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1. Introduction. A set H is called product free if a, b ∈ H implies
ab /∈ H. Hajdu, Schinzel and Skałba [4] have shown that a product free subset
of the positive integers can have upper density arbitrarily close to 1. Sárközy
has suggested to investigate the Ramsey-type variation of the problem: is it
true that for any r-colouring of N the equation ab = c has a monochromatic
solution different from the trivial solution 1 · 1 = 1? In particular he asked
the question for squarefree numbers:

Problem 1. Is it true that for any r-colouring of the squarefree numbers
greater than 1 the equation ab = c has a monochromatic solution?

There are several other questions about density theorems, where the
Ramsey-type version was answered positively; see for example [1], [5]. It is
a consequence of Schur’s theorem [9] that Sárközy’s original problem always
has a solution among the powers of 2.

Proposition 1. For every r-colouring of the 2-powers the equation ab= c
has a nontrivial solution.

Proof. Let us colour the 2-powers by r colours. We define a colouring of
N by r colours in the following way. Let the colour of x ∈ N be the colour
of 2x. By Schur’s theorem the equation x + y = z has a monochromatic
solution in N. Then the equation ab = c also has a monochromatic solution
(for the original colouring) among the 2-powers, namely a = 2x, b = 2y,
c = 2z.

Pomerance and Schinzel [7] have proved that for Problem 1 the answer is
affirmative if r = 2. In this paper we settle the problem for arbitrary r, and
extend the results to more general equations. We show that the equation
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a1 · · · ak = b1 · · · bl has a nontrivial monochromatic solution for every r-
colouring of the squarefree numbers.

2. Squarefree numbers. The result of Hajdu, Schinzel and Skałba im-
plies that there is no density theorem for the equation ab = c. The following
example shows that if k 6= l, then there is no density theorem for the equation
a1 · · · ak = b1 · · · bl either.

Example 1. Let An = {4i + 2 : 0 ≤ i, 4i + 2 ≤ n}. If a1, a2, . . . , ak,
b1, b2, . . . , bl ∈ An, then the exponent of 2 is k in the canonical form of
a1 · · · ak and l in b1 · · · bl. Thus the equation a1 · · · ak = b1 · · · bl does not
have a solution in An if k 6= l. The size of An is 1

4n+O(1).

If k = l, then a1 = · · · = ak = b1 = · · · = bk is a solution. We say that
a1, . . . , ak, b1, . . . , bl is a primitive solution of the equation a1 · · · ak = b1 · · · bl
if a1, . . . , ak, b1, . . . , bl are pairwise distinct. From now on we look only for
primitive solutions of equations.

In case k = l there is a density theorem for primitive solutions if k and l
are even.

Proposition 2. Let k ∈ N be even. For arbitrary ε > 0 there exists
N = N(ε) such that for every n ≥ N and A ⊆ {1, . . . , n} with size |A| ≥ εn
the equation a1a2 . . . ak = b1b2 . . . bk has a primitive solution in A.

Proof. The proof is by induction on k. First let k = 2 and ε > 0 be
arbitrary. The bound N is chosen later. Let A ⊆ {1, . . . , n}, where n ≥ N
and |A| > εn. In [2] it is proved that only o(n2) numbers can be found
in the “multiplication table” of the integers up to n. As A ⊆ {1, . . . , n},
the set A · A = {c1c2 : c1, c2 ∈ A} has at most o(n2) elements. There are(|A|

2

)
= (ε2/2)n2+o(n2) pairs c1, c2 with c1, c2 ∈ A and c1 6= c2. Now, choose

N such that
(|A|

2

)
is larger than the size of A ·A. Thus there exists an element

in A · A which can be written as a product of two different elements of A
in at least two different ways: a1a2 = b1b2. This way we have obtained a
primitive solution.

Now, assume that 4 ≤ k ∈ 2N and the statement holds for k − 2. Let
ε > 0 be arbitrary. By the induction hypothesis there exists some N such
that for any set B ⊆ {1, . . . , n} with at least (ε/3)n elements, the equa-
tions a1 · · · ak−2 = b1 · · · bk−2 and ak−1ak = bk−1bk have a primitive so-
lution in B if n ≥ N . Let A ⊆ {1, . . . , n} have at least εn elements. If
n ≥ 3/ε, then A can be partitioned into two disjoint parts A1 and A2 both
of size at least (ε/3)n. If n ≥ N , then a1 · · · ak−2 = b1 · · · bk−2 has a prim-
itive solution in A1 and ak−1ak = bk−1bk has a primitive solution in A2.
Therefore, a1, . . . , ak, b1, . . . , bk is a primitive solution of a1 · · · ak = b1 · · · bk
in A.
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The case when k = l is odd is still open.

Problem 2. Is it true that for every odd k > 1 and ε > 0 there exists
some N such that for every N ≤ n and A ⊆ {1, . . . , n} with size at least εn
the equation a1 · · · ak = b1 · · · bk has a primitive solution in A?

For the main result of the paper the following form of Ramsey’s theorem
will be used ([3], [6]):

Ramsey’s theorem. Let r and t be positive integers. Let us colour the
at most t-element subsets of a set S by r colours. Then for every positive
integer n there exists a positive integer d such that if |S| > d, then S has
a subset H with n elements such that any two subsets of the same size not
greater than t have the same colour, that is, for any H1, H2 ⊆ H with |H1| =
|H2| ≤ t the colour of H1 and H2 is the same.

By Ramsey’s theorem, for every n there exists d such that, if |S| > d,
then there exists a subset H ⊆ S with |H| = n such that every one-element
subset of H has the same colour, every two-element subset of H has the same
colour, and so on, every subset of H with t elements has the same colour.
The bound for this integer d is called a Ramsey number and the best known
bound is multiply exponential in r.

The following version of Rado’s theorem is also needed ([6], [8]):

Rado’s theorem. Let v ≥ 2. Let ci ∈ Z \ {0}, 1 ≤ i ≤ v, be con-
stants such that there exists a nonempty D ⊆ {ci : 1 ≤ i ≤ v} such that∑

d∈D d = 0. If there exist distinct integers (not necessarily positive) yi such
that

∑
ciyi = 0, then for every natural number r there exists some t such

that for every r-colouring of the set {1, . . . , t} the equation

c1x1 + · · ·+ cvxv = 0

has a monochromatic solution b1, . . . , bv in {1, . . . , t}, where the bi’s are dis-
tinct.

Now we prove that for every r-colouring of the squarefree numbers
the equation a1 · · · ak = b1 · · · bl has a primitive monochromatic solution if
k ≥ 2.

Theorem 1. For every k ≥ 2, any l, r ∈ N and every r-colouring of the
squarefree numbers greater than 1 the equation

(1) a1 · · · ak = b1 · · · bl
has a primitive monochromatic solution.

Proof. The squarefree numbers are in a one-to-one correspondence with
the finite subsets of primes. To each squarefree number we assign the set
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of its prime divisors. The product of two squarefree numbers is squarefree
if and only if the two sets are disjoint. Moreover, in this case the product
corresponds to the union of the two subsets.

For a given r-colouring of the squarefree numbers we define a colouring
of the finite subsets of primes. Each subset is coloured by the colour of the
product of its elements. If we find nonempty subsets of primes A1, . . . , Ak,
B1, . . . , Bl such that

(i)
⋃
Ai =

⋃
Bj ,

(ii) A1, . . . , Ak, B1, . . . , Bl are pairwise distinct,

then ai =
∏

p∈Ai
p for 1 ≤ i ≤ k and bj =

∏
p∈Bj

p for 1 ≤ j ≤ l is a primitive
monochromatic solution of (1). Now we show that the sets Ai, Bj with the
above conditions exist with the additional property

(iii) the sizes |A1| = α1, . . . , |Ak| = αk, |B1| = β1, . . . , |Bl| = βl are
distinct.

The equation

(2) α1 + · · ·+ αk = β1 + · · ·+ βl

is equivalent to
α1 + · · ·+ αk − β1 − · · · − βl = 0,

hence Rado’s theorem applies with v = k + l, and ci = 1, yi = i if 1 ≤ i ≤ k
and ci = −1, yi = −i if k < i < v and cv = −1, yv = (v − 1)v/2. Let
t be chosen such that for every r-colouring of {1, . . . , t} equation (2) has
a monochromatic solution. Now, apply Ramsey’s theorem for this t and
n = tmax(k, l). There is a number d such that for every r-colouring of
the subsets of the first d primes there is a subset H of primes such that
|H| = n, and for every j ≤ t the j-element subsets of H have the same
colour. Let us colour the elements of {1, . . . , t} by r colours in the following
way: for 1 ≤ i ≤ t let the colour of i be the colour of the i-element subsets
of H. By Rado’s theorem there exists a monochromatic solution of (2).
Let m = α1 + · · · + αk = β1 + · · · + βl, where α1, . . . , αk, β1, . . . , βl are
distinct positive integers not greater than t. Consider an arbitrary partition
A1, . . . , Ak of type α1, . . . , αk and an arbitrary partition B1, . . . , Bl of type
β1, . . . , βl of the first m primes in H. These sets satisfy conditions (i)–(iii),
so the statement is proved.
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