ACTA ARITHMETICA
156.1 (2012)

Cesaro means related to the square of the divisor function
by

GINTAUTAS BAREIKIS and ALGIRDAS MACIULIS (Vilnius)

1. Introduction. In what follows, p stands for a prime number. We use
the notations f = O(g) and f < ¢ in their usual meaning. When implied
constants depend upon some parameters, we sometimes indicate that by a
subscript.

Let 7(n,u) be the number of natural divisors of n which do not exceed
u >0, and 7(n) := 7(n,n).

Following J.-M. Deshouillers, F. Dress and G. Tenenbaum [3] for each
n > 2 we define a random variable &, by

Ind 1
P n—3_ _ = 9
<5 In n) T(n)
as d runs through the set of all 7(n) divisors of n. In addition we may assume

that P(§1 = 0) = 1. Then the distribution function of the variable &, is

7(n,nt)
T(n) ’

The sequence {F},} does not converge pointwise on [0, 1]. However the aver-

ages
1
— Fo(t
=RA0)

n<x

Fp(t) := P(&, <t) = 0<t<1l,neN.

uniformly converge for ¢ € [0,1] as z — oo. Namely in [3] (see also [8,
Section I1.6.2]) the following result was obtained.

THEOREM DDT. Uniformly in t € [0,1],

1 2
— Z F,(t) = ZarcsinV/t + O(
x ™

n<x

1
, X — Q.
\/lnac)

2010 Mathematics Subject Classification: Primary 11N60; Secondary 11K65.
Key words and phrases: natural divisor, multiplicative function, distribution function.

DOI: 10.4064/aal56-1-7 [83] © Instytut Matematyczny PAN, 2012



84 G. Bareikis and A. Magciulis

Some generalizations of the DDT theorem were studied in [I, 2]. In the
present paper we deal with the means of the squares

Sut) = - S0 R0,

and give for S, (¢) an asymptotic formula similar to the DDT theorem.

2. Results. For 0 <t < 1/2, define

2 § dw dv du

10:= mmy) o Vo e

t—w w

This integral may be evaluated using the representation

B 8 = (2k)!
V2r I2(1/4) & (R)24E(4k + 1)‘]"“@)’

(2.1) 1(t)
where

Je(t) = V41 — ) 7R3 .

O ey o+

Moreover, integrating Ji(t) by parts yields a simple iteration formula

4 ;o\ 1/
Je(t) = 57— (1—75> —Jo-1(t), kEN,

with the expression of Jy(t) in terms of the distribution function of the beta
law, Jo(t) = V27 B(t; 3/4,1/4).
The main result of this paper is

THEOREM 2.1. Uniformly in 0 <t <1, we have

(22) 5.0 = Q) + 05—

as r — oo. Here
a [(t) if t€ [0, 1/2]’
Q(t) = {[(1_t)+4arcsin\/f—1 if te(1/2,1].

™

Note that the DDT theorem and remain true if F,(t) is replaced
by X.(n,t) := 7(n,2')/7(n). Following E. Manstavic¢ius, N. M. Timofeev
and G. Tenenbaum [5, [6, [7, 9], X,(n,t) can be considered as the sequence of
arithmetical stochastic processes, provided a positive integer n < z is taken
with probability v,({n}) = 1/[z].

G. Tenenbaum [9] partly described the limit arithmetical process show-
ing that the traces of this process are continuous. In addition he proved



Cesaro means related to the square of the divisor function 85

a general formula for the moments of X,(n,t) which approach the corre-
sponding moments of the limit process. However the expression of these
limit moments in simple form is an interesting but still open problem.

The limits in the DDT theorem and can be understood as the
asymptotic first and second moments of X,(n,t) respectively and give a
partial solution to this problem.

3. Lemmas and preliminaries. As usual, let {(s), s = o +iu € C, be
the Riemann zeta function. The following lemma is a version of Theorem 3
in [8, Section II.5.3].

LEMMA 3.1 ([2]). Let z€ C, M >0,0<p <1, and

be such that the function G,(s): = F(s)("*(s) can be continued as a holo-
morphic function for o > 1 —c/log(Ju| +2) and in this domain satisfies the
bound

|G=(8)] < M(1 + [ul])”.
Then for A >0, |z| < A and x > 2, we have

S = e (T Olgs))

n<x

where the implied constant depends at most on ¢, p, and A.

To estimate the mean values of positive multiplicative functions we will
use the following classical result.

LEMMA 3.2 (M]). Let g(m) be a multiplicative function with 0 < g(p') <
C for all prime numbers p and I € N with some C > 0. Then

> g9lm) <o - ep{zg }

m<x p<zx
> 1 o ex p{zg .
m<x p<lz

The following result will be useful:

LEMMA 3.3. Let g : N — R be a multiplicative function with 0 < g(m)
<1 for allm € N and let oy :=logy(9/5), 2 > 0. Set

(X5 (-5)
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If 0<g(2%)<3/4 for allk €N, and
(3.1) Z |g — ”' <1,

then for all x > 1 and d € N,

(3.2) =Y g(nd) x(ex) (?g((j)) * O<1§((2)>>'

n<x

Here g and § are the multiplicative functions defined by

m=0 pm m=0 pm
Ry 9(p™) g(p™"™")
g(p)_<1_z meO Z pmcro ) keN
m=1 m=0

Moreover, the estimates

(33) 35") = ") +o<;>, g(0*) = 9(v") +O<p¢1m>

hold uniformly for any prime p and integer k > 0.
Proof. For Res =0 > 1 define

Gau(s) 1= () 0 20 — (a9 1(s),
n=1

g(d, H <ZQ ::k )( - 9(pm)>l’

PHld S m=0

) =1;I(m§ o) (5)

Taking exponent and logarithm and then expanding the logarithms we get

— 1
]
P P
Assume that o > 0g. Then |g(d, s)| < |g(d)| and according to we have
|L(s)| < 1. Thus G, (s) has an analytic continuation into the region o > oy
and in this domain satisfies the bound

Ga(s)] < g(d).
On the other hand it is easily verified that

T T 1
3.4 = 1+0(—1), > 2.
(3:4) 'z  In' ez ( * <lnaz>> v=

where
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Since g(d, 1) = §(d) and L(1) = L, we see that Lemma [3.1] implies (3.2)) for
x>2. If1 <z <2, then
M(z,d) = g(d) < g(d).

This completes the proof of (3.2]) for all x > 1.
The relations (3.3) follow directly from the definitions, having in mind

that
[e.e]
)

m=1

m
") _ 15
me'Q _16

Q

for any prime p. m
Set go(m) := 772(m) and define the multiplicative functions
gi(m) := gi—1(m),  hiy(m) :=gi—1(m), i=1,2.

We note that
B d(1/p, 2,k +1)

k
gl<p )_ @(1/1),2,1) )
X B(1/p,2,m+1)\ P D(1/p, 2, k+m+1
g2(pk):<2 (/ _ )) Z (/ _ )’
m=0 p m=0 p
where ‘
xl
@(.’I},l,a) = Z m

=0
is the function usually referred to as Lerch transcendent. Lemma when
used with the functions go(m) and g;(m) implies the following corollary.

COROLLARY 3.4. For ©>1,de€ N andi€ {0,1} we have

T Ligi+1(d hiv1(d
(35) Mz, d):=> gi(nd) = 1n3/4(6x)< [’gd—/li)) +O< 1n+(legc))>>’

n<x

where

The estimates

1 1 1 1
(3.6)  git1(p") = k+1)2 + O(p), hip1(p") = [CEE + O(pao>

hold uniformly for any prime p and integer k > 0.

Proof. We have go(p*) = 1/(k + 1)? for any prime p and k € N. There-
fore go(m) satisfies the conditions of Lemma [3.3| with 3 = 1/4, and conse-

quently (3.5) and (3.6)) hold with i = 0.
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Further, since
1 go(p®) 90(p%) 90(p) o) 7
ha (p® - 1= _
1) < (4 T 0 T s — 1) 900 00(200 1))
it can be easily checked that

1841

k < k )

g1(P7) < M(P") < 567

Hence we can apply Lemma to the multiplicative function g;(m) and
obtain the desired estimates with i = 1. =

Let us define the strongly multiplicative functions

92(p -1 1\ /4
H < ) hg(n) 2:H (1+]T'0> .
pln > m=0 pin

LEMMA 3.5. Let xo(n,l) be the principal character modulo I. Then for
each x > 1 we have

T )L hs(l
(3.7) My(z,1) 292 n)xo(n,1) 3/ (ex) (?((1)/5 Jro(ln?éi)))7

n<zx

n<z><>

Proof. The argument goes along the same lines as in the proof of Lem-
ma [3.3] For Res = o > 1 the corresponding generating function can be
written in the form

G(l,S) — 1/4 Z 92 XO m l)
1

LD e

(pl)=1
From (3.6) it follows that G(I,s) can be continued as a holomorphic func-
tion for 0 > ¢ and in this domain satisfies the bound |G(l,s)| < hs(l).
Lemma now yields

x G(l,1) hs(1)
M. =
2,0 = 57 (F(1/4) * O( In z
for © > 2. Since G(I,1) = g3(l) L2, from this and (3.4]) we obtain (3.7)). =
We will need some estimates of the integral
f dv
(1+v)*(y —v)?

where

(3.8) I(T,y,a,B) :=
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LEMMA 3.6. Assume that «, 8 are positive numbers and o # 1, 5 # 1.
Ify>T+12>1, then
(39) I(T.y,0,8) <apy *|(T+1)'" =1 +y |y -T)"" -y
Proof. In case T' < y/2 we have

—B
I(T,y,a,8) < <y> dv

2 (1+wv)e’

Ot

If T > y/2, then
I(T,y,a,B) = 1(y/2,y,0, 8) + (T, y,a, 8) — I(y/2,y,, )

s dv o dv
< (y/2) ’BSW‘F(YJ/Q) (y—0)f’

0
and (3.9) follows. =

For K > eN > e and 8 > 0 we set

O

am
S = —\  ap, >0.
IS%;lenﬁ(f(/m)

This sum may be evaluated in terms of the integral (3.8 provided some
information about the behaviour of the sum

M(u) := Z am,

m<u
is given. Let us denote I(«, 3) := I(In N,In K, o, 3) for short.
LEMMA 3.7. Assume that

_ Au < Bu

In®(ew) | ~ In*"(ew)
for some o >0 and A, B > 0. Then
IS—A-I(a,8)] <AQ+InN)*In P K
(InK —egln N)=

(14 InN)atl
Here eg =1 if 8> 1, and eg = 0 otherwise.

(3.10) M (u)

+ B + («¢A + Bmax(1, §))I(a+1,5).

Proof. With y := In K integration by parts yields

In N —v
a
S = m = dM(eU)
K;SN m(y —Inm)? OS_ (y—v)P
In N

_MN) a8 e M) (BN
= = (y—InN) +§ o) <1 y_v>d.
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In view of (3.10]) this implies
(3.11) |S—A-I(a,B)] < AlIn"*(eN)(y — lnN)_B — BI(a, B+ 1)]

InN

B(y—InN)=# d
Bly —InN)~7 - B | |1- b ! .
In®"(eN) 0 y—v|(1+v)*H(y —v)’
We note that y —v > 1 and
In N
_ dv (y—InN)B —yB
I H)>{1+InN)"® =
(0,8+1) = (1+IN) S (y — v)ftl Bl +1InN)e

0

Now the desired inequality follows from (3.11)) by considering the cases 5 < 1
and 6> 1. =

When (3.10) holds with A = 0, the inequality (3.11)) implies the following,

estimate.

COROLLARY 3.8. If for some a, B > 0,

Bu
M(u) <
(u) < In®(eu)’
then
(InK —eglnN)=F#
<B 1,8)1 .
s < (TR + max(1,0) 10, )
Let us denote, for « > 0 and ¢ € (0,1/2],
t w
dw du
t) := .
vlat) S (a+w)3/4 (o +t —w)3/4 S (@ +u)*a+1—t—u)d/H

0 0

The next lemma yields the estimate of ¥ («,t) for small a.
LEMMA 3.9. Uniformly for a« >0 and t € (0,1/2],
Ya,t) = (0,) + Ot~ 2/

Moreover

AI2(1/4) Y t\F
12 == T ) —
312) W00 =20 S n )
where o)

b = (2k): k=0,1,....

(k!)24k(4k + 1)’
Proof. To evaluate the inner integral in 1) we will use the hypergeometric
function. For |z| < 1 we have
1 00
Sx*3/4(1 —x2) " dr = Z crz”,
0 k=0
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where

 PG3/A+RI(1/A+k)  AD3/4+k)
® T TTGB/AT(B/A+ k)KL T(3/4)(4k + 1)k

Standard transformations yield

du (wira_cf) du
(4 u)34a+1—t—u)d/4 0 h w3/t (20 + 1 —t — u)3/4

Ot g

= ot 1=y oS @) -t
o _
Thus

ot 1— 3% o~ ceti(ant)
(3.13) (20 +1—t)34p(a,t) = kzo(%‘“_t)

where

Ye(ant) =\ (@ + )" 2 (a+t—w) 3 rdw, k=01,....

O ey

The integral in (3.13)) can be estimated using the beta function:

; dw

()é+U] 3/4 ()é+t— )3/4 S(S)w3/4(t_w)3/4

=t Y2B(1/4,1/4).

O ey

Moreover, for k > 1,

k
4 1 4~ 1/4
= 1—— ) < .
* 4k+1H< 4m>4k+1

Therefore (3.13]) becomes

t
3.14 t) = (20 +1—t) 3/ § _ar(@sl) 14172
Let us estimate the distance ¥ (v, t) — d}k((), t). We have

t
(3.15) ¥ (0,1) = | b2 (¢ — w) ™ dw = "Bk +1/2,1/4).
0
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If £ > 2a, then

Yo t) = ¥e(0,8) = | (a+ w12 ((a +t —w) ™ — (£ — w)™¥/*) dw
0

+\ (¢t —w) 4 (a4 w)F V2 — b2 dw

O e

= ¢k1(a7 t) + wk2(aa t)‘
Having in mind that ¢ > 2, we can estimate

t—a t
Y1 (o, t) < S (a+w)* V2t —w) 7 dw + S (w+ o) V2t —w) = dw
0 t—a

< (a+ t)k—1/2a1/4.
Similarly we obtain, for k > 1,
Yoo, t) < (a+ )12/,

If £ =0, then

¢
w2t —w) " dw + o S w32 (t —w) 3 dw < 724,

«

1/102 (Oé, t) <

O e O

Thus for t > 2a and k > 0 we have
Ur(ont) = i (0,) + O((a + ) 1/2al /).
If t <2a, then it follows from (3.15)) that
(e, t) — 10, 8)] < Wl t) + ¥r(0,1) < (a + 1) 4 =14
since ¢0(O‘7 t) < wO(Oa t)'
Substituting these estimates of 1% (v, t) into (3.14) we get

crr(0,t)

~1/2 1/4
Ba+1—1)F —I—O(t a ).

(3.16)  Y(a,t) = (20 +1—1)731 Z

According to definition of ¢, it follows from (3.15]) that

AL+ DD/ g AP/ s
T(3/4)(4k + 1)k! NeT

Hence, taking o = 0 in (3.16|), we obtain (3.12)).

Finally, since

ckwk (07 t) =

1
bk<

T Wk+1D)VEFT
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the estimate (3.16|) yields, for a > 0,

o [ bpt"/* byth—1/4 —1/2_1/4
[P(a,t) —(0,1)] < Z( EFA T (204 1 — {)k+3/4 Tt a
/ / t )"
1/40q _ \—T7/4
< at V41 —1) > (k+1)bk<1_t>
k<1l/a
4l — )3 Z bk< > L1214
k>1/a

<t Y4 min(1, va) + 2t < 712014,

This completes the proof of Lemma [3.9] =

4. Proof of Theorem Our proof starts with the observation that

2 _ o . 2 4;&7
R0 = (1= Faf1 =) + O o5 ).

for 0 < ¢ < 1. Hence Lemma [3.2] implies

2 1
Sx(t):1—ngn(1—t)+5x(1—t)+o<m>.

Having in mind that arcsin /1 — ¢ = /2 — arcsin v/¢, by the DDT theorem
we have

4 . 1
(4.1) Sz (t) :Sm(l—t)+Warcsmx/i—l—l—O(\/m),

uniformly for ¢ € [0, 1].
Therefore from now on we may consider S, (¢) with 0 <¢ < 1/2 only. It
is clear that

%(n, ! 72(n,zt) — 72(n,nt
(4.2) sx(t):iz(’)_lz (n,2") — 7(n,n")

72(n) T 72(n)

n<x n<x

As in the proof of the DDT theorem, the last sum in (4.2)) can be estimated

by t
72 (n, z) nn):()(ﬂln?)'

n<x

Furthermore we have

1 72(n, 1 1
(4.3) QEZT(Q(H))—T(x,t)—xZ > o

n<x
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where

Y Y YOS Y

l<a:t m<l  k<z!/ln<z/klm
(m,)=1

For 0 <t <1/2, Corollary with ¢ = 0 and Lemma imply

T gl(k')+h1(k)
S k< e S

k<atn<a/k
x g1(p hi(p x
< lng/4x<exp<p§t ; )> —i—exp(pgt 25 ))> € =
Substituting the above estimate into , we conclude from that
(4.4) Sy (t) = T(z,t) + O(1/Vinz).
In order to evaluate the inner sum in 7'(x,t) we apply Corollary Then
(4.5) T(z,t) =Ti(x,t) + O(Ryi(x,t)),

where

2L (kl
Ti(z,t) = 0 Z Z Z kill?,/zlmze’

l<xt m<l k< t/1 klm
(m =
hi(klm)
Z Z Z kln 1 1.7/4 e :Ee :
1<at m<l Ly

(m, )=

Let us estimate Rj(x,t). By Corollary the multiplicative function
hi(n) meets the conditions of Lemma which implies the inequality

> ha(kim) < / hi(lm), u>1,
k<u In u)

with a multiplicative function ﬁl(n) satisfying

~ 1 1
4.6 h(pF)= ——— + 0 — ).
o =G <p>
Hence, Corollary [3.8] and Lemma, [3.6] yield
> hy (klm)
1.1.7/4 ze
k<zt/l k™ klm
< hy(lm)( I ln—tl cr 31 +1n—3/4€7‘%t 1n—7/4&1_t
! 17 Im’ 474 [ m
sper”

K iLl(lm) In~
m
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Therefore

h(l) — ha(m) | g9 ex' ™
Rl(x,t)<<z ] Z = In -

<zt m<l

The estimate (4.6) and Lemma imply

h u
Z hi(m << exp(Z 1;]))) < m.

m<u p<u
Then by repeated application of Corollary and Lemma [3.6] we deduce
1 ill(l) —~1/2 exl_t 1
4.7 Ry(z,t =22«
(4.7) 1@, )<<1n3/4$l<§:z l t l <<1na;
<z

Next we have to evaluate Tj(x,t). Corollary together with Lem-

mas [3.7] and [3.6] yiels

(4.8) Ty (x,t) = To(z,t) + O(Ra(z,t)),
where
2 Lol g2(1 ga2(m) xt er 3 3
Tl 1) F21/4l§:t T 7l )
(m, 1)=1
ha (1) ho(m), g4 ex!™?
Ro(x,t) := In=3/422
P P T

Rs(x,t) may be handled in much the same way as Ry (z,t). So we have

(4.9) Ro(z,t) < ! ZhQ(l)<< !

In'/? z [<at ! In'/4z

Now let us consider Ty(z,t). Interchanging summation and integration
in the inner sum, we have

n(mt/l)

2 LoLq g2(1 Vi(v)
Ty(x,t) = Z S 371 Vs
TP & ARG
where
g2(m)xo(m, 1) T 1y
mln3/4 S K:=—-e""
m<l

Lemmas 3.5H3.7 lead to the estimate

(L Y du h(l)
Vi) = F(1/4§ §) Tk — i © <1n33/4 K>
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Thus, setting

_ Z g2()gs ln(xx LI » h§l (1+u)"3/4du
l o @H+w)¥t o (In(ex/l) —u—v)3/4

<zt

we have

2LoL1Lo

B0 = T

Ts(xz,t) + O(R3(x, ),

where

In(xt/1)
Ry(z,t) < > gza)lh?’(l) |

<zt 0

dv < 1
(14+0)34Wm34* K~ Iz

The latter inequality follows from Lemma since g2(p)hs(p)

= 1/4+
O(p~9°). Combining these estimates with . {@.7), (.8) and (4.9)

we get

(4.10) Salt) = %T:s(w + O(mlhx)

Now we have to evaluate T5(z, t). It may be easily checked that the multi-
plicative function ga4(m) := g2(m)gs(m) satisfies the conditions of Lemmal[3.3]
with sc = 1/4. Hence

(4.11) 294 3/4( )<F(L1j4) - O<ln(1eU)>)

n<u

(S5 (-3)

for any w > 1 and

Set
tlnz—w w
du
Flwr= § 3/4(5) 1+ )41+ Inz —u—v—w)d/A’
Then
(l) tlnzx
t) = gj R LUE 05 ¢ VF (w) dM(e").

Integrating the integral by parts and applying the estimate (4.11) we get

tlnx

tlnx ,
(412)  Ty(a,t) = —24 | (F(w)dw +o( { F(w)+|F(w)|dw>.
0 0

I'(1/4) 1+ w)3/4 (1+w)7/4
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By (3.8)) we have
tlhnz—w
Iw,1+Inz —v— 4,3/4
F(w) _ S (U), +nxr—v 3/1073/ 73/ )d’U
5 (1+0v)
and
tlnx—w
3 I(w,1+Inz—v—w,3/4,7/4)
F/ — ) ) )
(w) 4 §) (1+0)3/4 dv
I(the —w,1+Inzw—2w,3/4,3/4) I(w,1+(1—¢t)Inz,3/4,3/4)
(1 + w)3/4 (1+tnx — w)3/4
Estimating these integrals by means of Lemma we deduce that
1 1

F(w) + |F'(w)] < +

() +[F(w)] (14+w)34/1+Inz —2w In'/*z

and consequently the remainder term in 1' is O(lnfl/ 4 x). Hence, after
routine transformations of the integral in the main term, the relation (4.12)
can be rewritten as

Ts(xz,t) = F(ﬁ%w(aw’t) + O<ln1i4x>’

-1

where ag :=In""x and

~

dw t—w dv w du
Yot (S) (o +w)3/4 §) (o +v)3/4 (S) (e +u)(a+1—u—v—w))3*

From this and (4.10|) we obtain

 2LgLiLoLy 1
(4.13) S:(0) =~ lI/(ax,t)—FO(lnlMx).

In order to evaluate ¥(ay,t) we will use the estimates of its derivative con-
tained in Lemma [3.9 For any a > 0 we have ¥(«,0) = 0 and

WOD _ i), te 0172
By Lemma [3.9] this yields
t
(4.14) @ (0, t) = 2(0,8)] = |§ (0, u) = (0, w)) dul
0
; du 1
1/4( &% -
(4.15) < al (S] Ne < v

It remains to evaluate the coefficient in the main term of (4.13)). For brevity
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let us denote

=> @(1/p,2,k+1)p*
k=0

=> > o(1/p2,k+m+1)p "

k=0 m=0
By the definitions of the multiplicative functions gg, g1, g2, g4 we have

LoLaLaLs = [[#(1/p.2,1) Ki(p) .Kz(p)_<2_K1(p)><1_1>

?(1/p,2,1) Ki(p) Ks(p) p

= [[2K2(p) - Ki(0))(1 - 1/p).

Consider the sum Kj(p). Changing summation indices yields

o0

B(1/p,2,n+1) B(1/p,2,n+ 1
Ka(p) =Y (n+1) /ppn +Z n+1/2) /pp ).
n=0

Expanding the function @ and collecting terms in the latter sum we obtain
Ki(p) S 1 P
Ka(p) = — +m§o CESE n§0j<n+ /2) =5 (Eap) + ).

This gives LoL1LsLy = 1 and together with (4.13)—(4.14) completes the
proof of Theorem

Finally, since

2 ow0,t) 2
r4(1/4) ot  TI'Y(1/4)
the representation (2.1)) follows from ([3.12]).

I'(t) =

(0, 1),
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