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1. Introduction. Let Ω(n) :=
∑

pk|n 1 denote the number of (positive)
prime factors of n, counted with multiplicity. The study of statistical proper-
ties ofΩ(n) was a major impetus for the development of probabilistic number
theory in the first half of the twentieth century. It is a simple consequence of
elementary prime number theory that Ω(n) behaves like log log n on average.
Hardy and Ramanujan [HR17] showed that this average behavior is typical
by demonstrating that Ω(n) ∼ log logn as n→∞ along a set of asymptotic
density 1. This result was refined in the celebrated work of Erdős and Kac
[EK40], who proved that Ω(n) possesses a Gaussian distribution with mean
and variance log logn. In contrast with the depth of these authors’ work, the
minimal and maximal orders of Ω(n) are trivial to determine: Ω(n) = 1 for
prime n, while Ω(n) = logn

log 2 when n is a power of 2.
Let F (T ) ∈ Z[T ]. One can ask for the average, normal, minimal, and

maximal orders of Ω(F (n)). The first two questions have been satisfactorily
resolved (see, e.g., [Hal56] for an analogue of the Erdős–Kac theorem in this
context). The third question is in general very difficult; to take a famous
example, we expect that if F (T ) = T (T + 2), then Ω(F (n)) = 2 infinitely
often, but we are still far from proving this. Probably the following is true:

Hypothesis H′. Let F (T ) be a nonzero polynomial with integer coeffi-
cients. Let D := gcdn∈Z{F (n)} be the greatest fixed divisor of F . Then

lim inf
n→∞

Ω(F (n)) = r +Ω(D),

where r is the number of monic irreducible factors of F in Q[T ], counted
with multiplicity.
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We remark that it is easy to compute D = D(F ) for a given F . Indeed,
for d := degF , a theorem of Hensel [Hen96] asserts that

D(F ) = gcd(F (0), F (1), . . . , F (d)).

Moreover, Pólya [Pol15] has shown (cf. [Bha00]) that if the coefficients of F
do not all share a common factor > 1, then D(F ) | d!.

We show in §2 that Hypothesis H′ is equivalent to Schinzel’s well-known
Hypothesis H [SS58] concerning simultaneous prime values of polynomials.
This equivalence, and its proof, are similar in flavor to Schinzel’s own argu-
ment [Sch61] that his Hypothesis H implies a conjecture of Bunyakovsky.

The primary purpose of this note is to give a satisfactory answer to the
remaining, fourth question: What is the maximal order of Ω(F (n))? Erdős
and Nicolas [EN81] considered this problem when F (T ) = T (T + 1), so
that Ω(F (n)) = Ω(n) +Ω(n+1). Trivially, Ω(F (n)) ≤ 2 log(n+1)

log 2 . But these
authors showed [EN81, Théorème 3] that, in fact,

Ω(n(n+ 1)) ≤ (1 + o(1))
log n

log 2
(as n→∞).

We show that Ω(F (n)) always has maximal order C log n for some positive
constant C. More precisely, factor F as

(1.1) F (T ) = ±Cont(F )
k∏
i=1

Fi(T )
ei ,

where Cont(F ) is the content of F (the greatest common divisor of its co-
efficients) and the Fi are distinct irreducible elements of Z[T ], each with
positive leading term. For each 1 ≤ i ≤ k, we let `i denote the least prime `
for which Fi has a root in the `-adic integers Z` (equivalently, for which Fi
has a zero modulo every power of `). To see that `i is well-defined, first note
that a straightforward variant of Euclid’s proof of the infinitude of primes
shows that Fi has a root modulo ` for infinitely many primes ` (see, for
example, [Sch12, pp. 40–41]). For each such ` not dividing the resultant of
Fi and F ′i , one sees from Hensel’s lemma that F has a root in Z`. We can
now state our main result.

Theorem 1. Let F (T ) ∈ Z[T ] be a nonconstant polynomial with integer
coefficients. Suppose that F is written in the form (1.1). For each 1 ≤ i ≤ k,
define `i as above. Then

lim sup
n→∞

Ω(F (n))

log n
= C(F ), where C(F ) := max

1≤i≤k

ei
log `i

.

In particular, if F has only simple roots, then C(F ) = 1/log `, where ` is the
least prime for which F has a zero in Z`.
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Our proof is similar in spirit to that of Erdős and Nicolas, but replaces
the use of Ridout’s version of Roth’s theorem with an application of the
subspace theorem.

The questions we have raised make sense also for ω(F (n)), where ω counts
the number of distinct prime factors. However, as observed already by Erdős
and Nicolas, here it seems very difficult to prove any nontrivial results about
the maximal order. To illustrate the difficulties, call the natural number n
special if n(n+1) is the product of the first k primes for some k; e.g., n = 714
is special, with k = 7. Improving the trivial bound

lim sup
n→∞

ω(n(n+ 1))

log n/log log n
≤ 2

entails showing that there are only finitely many special n. This conjecture,
first proposed by Nelson, Penney, and Pomerance [NPP74], seems unattack-
able at present. A related conjecture of Dąbrowski [D12]) is that there are
precisely 28 solutions to the equation

(1.2) N2 − 1 = pa11 · · · p
ak
k ,

where N and the ai are positive integers, and pi denotes the ith prime. Note
that if n is special, then N = 2n+ 1 gives a solution to (1.2). The results of
[LN11] imply the truth of Dąbrowski’s conjecture for all k ≤ 25.

Notation. Most of our notation is standard or will be explained when
needed, so we make only a few brief remarks: We let | · | (without a subscript)
denote the usual absolute value on C. For a prime p and a nonzero rational
number x, we write ordp(x) for the exponent of p in the prime factorization
of x. We say that a number n is y-smooth if each prime factor of n is bounded
by y, and we define the y-smooth part of n as its largest y-smooth divisor.

2. Minimal order: The equivalence of Hypotheses H and H′. We
begin by recalling the statement of Schinzel’s Hypothesis H [SS58]:

Hypothesis H. Suppose that G1(T ), . . . , Gk(T ) ∈ Z[T ] are irreducible
over Q, each with positive leading coefficient. Put G :=

∏k
i=1Gi. Suppose

that G has no fixed prime divisor: for every prime p, there is an integer mp

for which p - G(mp). Then there are infinitely many natural numbers n for
which each Gi(n) is prime.

It is clear that Hypothesis H′ implies H: We need only apply H′ with
F =

∏r
i=1Gi (assuming, as we may, that the Gi are distinct). So we may

focus our energies on showing that H implies H′.
Let F (T ) ∈ Z[T ] be a nonzero polynomial for which we wish to establish

the conclusion of Hypothesis H′. We can assume that F is nonconstant and
that Cont(F ) = 1. Hence, we may write F =

∏k
i=1 Fi(T )

ei , where each
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Fi(T ) is nonconstant, irreducible over Z, and possesses a positive leading
coefficient. Let D = gcdn∈Z{F (n)}; we must prove that

lim inf
n→∞

Ω(F (n)) = Ω(D) + r, where r :=
k∑
i=1

ei.

It is easy to prove that Ω(F (n)) ≥ Ω(D) + r for all large n. Indeed,
since D |F (n) =

∏k
i=1 Fi(n)

ei , there is a factorization D =
∏k
i=1Di where

each Di |Fi(n)ei . Then with D′i :=
∏
p p
d(ordpDi)/eie, we have D′i |Fi(n) for

all 1 ≤ i ≤ n, and so

F (n) =
( k∏
i=1

D′eii

)( k∏
i=1

(Fi(n)/D
′
i)
ei
)
.

The first product contributes at least Ω(D) prime factors, since D =
∏
Di

divides
∏
D′eii , and the second product contributes at least

∑k
i=1 ei = r

primes (for large n). This gives the desired lower bound on Ω(F (n)).
Turning to the upper bound, let S be the set of primes p for which

either p |D or p ≤ degF . For each p ∈ S, choose an integer np so that
p1+ordp(D) - F (np). Choose n0 to satisfy the simultaneous congruences

n0 ≡ np mod p1+ordp(D) for all p ∈ S.

With M :=
∏
p∈S p

1+ordp(D), put F̃i(T ) = Fi(MT + n0), and set F̃ (T ) =

F (MT +n0), so that F̃ (T ) =
∏k
i=1 F̃i(T )

ei . Since D |M and D |F (n0), it is
clear that F̃ (T )/D ∈ Z[T ]. Moreover, F̃ (T )/D has no fixed prime divisor:
Indeed, gcd(F̃ (0)/D,M) = gcd(F (n0)/D,M) = 1 by construction, so that
no prime in S is a fixed divisor of F̃ (T ). Moreover, if p 6∈ S, then the
reduction of F̃ (T ) modulo p is nonzero and has degree ≤ degF < p, so that
again p is not a fixed divisor of F̃ (T )/D.

Since F̃ (T )/D has no fixed prime divisor, we have in particular

(2.1) D = Cont(F̃ ) =
k∏
i=1

Cont(F̃i)ei .

Let Gi(T ) := F̃i(T )/Cont(F̃i). Since each Fi is irreducible over Q, so is
each Gi. In Z[T ], we have (referring back to (2.1))

G(T ) :=
k∏
i=1

Gi(T )
∣∣∣ k∏
i=1

Gi(T )
ei = F̃ (T )/D;

as F̃ (T )/D has no fixed prime divisor, neither does G(T ). So by Hypoth-
esis H, there are infinitely many n for which each Gi(n) is prime. For any
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such n, it is clear that

F (Mn+ n0) = F̃ (n) = D

k∏
i=1

Gi(n)
ei

has precisely Ω(D) +
∑

i ei = Ω(D) + r prime factors, as desired.

3. Maximal order

3.1. The lower bound. It is simple to prove that Ω(F (n)) is occa-
sionally at least as large as predicted here: Fix 1 ≤ i ≤ r so that the ratio
ei/log `i is maximal. Write e = ei and ` = `i (to ease notation). For each
natural number j, choose nj ∈ [`j , 2`j) so that Fi(nj) ≡ 0 mod `j . Then the
nj tend to infinity and

Ω(F (nj)) ≥ e ·Ω(Fi(nj)) ≥ e · j ≥ e
log(nj/2)

log `
.

This shows that the lim sup considered in Theorem 1 is at least as large as
predicted.

3.2. The upper bound. To see that the lim sup in Theorem 1 is no
larger than predicted, we use a version of Schmidt’s subspace theorem due
to Schlickewei. First, some terminology. For a nonzero rational number x,
its infinite valuation is |x|∞ = |x|. Finite valuations correspond to prime
numbers p, and for such a prime, the p-adic valuation of x is taken to be
|x|p = p− ordp(x). Put MQ = {p : p prime} ∪ {∞}. Such valuations are
sometimes called normalized because of the product formula∏

v∈MQ

|x|v = 1 for all x ∈ Q∗.

Often one extends these valuations to all algebraic numbers. A canonical
way to do this is the following. Let K be an algebraic number field of degree
d over Q. The infinite valuations v of K are in correspondence with the
embeddings σ : K ↪→ C. If σ is real and x ∈ K, then |x|v = |σ(x)|1/d,
whereas if σ is complex nonreal then |x|v = |σ(x)|2/d. Finite valuations of K
are in correspondence with prime ideals π in OK. More precisely, suppose π
is a prime ideal in K of norm NK/Q(π) = pf . Then |x|v = p−cvordπ(x), where
cv = f/d, and ordπ(x) is the exponent at which the prime ideal π appears
in the factorization of the fractional ideal xOK generated by x inside K. Put
MK for the set of all valuations of K. Then one checks easily that∏

v∈MK

|x|v = 1 for all x ∈ K∗.

Let m ≥ 2 be given, and let S be a finite subset of MK containing all
the infinite valuations. Assume that for each v ∈ S we are given a system
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of m linearly independent linear forms Lv,i(x) in x = (x1, . . . , xm) with
coefficients in K. Using x(j)i (1 ≤ j ≤ d) for the conjugates of xi, put

‖x‖ := max
1≤i≤m
1≤j≤d

|x(j)i |.

Then the p-adic subspace theorem of Schlickewei [Sch77] (in the formulation
of [Sch91, Theorem 1D, p. 177]) says the following:

Theorem A. For each ε > 0, the solutions x ∈ OmK of the inequality∏
v∈S

m∏
i=1

|Lv,i(x)|v < ‖x‖−ε

lie in finitely many proper subspaces of Km.

The proof of the upper-bound assertion of Theorem 1 is based on the
following lemma:

Lemma 1. Let F (T ) ∈ Z[T ] be a polynomial of degree d ≥ 1 with only
simple roots. Fix Z > 0. For each natural number n for which F (n) 6= 0,
write F (n) = UV , where U is the Z-smooth part of F . Given ε > 0, we have
U > n1+ε for only finitely many n.

Proof. We can assume that d ≥ 2, otherwise there is nothing to prove.
We can also assume that F is monic. To see this, write cd for the leading
coefficient of F . Replacing F with −F if necessary, we can assume that
cd > 0. Then cd−1d F (T ) = G(cdT ) for some monic G of the same degree as
F (still with only simple roots), and the lemma holds for F provided that it
holds for G.

Let K be the splitting field of F and write

F (T ) = (T − θ1) · · · (T − θd).
Let N be the set of n such that F (n) = UV , with U > n1+ε and Z-smooth.
Since F (T ) is monic, the numbers θ1, . . . , θd are all in OK. Put m = 2,
x = (x1, x2). We shall take x1 = n − θ1 and x2 = n − θ2. We take S to be
the finite subset ofMK consisting of the following valuations:

(i) all the infinite valuations of K;
(ii) all the finite valuations of K sitting above some prime number p ≤ Z.
To define the forms Lv,i(x) for v ∈ S and i = 1, 2, it is helpful to introduce

the notion of type. Let P be the set of finite valuations of S. To each n ∈ N
we associate a type function f : P → {1, . . . , d} as follows: Let π ∈ P. For
each 1 ≤ i ≤ d, write

(n− θi)OK = πeiIi,π,

where Ii,π is an ideal of OK coprime to π and ei is a nonnegative integer. We
define f(π) ∈ {1, . . . , d} as that index i for which ei is as large as possible,
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choosing arbitrarily among the possibilities if more than one such i exists.
The number of possible types is finite. So to show that N is finite, it suffices
to show that there are only finitely many n having a fixed type f .

We are now ready to define the forms Lv,i(x). If v is infinite, we take
Lv,1(x) = x1 and Lv,2(x) = x1 − x2. It is clear that they are independent.
Suppose θ1 has degree d1 | d, with minimal polynomial F1 |F . For large n,∏

v infinite

Lv,i(x) =
∏

v infinite

|n− θ1|v
∏

v infinite

|θ1 − θ2|(3.1)

� NK/Q(n− θ1)1/d = F1(n)
1/d1 � n.

(The implied constants may depend on F .) In order to proceed to the finite
valuations, observe first that for i = 3, . . . , d, we have n− θi = cix1 + dix2,
where (ci, di) is the unique solution of the system ci+ di = 1 and ciθ1+ diθ2
= θi. Observe that di 6= 0, as otherwise ci = 1 and θ1 = ciθ1 = θi. If
now v ∈ P corresponds to a prime ideal π, then we take Lv,1(x) = x1 and
Lv,2(x) = x2 if f(π) ∈ {1, 2}, and Lv,1(x) = x1 and Lv,2 = cix1 + dix2 if
f(π) = i ≥ 3. In all cases, Lv,1(x) and Lv,2(x) are independent. It remains
to compute |Lv,i(x)|v for i = 1, 2. Continuing to denote f(π) by i, note that
if j 6= i, then ej ≤ ei, so that πej divides n − θj and n − θi. Thus, it also
divides θj − θi. Hence,

π
∑
j 6=i ej |

∏
j 6=i

(θj − θi) |∆(F ),

where ∆(F ) is the discriminant of F . This shows immediately that

|Lv,1(x)|v|Lv,2(x)|v ≤ |n− θi|v ≤
|f(n)|v
|∆(F )|v

.

Hence,

(3.2)
∏
v∈S
v finite

|Lv,1(x)|v|Lv,2(x)|v ≤
∏
v∈S
v finite

|f(n)|v
|∆(F )|v

≤ |∆(F )|
U

� 1

U
.

Thus, putting together (3.1) and (3.2), we have∏
v∈S

2∏
i=1

|Lv,i(x)|v �
n

U
� 1

nε
� ‖x‖−ε.

By Theorem A, all solutions x are contained in finitely many subspaces
of K2. In other words, there is a positive integer K and there are K pairs
(C1, D1), . . . , (CK , DK) of numbers in K, not both zero, such that each such
solution x satisfies Cix1 + Dix2 = 0 for some 1 ≤ i ≤ K. Take an i with
1 ≤ i ≤ K. If Ci = 0, then Di 6= 0; thus, x2 = 0 and n = θ2. Similarly,
if Di = 0, then x1 = 0 and n = θ1. If neither Ci nor Di vanishes, then



26 F. Luca and P. Pollack

(n−θ1)/(n−θ2) = x1/x2 = −Di/Ci, which uniquely determines n. So there
are only finitely many possibilities for n, as desired.

Completion of the proof of Theorem 1. It remains to prove the upper
bound for the lim sup. For an interval I, let us write ΩI(n) :=

∑
pk|n, p∈I 1

for the number of prime power divisors pk of n with p ∈ I.
Fix a large real number Z. Write F in the form (1.1). By the choice of `i,

each prime < `i divides Fi(n) to a bounded power. Hence, for large n,
Ω(F (n)) = Ω(Cont(F ))(3.3)

+

k∑
i=1

ei(Ω[1,`i)(Fi(n)) +Ω[`i,Z](Fi(n)) +Ω(Z,∞)(Fi(n)))

= O(log n/logZ) +
k∑
i=1

ei ·Ω[`i,Z](Fi(n)).

(As before we suppress the dependence of the implied constants on F .) Let
Ui denote the Z-smooth part of Fi(n), so that

(3.4) Ω[`i,Z](Fi(n)) ≤
logUi
log `i

.

We now apply Lemma 1 with G(T ) :=
∏k
i=1 Fi(T ). Writing G(n) = UV ,

where U is the Z-smooth part of G(n), we find that U ≤ n1+o(1) as n→∞,
and so

(3.5)
k∑
i=1

logUi
log n

≤ 1 + o(1).

From (3.3)–(3.5), and the definition of C(F ) given in the theorem statement,

Ω(F (n)) ≤ log n

k∑
i=1

logUi
log n

ei
log `i

+O(log n/logZ)

≤ (C(F ) + o(1)) log n+O(log n/logZ).

Dividing by log n and letting n → ∞ shows that lim supΩ(F (n))/log n ≤
C(F ) + O(1/logZ). Since Z can be taken arbitrarily large, the result fol-
lows.

Acknowledgments. The authors thank Carl Pomerance, Enrique Tre-
viño, and the referee for suggestions which improved the quality of the
manuscript. This research was conducted while P. P. was supported by NSF
award DMS-0802970.

References

[Bha00] M. Bhargava, The factorial function and generalizations, Amer. Math.
Monthly 107 (2000), 783–799.

http://dx.doi.org/10.2307/2695734


How many primes can divide the values of a polynomial? 27

[D12] A. Dąbrowski, On the Brocard–Ramanujan problem and generalizations, Col-
loq. Math. 126 (2012), 105–110.

[EK40] P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive
number theoretic functions, Amer. J. Math. 62 (1940), 738–742.

[EN81] P. Erdős et J.-L. Nicolas, Sur la fonction: nombre de facteurs premiers de N ,
Enseign. Math. 27 (1981), 3–27.

[Hal56] H. Halberstam, On the distribution of additive number-theoretic functions. II,
J. London Math. Soc. 31 (1956), 1–14.

[HR17] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a
number n, Quart. J. Math. 48 (1917), 76–92.

[Hen96] K. Hensel, Ueber den grössten gemeinsamen Theiler aller Zahlen, welche
durch eine ganze Function von n Veränderlichen darstellbar sind, J. Reine
Angew. Math. 116 (1896), 350–356.

[LN11] F. Luca and F. Najman, On the largest prime factor of x2 − 1, Math. Comp.
80 (2011), 429–435.

[NPP74] C. Nelson, D. E. Penney, and C. Pomerance, 714 and 715, J. Rec. Math. 7
(1974), 87–89.

[Pol15] G. Pólya, Ueber ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40
(1915), 1–16.

[Sch61] A. Schinzel, Remarks on the paper “Sur certaines hypothèses concernant les
nombres premiers”, Acta Arith. 7 (1961/1962), 1–8.

[SS58] A. Schinzel et W. Sierpiński, Sur certaines hypothèses concernant les nombres
premiers, Acta Arith. 4 (1958), 185–208; Erratum, ibid. 5 (1958), 259.

[Sch77] H. P. Schlickewei, The p-adic Thue–Siegel–Roth–Schmidt theorem, Arch.
Math. (Basel) 29 (1977), 267–270.

[Sch91] W. M. Schmidt, Diophantine Approximations and Diophantine Equations,
Lecture Notes in Math. 1467, Springer, Berlin, 1991.

[Sch12] I. Schur, Ueber die Existenz unendlich vieler Primzahlen in einigen speziellen
arithmetischen Progressionen, Sitzungsber. Berlin. Math. Ges. 11 (1912),
40–50.

Florian Luca
The John Knopfmacher Centre for
Applicable Analysis and Number Theory
University of the Witwatersrand
P.O. Wits 2050
Johannesburg, South Africa

Current address:
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089
Morelia, Michoacán, México
E-mail: fluca@matmor.unam.mx

Paul Pollack
Department of Mathematics

University of British Columbia
1984 Mathematics Road

Vancouver, British Columbia V6T 1Z2, Canada
E-mail: pollack@math.ubc.ca

Received on 18.6.2011
and in revised form on 16.12.2011 (6735)

http://dx.doi.org/10.4064/cm126-1-7
http://dx.doi.org/10.2307/2371483
http://dx.doi.org/10.1112/jlms/s1-31.1.1
http://dx.doi.org/10.1090/S0025-5718-2010-02381-6
http://dx.doi.org/10.1007/BF03014836
http://dx.doi.org/10.1007/BF01220404



	Introduction
	Minimal order: The equivalence of Hypotheses H and H'
	Maximal order
	The lower bound
	The upper bound


