Deduction of Theorem 2.1 from (3.1) and Corollary 3.2. We can assume
that ε is small and that γ1 is so small that ou+v→0(1)-term in Corollary 3.2
is < ε2 whenever u, v ∈ (0, γ1). Let ε0 = ε2γ20 and let W be W0(ε0) in
Proposition 3.1 and m =

∏
p≤W p and n0 = exp(exp(W )). For every r ∈ Z∗m,

define

ur = max{0, αm[r]− ε0} and vr = max{0, βm[r]− ε0}.

Notice that Er∈Z∗mur ≥ α − ε0 and Er∈Z∗mvr ≥ β − ε0. Applying first (3.1)
and then Corollary 3.2, we see that

|A+B| ≥ (1− ε0)
∑
c∈Zm

max
a+b=c
ua,vb>0

{ua + vb}
n

m
≥ (1− ε2)2 α+ β − 2ε0

eγ log log(1/(αβ))
n

≥ (1− ε) α+ β

eγ log log(1/(αβ))
n

when ε is small enough.

In the first part of Section 5 we will prove the following more precise
statement instead of Theorem 1.3. The proof proceeds by induction on the
number of prime factors of m.

Theorem 3.3. Letm = p1 · · · pk where p1 < · · · < pk and let A,B ⊆ Z∗m.
Assume that

(3.2) |B| ≥ ϕ(m)

l∏
i=1

2

ϕ(pi)
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for some l ∈ {0, . . . , k}. Then

(3.3) |A+B| ≥ |A| m

ϕ(m)
· ϕ(p1 · · · pl)

p1 · · · pl
.

A natural guess is that this holds with the factor 2 replaced by 1, which
would be best possible when the counterpart of (3.2) holds with equality:

Example 3.4. Letm be as in Theorem 3.3 and let l ≤ k and A0 ⊆ Z∗p1···pl
be non-empty. Choose

B = {b ∈ Z∗m : b ≡ 1 (mod p1 · · · pl)},
A = {a ∈ Z∗m : a (mod p1 · · · pl) ∈ A0}.

Then |B| = ϕ(m)
∏l
i=1

1
ϕ(pi)

and

|A+B| = |{c ∈ Zm : c− 1 (mod p1 · · · pl) ∈ A0}| = |A|
m

ϕ(m)
· ϕ(p1 · · · pl)

p1 · · · pl
,

so equality holds in (3.3).
When pi are the first l primes, the right hand side is by Lemma 4.1 below

(1 + ol→∞(1))
|A|/ϕ(m)

eγ log log(ϕ(m)/|B|)
m,

which shows that the bound in Theorem 1.3 is asymptotically best possible.
This implies that also Theorem 1.1 is asymptotically best possible.

Deduction of Theorem 1.3 from Theorem 3.3. Let m = p1 · · · pk with
p1 < · · · < pk. Given β, choose l for which

l∏
i=1

2

ϕ(pi)
≤ β <

l−1∏
i=1

2

ϕ(pi)
,

so (3.3) holds by Theorem 3.3. By Lemma 4.1 below,
ϕ(p1 · · · pl)
p1 · · · pl

≥
1− oβ→0(1)

eγ log log(1/β)
,

and the claim follows.

For the proof of Theorem 1.1, we still need to

1. prove Proposition 3.1 (in Section 6);
2. prove Theorem 3.3 (in Section 5);
3. show that Theorem 1.3 implies Corollary 3.2 (in Section 5).

Theorem 1.4 will be derived from Proposition 3.1 and Theorem 3.3 in
Section 7. Theorem 2.3 will be proved in Section 8. In this case we have
automatically satisfactory distribution modulo m, so we only need to prove
the following counterpart of Proposition 3.1 from which Theorem 2.3 follows
easily.
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Proposition 3.5. Let ε > 0 and K ≥ 1. There exists γ1 = γ1(K, ε) such
that for each γ0 ∈ (0, γ1), there exists W =W (γ0, ε) such that the following
holds when

log logn�W, m =
∏
p≤W

p, r, s ∈ Z∗m, and N ∈ P ∩ [2n/m, 4n/m].

Let A ⊆ Pm[r] ∩ [1, n] and B ⊆ Pm[s] ∩ [1, n] with relative densities
α, β > ε. If

|A+B| ≤ K(αβ)1/2
n

m
,

then there exist d ∈ Z∗N and θ, θ′ ∈ R such that

|{r + km ∈ A : k ∈ U(d, θ, ε)}| ≥ (1− ε)|A|,
|{s+ km ∈ B : k ∈ U(d, θ′, ε)}| ≥ (1− ε)|B|.

The proof of this is similar to the proof of Proposition 3.1. The main
additional tool is a theorem due to Green and Ruzsa [5], which says that
any set in ZN with a low but positive density and small doubling is contained
in some set UN (d, θ, δ) (see Lemma 4.7 below).

4. Auxiliary results

4.1. Lemmas needed in the proof of Theorem 1.1. Let us first
quickly prove the well-known result on m/ϕ(m) which we have already used
many times.

Lemma 4.1. For m ∈ N,

m/ϕ(m) ≤ (1 + om→∞(1))eγ log logϕ(m).

If m is the product of all primes up to some M ≥ 1, “≤” can be replaced
by “=”.

Proof. When m is the product of all primes ≤ M , the claim follows
from Mertens’ formula since, by the prime number theorem, M =
(1 + om→∞(1)) logm. Otherwise let qi be the ith prime and choose l such
that

q1 · · · ql ≥ m > q1 · · · ql−1.

Then it is easy to see that
m

ϕ(m)
≤ q1 · · · ql
ϕ(q1 · · · ql)

= (1 + ol→∞(1))eγ log logϕ(q1 · · · ql−1)

≤ (1 + om→∞(1))eγ log logϕ(m).

The second lemma is a very simple yet useful inequality.
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Lemma 4.2. Let α1 ≥ · · · ≥ αk ≥ 0 and let δ and δ1, . . . , δk be real
numbers such that

1

j

j∑
i=1

δi ≥ δ for every j = 1, . . . , k.

Then

(4.1)
k∑
i=1

αiδi ≥ δ
k∑
i=1

αi.

Proof. Writing αk+1 = 0, the left hand side of (4.1) is, by partial sum-
mation,

k∑
j=1

(αj − αj+1)

j∑
i=1

δi ≥ δ
k∑
j=1

j(αj − αj+1) = δ

k∑
i=1

αi.

In the following lemma we write rA+B(n) for the number of representa-
tions of n as a sum a+ b with a ∈ A and b ∈ B.

Lemma 4.3. Let p ∈ P and A,B ⊆ Zp. Then, for any m ≤ r ≤
min{|A|, |B|},

(4.2) |{n ∈ Zp : rA+B(n) ≥ m}| ≥ min

{
p, |A|+ |B| − r − m− 1

r
p

}
.

Proof. This follows as in [1, Proposition 4]: Pollard’s generalisation [13]
of the Cauchy–Davenport inequality gives

(4.3)
∑
n∈Zp

min{r, rA+B(n)} ≥ rmin{p, |A|+ |B| − r}.

Writing Nm for the left hand side of (4.2), the left hand side of (4.3) is
≤ rNm + (m− 1)(p−Nm). Rearranging, one gets

Nm ≥ min

{
p,

(|A|+ |B| − r)r − (m− 1)p

r −m+ 1

}
and the claim follows since r −m+ 1 ≤ r.

Next we show that we can restrict A and B to so-called downsets. For
this notion and further compression operations in related problems, see for
instance [2, 8]. In the following definition we order the elements of Zp in the
natural way 0 < 1 < 2 < · · · < p− 1.

Definition 4.4. A set C ⊆
∏k
i=1 Z∗pi is a downset if (i1, . . . , ik) ∈ C

whenever there exists (j1, . . . , jk) ∈ C such that 1 ≤ il ≤ jl for every l =
1, . . . , k.
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Lemma 4.5. Let p1 < · · · < pk, G =
∏k
i=1 Zpi and A,B ⊆ G∗. Then

there exist downsets A′, B′ ⊆ G∗ such that

|A′| = |A|, |B′| = |B|, and |A′ +B′| ≤ |A+B|.
Proof. Stronger statements in Zkn and Zk2 are proved in [2, 8]. For com-

pleteness we provide a proof in our setting.
Write m = p1 · · · pk and think of G as Zm/pk × Zpk . For q |m, write

πq : Zm → Zq for the reduction map πq(x) = x (mod q) and recall the
notation Cq[r] from (2.1). Notice that, for any C ⊆ G,

C =
⋃

c1∈πm/pk
(C)

{c1} × Cm/pk [c1].

Set

A(k) =
⋃

a1∈πm/pk
(A)

{a1} × {1, . . . , |Am/pk [a1]|},

B(k) =
⋃

b1∈πm/pk
(B)

{b1} × {1, . . . , |Bm/pk [b1]|}.

Clearly A(k), B(k) ⊆ G∗, |A(k)| = |A| and |B(k)| = |B|. Furthermore

|A+B| =
∑

n∈πm/pk
(A+B)

|(A+B)m/pk [n]|

≥
∑

n∈πm/pk
(A+B)

max
a∈πm/pk

(A)

b∈πm/pk
(B)

a+b=n

{|Am/pk [a] +Bm/pk [b]|}

≥
∑

n∈πm/pk
(A+B)

max
a∈πm/pk

(A)

b∈πm/pk
(B)

a+b=n

{min{pk, |Am/pk [a]|+ |Bm/pk [b]| − 1}}

=
∑

n∈πm/pk
(A(k)+B(k))

|(A(k) +B(k))m/pk [n]| = |A
(k) +B(k)|,

where the second inequality follows from the Cauchy–Davenport inequality
(the case m = r = 1 of Lemma 4.3).

Now the sets A(k) and B(k) have a downset type property with respect
to the last coordinate (i.e. (a1, a2) ∈ A(k) whenever (a1, a′2) ∈ A(k) for some
a′2 ≥ a2 ≥ 1). Applying the same process to each of the remaining k−1 coor-
dinates in turn and noticing that the process does not spoil the downsetness
of coordinates handled before, we finally end up with a downset with the
desired properties.

The following lemma shows how a certain structure in B forces A+B to
be large.



212 K. Matomäki

Lemma 4.6. Let pk > · · · > p1 > 2 and G =
∏k
i=1 Zpi . Let A ⊆ G∗,

I ⊆ {1, . . . , k} and

BI = {(j1, . . . , jk) ∈ G∗ : ji = 1 for i 6∈ I, and ji ∈ {1, 2} for i ∈ I}.

Then
|A+BI | ≥ |A|

∏
i∈I

pi
ϕ(pi)

.

Proof. Write 0 := (0, . . . , 0) ∈ G, 1 := (1, . . . , 1) ∈ G, and ei for the
element of G with the ith component 1 and others 0. Notice that for any set
C ⊆ G∗ one has |C + {0, ei}| ≥ |C|pi/ϕ(pi). Hence

|A+BI | =
∣∣∣A+ {1}+

∑
i∈I
{0, ei}

∣∣∣ ≥ |A|∏
i∈I

pi
ϕ(pi)

.

We are not going to use this lemma very much, but it somewhat reveals
what is happening and also suggests an alternative approach to Theorem 1.3:
One could try to show that any large enough set B must contain BI for some
large I. By Lemma 4.5 we can assume that A and B are downsets and thus
B is surely more likely to contain large BI than a typical set but there is still
no guarantee that B contains a large BI . However, using [8, Proposition 3.2]
(expansion in Hamming balls) one can show that 3B contains BI so large
that the lower bound in Theorem 1.3 follows for |A+ 3B|.

4.2. Lemmas needed in the proof of Theorem 2.3. Recall the
definition of UN (d, θ, δ) from (2.2). Noticing that, for any N ≥ 1, d ∈ Z∗N ,
a ∈ ZN and δ > 0,

UN (d, a/N, δ) = {ad+ id ∈ ZN : −δN ≤ i ≤ δN},

the following lemma is an immediate consequence of [5, Theorem 1.2]:

Lemma 4.7. Let δ > 0 and K ≥ 1. There exists γ0 = γ0(K, δ) such that
the following holds when N ∈ P.

Let A ⊆ ZN be such that |A| ≤ γ0N and |A − A| ≤ K|A|. Then there
exist d ∈ Z∗N and θ ∈ R such that

A ⊆ UN (d, θ, δ).

For a function h : ZN → C define the normalized Fourier transform

ĥ(ξ) :=
1

N

∑
x∈ZN

h(x)e(−xξ/N).

The following lemma is a rather simple form of the well-known principle
that large Fourier coefficients mean regularity (for a sharp result for (i), see
[5, Lemma 3.2] which is a rewording of [11, Theorem 1]).
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Lemma 4.8. Let N ≥ 1, f : ZN → R≥0, ξ ∈ Z∗N and δ, ε > 0.

(i) If |f̂(ξ)| ≥ (1− 8εδ2)f̂(0), then there exists θ ∈ R such that∑
n∈UN (ξ,θ,δ)

f(n) ≥ (1− ε)
∑
n∈ZN

f(n).

(ii) If there exists θ ∈ R such that∑
n∈UN (ξ,θ,δ)

f(n) ≥ (1− ε)
∑
n∈ZN

f(n),

then |f̂(ξ)| ≥ (1− 2ε− 20δ2)f̂(0).

Proof. For any θ ∈ R,

Re(f̂(ξ)e(θ)) =
1

N

( ∑
n∈UN (ξ,θ,δ)

f(n) cos

(
2π

(
ξ

N
n− θ

))

+
∑

n6∈UN (ξ,θ,δ)

f(n) cos

(
2π

(
ξ

N
n− θ

)))
.

To prove (i), choose θ such that |f̂(ξ)| = e(θ)f̂(ξ). Since cos(2πx) ≤ 1− 8x2

for x ∈ [−1/2, 1/2] we get

(1− 8εδ2)f̂(0) ≤ |f̂(ξ)| = Re(f̂(ξ)e(θ))

≤ 1

N

( ∑
n∈UN (ξ,θ,δ)

f(n) + (1− 8δ2)
∑

n6∈UN (ξ,θ,δ)

f(n)
)

=
1

N

(
(1− 8δ2)

∑
n∈ZN

f(n) + 8δ2
∑

n∈UN (ξ,θ,δ)

f(n)
)
,

from which the claim follows by rearranging.
To prove (ii), choose θ as in the claim. Since cos(2πx) ≥ max{−1,

1− 20x2},

|f̂(ξ)| ≥ Re(f̂(ξ)e(θ)) ≥ 1

N

(
(1− 20δ2)

∑
n∈UN (ξ,θ,δ)

f(n)−
∑

n 6∈UN (ξ,θ,δ)

f(n)
)

≥ (1− 20δ2 − 2ε)f̂(0).

For a set E ⊆ A×B, we write

A
E
+B = {a+ b : (a, b) ∈ E}

for the restricted sum set. The Balog–Szemerédi–Gowers theorem (see [16,
Theorem 2.29]) lets us pass from a restricted sum set to a normal sum
set. We need the following version which is a mixture of [16, Theorem 2.29
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and Exercise 2.5.4] and can be proved by incorporating the hint in [16,
Exercise 2.5.4] into the proof of the Balog–Szemerédi–Gowers theorem in
[16, Section 6.4].

Lemma 4.9. Let A and B be additive sets in a group Z, and let E ⊂ A×B
be such that

|E| ≥ (1− δ2)|A| |B| and |A
E
+B| ≤ K|A|1/2|B|1/2

for some δ > 0 and K ≤ 1. Then there exist subsets A′ ⊆ A and B′ ⊆ B
such that

|A′| ≥ (1− δ)|A|, |B′| ≥ (1− δ)|B| and |A′+B′| ≤ K3

1− 6δ
|A|1/2|B|1/2.

5. Sum sets in Z∗m. In this section we execute steps 2 and 3 of the
agenda at the end of Section 3.

Proof of Theorem 3.3. We can clearly assume that p1 > 2 and by Lem-
ma 4.5 we can assume that A and B are downsets. We start by handling a
couple of extremal values of l:

• If l = 0, then B = Z∗m and the claim follows from Lemma 4.6 with
I = {1, . . . , k}.
• If l = k, then the claim becomes |A+B| ≥ |A|, which is trivial.
• If l = k−1, then |B| ≥ pk−1 ≥ 2, and so, in the notation of Lemma 4.6,
B contains BI for some |I| ≥ 1 and the claim follows from Lemma 4.6.

Hence we can assume that 1 ≤ l ≤ k − 2. We prove the claim by induction
on k, that is, the number of prime factors of m. The above takes care of
k ≤ 2, so we can proceed to the induction step. For that assume that the
claim holds with m/p1 in place of m.

Think of Z∗m as Z∗p1 × Z∗m/p1 and write

A =

p1−1⋃
i=1

{i} ×Ai and B =

p1−1⋃
i=1

{i} ×Bi.

Since A and B are downsets, we have |A1| ≥ · · · ≥ |Ap1−1| and
|B1| ≥ · · · ≥ |Bp1−1|. We will split into three cases which we first discuss
informally:

Case 1: If B1 is very large, then A+ ({1} ×B1) is large.
Case 2: If B2 is not too small, then (A+({2}×B2))∪ ({2}× (A1+B1))

is large.
Case 3: If neither of these holds, then even B(p1+1)/2 must be rather

large and we can again show that A+B is large.
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Let us now turn to the rigorous treatment of these three cases.

Case 1: |B1| ≥ ϕ(m/p1)
∏l
i=2

2
ϕ(pi)

. Since A+B contains

A+ ({1} ×B1) =

p1⋃
i=2

{i} × (Ai−1 +B1),

by the induction hypothesis

|A+B| ≥
p1−1∑
i=1

|Ai +B1| ≥
p1−1∑
i=1

|Ai|
m/p1

ϕ(m/p1)
· ϕ(p2 · · · pl)

p2 · · · pl

= |A| m

ϕ(m)
· ϕ(p1 · · · pl)

p1 · · · pl
.

Case 2: |B2| ≥ ϕ(m/p1)
∏l+1
i=2

2
ϕ(pi)

. Since A+B contains

{2} × (A1 +B1) and A+ ({2} ×B2) =

p1+1⋃
i=3

{i} × (Ai−2 +B2),

by the induction hypothesis

|A+B| ≥ |A1 +B1|+
p1−1∑
i=1

|Ai +B2|

≥
(
|A1|+

p1−1∑
i=1

|Ai|
) m/p1
ϕ(m/p1)

· ϕ(p2 · · · pl+1)

p2 · · · pl+1

≥ ϕ(pl+1)

pl+1

(
|A|

p1 − 1
+ |A|

)
m

ϕ(m)
· ϕ(p1 · · · pl)

p1 · · · pl

≥ |A| m

ϕ(m)
· ϕ(p1 · · · pl)

p1 · · · pl
.

Case 3: |B1| < ϕ(m/p1)
∏l
i=2

2
ϕ(pi)

and |B2| < ϕ(m/p1)
∏l+1
i=2

2
ϕ(pi)

.
Notice that automatically

|B1| ≥
|B|
p1 − 1

≥ ϕ(m)

p1 − 1

l∏
i=1

2

ϕ(pi)
≥ ϕ(m/p1)

l+1∏
i=2

2

ϕ(pi)
.

Furthermore

|B| = |B1|+ · · ·+ |Bp1−1| ≤ |B1|+
p1 − 3

2
|B2|+

p1 − 1

2
|B(p1+1)/2|,

so that

|B(p1+1)/2| ≥
2

p1 − 1

(
|B| − |B1| −

p1 − 3

2
|B2|

)
≥
(
ϕ(m/p1)

l∏
i=2

2

ϕ(pi)

)
· 2

p1 − 1

(
2− 1− p1 − 3

2
· 2

pl+1 − 1

)
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Now the product after · is

≥ 2

p1 − 1
− 2

pl+1 − 1
=

2(pl+1 − p1)
(p1 − 1)(pl+1 − 1)

≥ 4

(pl+1 − 1)(pl+2 − 1)
,

and hence

|B(p1+1)/2| ≥ ϕ(m/p1)
l+2∏
i=2

2

ϕ(pi)
.

Now A+B contains the disjoint sets

{1} × (A(p1+1)/2 +B(p1+1)/2),

{
p1 + 3

2

}
× (A1 +B(p1+1)/2),

{i} × (Ai−1 +B1) for 2 ≤ i ≤ p1, i 6= (p1 + 3)/2,

so by the induction hypothesis

|A+B| ≥ (|A1|+ · · ·+ |Ap1−1| − |A(p1+1)/2|) ·
m/p1

ϕ(m/p1)
· ϕ(p2 · · · pl+1)

p2 · · · pl+1

+ (|A(p1+1)/2|+ |A1|) ·
m/p1

ϕ(m/p1)
· ϕ(p2 · · · pl+2)

p2 · · · pl+2

=
m

ϕ(m)

l∏
i=1

ϕ(pi)

pi

· ϕ(pl+1)

pl+1

( p1−1∑
i=1

|Ai|+
(
1− 1

pl+2

)
|A1| −

1

pl+2
|A(p1+1)/2|

)
.

By Lemma 4.2 with αj = |Aj | and δ = (p1 − 2/pl+2)/(p1 − 1), the product
after · is

≥ pl+1 − 1

pl+1
· |A|p1 − 2/pl+2

p1 − 1
= |A|

(
1 +

pl+1 − 2
pl+1

pl+2
− p1 + 2

pl+2

pl+1(p1 − 1)

)
> |A|

since pl+1 − p1 ≥ 2.

Proof of Corollary 3.2. For x ∈ [0, 2], let

Ax = {a ∈ Z∗m : ua > x}, Bx = {b ∈ Z∗m : vb > x}, Cx =
⋃

t∈[0,x]

(At+Bx−t).

Then

(5.1)
∑
c∈Zm

max
a+b=c
uavb 6=0

{ua + vb} =
∑
c∈Zm

�

x
c∈Cx

1 dx =

2�

0

|Cx| dx.

Choose v′ ∈ [0, 1] so that

(5.2)
∑
b∈Z∗m

min{v′, vb} = (1− v)vϕ(m).
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Such a v′ exists since the left hand side is continuous in v′ and equals 0 for
v′ = 0 and vϕ(m) for v′ = 1. By (5.2),

(1− v)vϕ(m) = vϕ(m) +
∑
b∈Bv′

(v′ − vb) ≥ vϕ(m)− |Bv′ | ⇒
|Bv′ |
ϕ(m)

≥ v2.

By (5.1),∑
c∈Zm

max
a+b=c
uavb 6=0

{ua + vb} ≥
v′�

0

|A0 +Bx| dx+

v′+1�

v′

|Ax−v′ +Bv′ | dx.

Applying Theorem 1.3 to each sum set shows that this is

≥ (1−ou+v→0(1))
m

ϕ(m)

(v′�
0

|Bx|
eγ log log(1/u)

dx+

1�

0

|Ax|
eγ log log(1/v2)

dx

)
≥ 1− ou+v→0(1)

eγ log log(1/(uv))
· m

ϕ(m)

( ∑
b∈Z∗m

min{vb, v′}+
∑
a∈Z∗m

ua

)
≥ (1− ou+v→0(1))

u+ v

eγ log log(1/(uv))
m.

6. Proof of Proposition 3.1. In this section we prove Proposition 3.1
following arguments in [3]. As a first step we reduce to ZN for a prime N �
n/m and introduce weights coming from Green’s modified von Mangoldt
function λd,m,N : Z+ → R defined by

λd,m,N (x) :=

{
ϕ(m)

mN
log(mx+ d) if x ≤ N and mx+ d is prime,

0 otherwise.

For any N > n/m and set C ⊆ Pm[d] ∩ [1, n] we define a set C̃ and a
function hC : ZN → R≥0 by

C̃ := (m−1(C − d)) ∩ {1, . . . , N} and hC(x) := N 1
C̃
(x)λd,m,N (x).

Choice of N, d and m will always be clear from the context. Notice that
|C| = |C̃|. The prime number theorem in arithmetic progressions implies the
following.

Lemma 6.1. Let γ0 > 0, N > n/m with m� (log n)A for some absolute
constant A. Let d ∈ Z∗m and assume that C ⊆ Pm[d] ∩ [1, n] has positive
relative density γ′ > γ0. Then∑

x∈ZN

hC(x) = (1 + on→∞(1))γ′
n

m
.

Proof. This follows by an obvious modification of [3, proof of Lemma 8].



218 K. Matomäki

Let m, r, s, A and B be as in Proposition 3.1 and think of Ã and B̃ as
subsets of ZN . Then taking N > 2n/m we have

|A+B| = |Ã+ B̃|,
and by the above lemma,

EhA = (1 + on→∞(1))α
n

mN
and EhB = (1 + on→∞(1))β

n

mN
.

For two functions f, g : ZN → C, we define the convolution

f ∗ g(x) :=
∑
y∈ZN

f(y)g(x− y).

Since supp(f ∗ g) ⊆ supp(f) + supp(g), Proposition 3.1 follows from the
following lemma.

Lemma 6.2. Let ε > 0. There exists W0 =W0(ε) such that the following
holds when

W0 ≤W � log log n, m =
∏
p≤W

p.

If A and B are as in Proposition 3.1, then

|{x ∈ ZN : (hA ∗ hB)(x) > 0}| ≥ (1− ε)min{EhA + EhB, 1} ·N.
Before going to the proof we need some notation. For f : ZN → C, we

use the standard norm notations

‖f‖p :=
( ∑
x∈ZN

|f(x)|p
)1/p

for 0 < p <∞, ‖f‖∞ := max
x∈ZN

|f(x)|.

Furthermore, we say that a function ν : ZN → R≥0 is η-pseudorandom if

‖ν̂ − 1ξ=0‖∞ ≤ η.
We will be particularly interested in functions satisfying the following defi-
nition.

Definition 6.3. Let F(η, C) be the set of functions f : ZN → R≥0 such
that

(i) f is majorized by some η-pseudorandom function ν (i.e. f(x) ≤ ν(x)
for every x ∈ ZN ),

(ii) ‖f̂‖3 ≤ C.

Our interest is understandable due to the following lemma.

Lemma 6.4. Let ε > 0. There exist C = C(ε) and W0 =W0(ε) such that
the following holds when

W0 ≤W ≤ log logN, m =
∏
p≤W

p and r ∈ Z∗m.
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Let C ⊆ Pm[r] with relative density at least ε. Then

hC ∈ F(2(log logW )/W,C).

Proof. This follows with ν = Nλr,m,N from work of Green [4, Lemma 6.2,
its proof and Lemma 6.6].

Next we quote a result which says that any f ∈ F(η, C) can be divided
into bounded and uniform components.

Lemma 6.5. Let ε0, σ and C be positive parameters. Then there ex-
ists η = η(ε0, σ, C) such that, for any f ∈ F(η, C), there exist functions
f1, f2 : ZN → R≥0 such that f = f1 + f2 and

(i) 0 ≤ f1(x) ≤ 1 + σ for all x ∈ ZN ;
(ii) Ef1 = Ef ;
(iii) ‖f̂1‖∞ ≤ 1 + σ and ‖f̂2‖∞ ≤ ε0;
(iv) ‖f̂i‖3 ≤ C for i = 1, 2.

Proof. This is originally due to Green [4] and is contained in the proof
of [6, Proposition 5.1] (see also [3, Lemma 11]).

We will show the following strengthening of [3, Lemma 13]. This together
with Lemma 6.4 obviously implies Lemma 6.2 and hence Proposition 3.1.

Proposition 6.6. For every ε > 0 and C > 0, there exists η = η(ε, C)
such that if N ∈ P and f, g ∈ F(η, C) are such that Ef = α ∈ (ε, 1] and
Eg = β ∈ (ε, 1], then

|{x ∈ ZN : (f ∗ g)(x) > 0}| ≥ (1− ε)min{α+ β, 1} ·N.

The main difference to [3, Lemma 13] is that there was 1
2(α + β) in

the place of α + β. To get this sharper result we utilize Pollard’s theorem
(Lemma 4.3) instead of looking at L1-norm estimates as in [3]. Note that
Pollard’s theorem was invoked in a similar context also in the work of Li and
Pan [12] on the ternary problem.

Proof of Proposition 6.6. Let σ = ε3/10 < αβε/10 and let ε0 be small
and η be η(ε0, σ, C) from Lemma 6.5. Write f = f1 + f2 and g = g1 + g2 as
in Lemma 6.5. The claim follows once we have shown that

|{x ∈ ZN : (f1 ∗ g1)(x) ≥ σ4αβN}| ≥ min{α+ β − 6σ, 1}N

and ∣∣{x ∈ ZN : |(fi ∗ gj)(x)| ≥ 1
10σ

4αβN
}∣∣ ≤ σN for (i, j) 6= (1, 1).

The latter follows for small enough ε0 (depending on ε and C) by esti-
mating the L2-norm of fi ∗ gj exactly as in [3, proof of Lemma 13]. For the
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former, write

A = {a ∈ ZN : f1(a) ≥ ασ} and B = {b ∈ ZN : g1(b) ≥ βσ}.

Now

α = Ef1 ≤
1

N
(ασN + (1 + σ)|A|) ⇒ |A| ≥ 1− σ

1 + σ
αN ≥ (1− 2σ)αN

and similarly |B| ≥ (1− 2σ)βN . Hence, by Lemma 4.3 with m = σ2N and
r = σN , rA+B(n) ≥ σ2N for at least

min{1, (α+ β)(1− 2σ)− 2σ}N ≥ min{1, α+ β − 6σ}N

values n ∈ ZN . But clearly f1 ∗ g1(n) ≥ σ4αβN for these n, finishing the
proof.

As pointed out before the proof, this implies Proposition 3.1, which in
turn, together with Corollary 3.2 proved in the previous section, implies
Theorem 2.1 as shown in Section 3. Hence also Theorem 1.1 follows.

7. Proof of Theorem 1.4. The proof of Theorem 1.4 is a modification
of the proof of Theorem 1.1 and does not need any new ideas but we provide
the proof for completeness.

Let ε > 0 be so small that (1 − 3ε)β >
∏l
i=2

2
ϕ(qi)

, let ε0 = αβε2/2,
W = W0(ε0) in Proposition 3.1, and let n � exp(exp(W ))/ε be so large
that

|A ∩ [3, (1− ε)n]|
|P ∩ [1, (1− ε)n]|

≥ (1− ε)α and
|B ∩ [3, εn]|
|P ∩ [1, εn]|

≥ (1− ε)β.

Analogously to the deduction of Theorem 1.1 from Theorem 2.1 we take
A′ = A ∩ [3, (1− ε)n] and B′ = B ∩ [3, εn]. With m =

∏
2<p≤W p, let

D =

{
r ∈ Z∗m :

|B′m[r]|
|Pm[r] ∩ [1, εn]|

≥ εβ
}
,

and notice that when n is large enough,

(1− ε)β ≤ |B′|
|P ∩ [1, εn]|

≤
∑
r∈Z∗m

|B′m[r]|
(1− ε)ϕ(m)|Pm[r] ∩ [1, εn]|

≤ 1

1− ε

(
|D|
ϕ(m)

+ εβ

)
,

so that |D| ≥ (1− 3ε)βϕ(m).
For any q ≥ 1 and s ∈ Zq, let

α′q[s] =
|A′q[s]|

|Pq[s] ∩ [1, n]|
and β′q[s] =

|B′q[s]|
|Pq[s] ∩ [1, n]|

.
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By Proposition 3.1,

|(A+B) ∩ [1, n]| ≥ |A′ +B′| =
∑
c∈Z2m

max
a+b=c
a,b∈Z∗2m

|A′2m[a] +B′2m[b]|

≥ (1− ε0)
∑
c∈Z2m

max
a+b=c
a,b∈Z∗2m

α′2m[a],β′2m[b]>ε0

{α′2m[a] + β′2m[b]}
n

2m
.

Notice that Z∗2m ∼= Z∗m and when r ∈ Z∗m and r′ ∈ Z∗2m is such that r′ ≡ r
(mod m), then α′2m[r′] = α′m[r] and β′2m[r′] = β′m[r]. Hence

|(A+B) ∩ [1, n]| ≥ (1− ε0)
∑
c∈Zm

max
a+b=c
a,b∈Z∗m

α′m[a]−ε0>0, b∈D

{α′m[a]− ε0}
n

2m
.

Writing A′x = {a ∈ Z∗m : α′m[a] > x+ ε0}, the right hand side equals

(1− ε0)
n

2m

1�

0

|A′x +D| dx ≥ (1− ε0)
n

2m

1�

0

|A′x| dx ·
m

ϕ(m)
· ϕ(q2 · · · ql)

q2 · · · ql

by Theorem 3.3 since |D| ≥ (1−3ε)βϕ(m) ≥ ϕ(m)
∏l
i=2

2
ϕ(qi)

. By definition
of A′x, the integral here is∑
a∈Z∗m, α′m[a]>ε0

(α′m[a]− ε0) ≥ (1− ε)3αϕ(m)− ε0ϕ(m) ≥ (1− 4ε)αϕ(m).

Hence
|(A+B) ∩ [1, n]| ≥ (1− 4ε)α

ϕ(q1 · · · ql)
q1 · · · ql

· n

for every ε > 0 and every large enough n and the claim follows.

8. Proof of Proposition 3.5. Recall the notation UN (d, θ, δ) from Sec-
tion 4.2 and the notation F(η, C) from Definition 6.3. Proposition 3.5 fol-
lows from the following proposition as Proposition 3.1 follows from Proposi-
tion 6.6.

Proposition 8.1. Let ε > 0, K ≥ 1, C > 0 and N ∈ P. There exists
γ1 = γ1(K, ε) such that for each γ0 ∈ (0, γ1) there exists η = η(γ0, ε, C) such
that the following holds.

Let f, g ∈ F(η, C) be such that Ef = α ∈ (γ0, γ1) and Eg = β ∈ (γ0, γ1).
If

|{x ∈ ZN : (f ∗ g)(x) > 0}| ≤ K(αβ)1/2N,

then there exist d ∈ Z∗N and θ1, θ2 ∈ R such that
1

N

∑
x∈UN (d,θ1,ε)

f(x) ≥ α(1− ε) and
1

N

∑
x∈UN (d,θ2,ε)

g(x) ≥ β(1− ε).
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This proposition will quickly follow from the following lemma.

Lemma 8.2. Let ε > 0, K ≥ 1 and N ∈ P. There exists γ1 = γ1(K, ε)
such that for each γ0 ∈ (0, γ1) there exists σ′ = σ′(γ0, ε) such that the fol-
lowing holds.

Let f, g : ZN → [0, 1] be such that Ef = α ∈ (γ0, γ1) and Eg = β ∈
(γ0, γ1). If

(8.1) |{x ∈ ZN : (f ∗ g)(x) ≥ σ′N}| ≤ K(αβ)1/2N,

then there exists ξ ∈ ZN such that |f̂(ξ)| ≥ (1− ε)α and |ĝ(ξ)| ≥ (1− ε)β.

Proof. We can assume that ε and γ1 are small. Let δ = γ20ε
2, σ′ = δ4γ40/2

and let

A = {x ∈ ZN : f(x) ≥ δα} and B = {x ∈ ZN : g(x) ≥ δβ}.

Then |A| ≥ (1− δ)αN and |B| ≥ (1− δ)βN . Writing

E =

{
(a, b) ∈ A×B : rA+B(a+ b) ≥ δ2 |A| |B|

|A+B|

}
,

one has |E| ≥ (1− δ2)|A| |B| and

x ∈ A
E
+B ⇒ (f ∗ g)(x) ≥ δα · δβ · δ2 |A| |B|

|A+B|
≥ (1− δ)2δ4(αβ)2N ≥ σ′N,

so by assumption (8.1),

|A
E
+B| ≤ K(αβ)1/2N = K

(
αN

|A|
· βN
|B|

)1/2

|A|1/2|B|1/2.

By Lemma 4.9 we can find sets A′ ⊆ A and B′ ⊆ B such that |A′| ≥
(1− δ)|A|, |B′| ≥ (1− δ)|B| and

|A′ +B′| ≤ K3

1− 6δ

(
αN

|A|
· βN
|B|

)3/2

|A|1/2|B|1/2

≤ min{(3K)3|A′|1/2|B′|1/2, (3K)3(αβ)1/2N}.

By [16, Corollary 2.24],

|A′ +B′ − (A′ +B′)|
|A′ +B′|

≤ (3K)O(1).

Hence, by Lemma 4.7 when γ1 is small enough (depending on K and ε),
there exist d ∈ Z∗N and θ′ ∈ R such that

A′ +B′ ⊆ UN (d, θ′, ε).

In particular there is θ ∈ R such that

A′ ⊆ UN (d, θ, ε).
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Hence by Lemma 4.8, there is ξ ∈ ZN such that

f̂1A′(ξ) ≥ (1− 20ε2)f̂1A′(0) = (1− 20ε2)(f̂(0)− f̂1A\A′(0)− ̂f1ZN\A(0)).

Thus

|f̂(ξ)| = |f̂1A′(ξ) + f̂1A\A′(ξ) + ̂f1ZN\A(ξ)|

≥ (1− 20ε2)f̂(0)− 2f̂1A\A′(0)− 2 ̂f1ZN\A(0)

≥ 1

N

(
(1− 20ε2)

∑
x∈ZN

f(x)− 2δN − 2 · δα ·N
)
≥ α(1− ε).

Similarly |ĝ(ξ)| ≥ β(1− ε).

Proof of Proposition 8.1. We can clearly assume that ε is small. Let γ1
and σ′ be γ1(3K, ε3/2) and σ′(γ0/2, ε

3/2, 3K) in Lemma 8.2. Write f =
f1 + f2 and g = g1 + g2 as in Lemma 6.5 with σ < 1/2 and ε0 < ε3γ0/2 so
small that, for (i, j) 6= (1, 1),

|{x ∈ ZN : (fi ∗ gj)(x) ≥ σ′/10}| ≤
1

10
(αβ)1/2N

(possible by estimating the L2-norm of fi ∗ gj exactly as in [3, proof of
Lemma 13]). Hence by assumption

|{x ∈ ZN : (f1 ∗ g1)(x) ≥ σ′}| ≤ 2K(αβ)1/2N.

Applying Lemma 8.2 to f1/(1 + σ) and f2/(1 + σ), we see that |f̂1(ξ)| ≥
(1 − ε3/2)α and |ĝ1(ξ)| ≥ (1 − ε3/2)β, which immediately implies that
|f̂(ξ)| ≥ (1 − ε3)α and |ĝ(ξ)| ≥ (1 − ε3)β, and the claim follows from
Lemma 4.8.

9. An additional example. The following example demonstrates that
1− ε in Theorem 2.1 cannot be replaced by 1 + ε in general.

Example 9.1. We can assume that β ≤ α. Let m be the product of the
first l primes and let ε > 0. Then we have the following two examples.

1. For β′ ∈ (0, 1], choose

A = {p ∈ [2, n] ∩ P : p ≡ 1 (modm)},
B = {p ∈ [2, β′n] ∩ P : p ≡ 1 (modm)}.

Now α = (1 + on→∞(1))/ϕ(m), β = (1 + on→∞(1))β′/ϕ(m) and

|A+B| ≤ |{k ∈ [4, (1 + β′)n] : k ≡ 2 (modm)}| ≤ (1 + β′)
n

m

= (1 + on→∞(1))(α+ β)
ϕ(m)

m
n.
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When α and β ≥ α4 are small enough (depending on ε) and n is large enough
(depending on α), we deduce by Lemma 4.1 that

|A+B| ≤ (1 + ε2)
α+ β

eγ log log(1/α)
n < (1 + ε)

α+ β

eγ log log(1/(αβ))
n.

2. For α′ ∈ (0, 1], choose

A = [2, α′n] ∩ P and B = {p ∈ [2, n/ϕ(m)] ∩ P : p ≡ 1 (mod m)}.
Now α = (1 + on→∞(1))α′, β = (1 + on→∞(1))/ϕ(m)2, and

|A+B| ≤ |{k ∈ [4, (α′ + 1/ϕ(m))n] : gcd(k − 1,m) = 1}|+ l

= (1 + on→∞(1))(α+ β1/2)
ϕ(m)

m
n.

When α and β ≤ α4 are small enough (depending on ε) and n is large enough
(depending on β), we infer by Lemma 4.1 that

|A+B| ≤ (1 + ε2)
α+ β1/2

eγ log log(1/β1/2)
n < (1 + ε)

α+ β

eγ log log(1/(αβ))
n.
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