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1. Introduction. Let S be a ring. For an ideal I of S, we denote by
RI the natural map GLn(S)→ GLn(S/I) and by GLn(S, I) its kernel. For
any subgroup G of GLn(S) we denote by G(I) the kernel of RI restricted
to G. The theorem of Minkowski mentioned in the title says that if S is the
ring of integers or the ring of 2-adic integers then any finite subgroup of
GLn(S, 2S) is conjugated in GLn(S) to diagonal matrices. For a local field
or a number field K we denote by OK the ring of integers of K. By µp∞ we
denote the group of roots of unity of p-power order. In the present note we
prove the following generalization of Minkowski’s result:

Theorem 1. Suppose that either K is a finite Galois extension of Q
which is unramified at all finite primes except p and such that there is a
unique prime ideal γ in K over p or K is a finite Galois extension of Qp
contained in Qp(µp∞) and γ is the maximal ideal of OK . Let G ⊆ GLn(OK)
be a finite Γ -stable subgroup, where Γ is the Galois group of K. Then G(γ)
can be conjugated to diagonal matrices by a matrix in GLn(Z) (in GLn(Zp)
in the local case).

The motivation behind this result came from our work on the following
conjecture of Y. Kitaoka:

Conjecture 1. Any finite subgroup G of GLn(Z) stable under the ac-
tion of Γ = Gal(Q/Q) is pointwise fixed by the commutator of Γ .

Here Z denotes the ring of all algebraic integers. Nevertheless, we think
that Theorem 1 is of independent interest.

The innocent looking conjecture of Kitaoka has rather deep consequences
in the theories of quadratic lattices, arithmetic groups and finite group
schemes. For more information about this intriguing conjecture we refer
the reader to [1], [3], [4], and [6].
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Theorem 1 in the global case can be derived from the results of Kitaoka
and Suzuki [2]. Their approach is quite different from ours and is based on
the theory of quadratic lattices. In particular, it does not extend in any
obvious way to the local situation. The present note provides in particular
a new, more direct proof of the results of [2].

As explained in [4] and [5], Theorem 1 is in fact a statement about finite
flat group schemes over Z (or Zp). Our technique can be interpreted as an
alternative way of studying such group schemes.

2. Fundamental construction. In this section we recall the technical
core of our approach, explained more carefully in [3].

Let S be a commutative domain and suppose that P is a finite abelian
group sitting in GLn(S) as a subgroup of diagonal matrices. In other words,
there are abelian characters χ1, . . . , χn of P with values in the multiplicative
group of S such that g = diag(χ1(g), . . . , χn(g)) for all g ∈ P . After con-
jugating by a permutation matrix (which has entries in the prime subring
of S) we can and will assume that there are integers k0 = 0 < k1 < . . . <
ks < ks+1 = n such that χi = χj iff kt < i, j ≤ kt+1 for some 0 ≤ t ≤ s.
We say in this case that P is in a strongly diagonal form. Set N(P ) for the
normalizer of P in GLn(S) and C(P ) for its centralizer.

Lemma 1. The centralizer C(P ) of P in GLn(S) equals GLk1−k0(S)×
. . .×GLks+1−ks(S). The group W (P ) = N(P )/C(P ) is finite.

The first part of the lemma is pretty obvious and we omit the proof. The
second part follows from the discussion below.

Note that P is stable under the action of the automorphism group Γ
of S. Thus both N(P ) and C(P ) are Γ -stable. We denote by Πn the group
of permutation matrices in GLn(S). If N ∈ N(P ) and φ is the automor-
phism of P induced by conjugation with N then clearly the map χ 7→ χ ◦ φ
permutes the characters χ1, . . . , χn. Let Σn be the symmetric group of de-
gree n. It is fairly obvious that we can choose a permutation π ∈ Σn such
that χi ◦ φ = χπ(i) and whenever i < j and χπ(i) = χπ(j) then π(i) < π(j).
Moreover, such a permutation is unique and if we denote by TN the corre-
sponding permutation matrix then NT−1

N ∈ C(P ) and N 7→ TN is a group
homomorphism σ : N(P )→ Πn ∩N(P ). We denote by ΠP the image of σ.
Thus we get the following

Lemma 2. The group N(P ) is a semidirect product of C(P ) and ΠP .
In particular , the induced action of Γ on W (P ) is trivial.

Note that N(P ) acts by conjugation on Mk1−k0(S)× . . .×Mks+1−ks(S),
which has a basis consisting of matrices with one entry equal to 1 and all
others being 0. With respect to this basis the action of N(P ) defines a



Generalization of a theorem of Minkowski 269

representation % of N(P ) in GLm2
1+...+m2

s+1
(S), where mi = ki − ki−1. It is

clear that this representation respects the action of Γ . The kernel of % is
equal to the product of the centers of Mki−ki−1(S). In particular, we get the
following

Lemma 3. Suppose that G is a finite, Γ -invariant subgroup of N(P ).
Then %(G) is a finite, Γ -invariant subgroup of GLm2

1+...+m2
s+1

(S) and the
map % : G → %(G) commutes with the action of Γ . For any ideal I of S
the map % takes G(I) into %(G)(I).

We will use the above observations when S is the ring of integers in a
finite Galois extension of Q or Qp and Γ is the Galois group.

3. Main result. Let K be an algebraic number field or a local field.
Let β be a prime ideal of the ring of integers OK of K lying over a rational
prime p. By f we denote the ramification index of β.

The following is a variant of a well known Minkowski’s lemma:

Minkowski’s Lemma. Any torsion element of GLn(OK , β) has p-
power order. If GLn(OK , βk) contains an element of order ps then k ≤
fp1−s/(p−1).

For a proof see [3], Proposition 1.

Lemma 4. Let p be a prime. Suppose that L ⊆ K are finite extensions
of Qp such that K/L is Galois and the residue field of K has p elements.
Denote by γ the maximal ideal of OK . Let G ⊆ GLn(OK) be a finite group
stable under the action of the Galois group Γ of K/L. Then for each m ≥ 1
and any τ ∈ Γ , τ acts on G(γm)/G(γm+1) by raising to the kth power ,
where k is an integer such that k ≡ (πm)τ/πm (mod γ) and π is a generator
of γ.

Proof. Let π be a generator of γ. Fix m > 0 and let g, h ∈ G(γm).
We can write g = 1 + πma, h = 1 + πmb for some a, b ∈ Mn(OK). Note
that gh ≡ 1 + πm(a + b) (modπm+1). This shows that the map R which
assigns to each g ∈ G(γm) the reduction mod γ of (g − I)/πm is a group
homomorphismR : G(γm)→Mn(OK/γ). The kernel of this homomorphism
equals G(γm+1). Let τ ∈ Γ . By our assumption OK/γ has p elements. In
particular, there is an integer k such that k ≡ (πm)τ/πm (mod γ). Thus
R(gτ ) = kR(g) for all g ∈ G(γm). Consequently, gτg−k ∈ G(γm+1). It
follows that τ acts on G(γm)/G(γm+1) by raising to the kth power.

Suppose now that K is a finite Galois extension of Q or Qp with Galois
group Γ . Let G ⊆ GLn(OK) be a finite Γ -stable group. Recall that for a
prime β of OK we defined G(β) as the kernel of Rβ (reduction mod β)
restricted to G. Let p be the rational prime in β. Thus G(β) is a normal
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p-subgroup of G by Minkowski’s Lemma. In the global case, define G(p)
to be the subgroup of G generated by the elements of all the groups G(β)
with β containing p. Clearly G(p) is a normal p-subgroup of G stable under
the action of Γ . By D(β), I(β) we denote the decomposition and inertia
subgroups of β respectively.

Lemma 5. Let K/Q be a finite Galois extension with Galois group Γ
and let G be a finite Γ -stable subgroup of GLn(OK). If β, β′ are primes
of OK lying over distinct rational primes p, p′ then I(β′) acts trivially
on G(β).

Proof. Since G(p) is a p-group and G(β′) is a p′-group, it follows that
G(p)∩G(β′) = 1. In particular, Rβ′ is injective on G(p) so the action of I(β′)
on G(p) is trivial. Since G(β) is contained in G(p), the lemma follows.

Proof of Theorem 1. Suppose that the theorem is false. Let b be the
order of a counterexample of minimal possible order (when both n and K
vary) and let n be minimal such that there is a counterexample G of order b
in GLn(OK) for some K. We can assume that Γ acts faithfully on G. Since γ
is the unique prime over p, we deduce that G(γ) is Γ -stable. Thus G = G(γ)
by minimality of G. By Minkowski’s Lemma the group G is a p-group. Let
F be the Frattini subgroup of G. Then F is a proper characteristic subgroup
of G, so it is Γ -stable. Let H be a maximal proper Γ -stable subgroup of G
containing F . By minimality of G we can assume that H consists of diagonal
matrices and is in a strongly diagonal form (after conjugation by an element
in GLn(Z) (or GLn(Zp)) if necessary).

Lemma 6. The group H is central in GLn(K), i.e. consists of scalar
matrices.

Proof. The group G is a subgroup of the normalizer of H in GLn. Thus
we can use the results of Section 2. In particular, any g ∈ G can be written as
cw, where w is a permutation matrix in the subgroup ΠH of the normalizer
of H and c centralizes H, i.e. cw = g ∈ GLn(OK). By reducing mod γ
we find that Rγ(c) = Rγ(w)−1 in GLn(OK/γ). Recall that the centralizer
of H consists of block-diagonal matrices. Thus Rγ(w) = Rγ(c)−1 is block-
diagonal. Since w is a permutation matrix, it is block-diagonal and therefore
centralizesH. Consequently, w = I by the very definition of ΠH . The upshot
is that G centralizes H.

If H is not central in GLn then the centralizer of H is a product of GLm’s
of dimensions smaller than n. Clearly, the image of G in at least one of these
GLm’s is a counterexample to Theorem 1, which contradicts the minimality
of n. Thus H is central in GLn.
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If the field K contains pth roots of unity then for any γ ∈ Γ we denote
by i(γ) the smallest positive integer such that γ acts on the pth roots of 1
by raising to the power i(γ). We call i the cyclotomic character of Γ .

Lemma 7. The group H is trivial.

Proof. Suppose that H is not trivial. Then K contains pth roots of 1.
Associated with H is the representation % discussed in Section 2. The image
%(G) ∈ GLn2(OK) is isomorphic to G/H. By Lemma 3 we know that %(G)
is a finite Γ -stable subgroup of GLn2(OK , γ). Moreover, the action of Γ on
%(G) = G/H is the same as the induced action from G. By minimality of
our counterexample we conclude that %(G) can be conjugated to diagonal
matrices by an element of GLn2(Z) (or GLn2(Zp)). In particular, Γ acts
on G/H via the cyclotomic character i (i.e. the action of τ on G/H is by
raising to a power i(τ)) and therefore every subgroup of G/H is Γ -stable.
Consequently, G/H is cyclic of order p (recall that H is maximal among
proper Γ -stable subgroups of G containing the Frattini subgroup). Since
H is central, G is abelian. Let g ∈ G be such that its image in G/H is a
generator (i.e. g 6∈ H). For τ ∈ Γ there is an integer i such that kτ = ki for
any k ∈ H. Clearly p | i(τ) − i. Thus gτ = gih for some h ∈ H (note that
the action of τ on G/H is by raising to power i). By raising both sides of
the last equality to pth power and using the fact that gp ∈ H we conclude
that hp = 1.

Suppose that gp 6= 1. Then gp generates a nontrivial subgroup C of
H and therefore h ∈ C (recall that H is cyclic and hp = 1). Thus the
subgroup generated by g is Γ -stable and therefore equals G by minimal-
ity of our counterexample. Let gp = ξI for some root of unity ξ. Pick
u ∈ L = K(ξ1/p) such that up = ξ−1. Note that the field L satisfies all
assumptions of Theorem 1. In the local case this is obvious. In the global
case, the inertia I of any prime of L over p surjects onto the Galois group of
K/Q (which coincides with the inertia subgroup of the unique prime of K
over p), i.e. Gal(L/K)I = Gal(L/Q). Since Gal(Q(u)/Q) is abelian, elements
of Gal(L/K) are central in Gal(L/Q) and therefore I is normal in Gal(L/Q).
Since Q has no unramified extensions, it follows that I = Gal(L/Q) and
there is a unique prime over p in L.

Let τ be an automorphism of L. There is an integer t such that gτ = gt.
Also, uτ = us for some integer s. Clearly we have ups = upt so that ut−s

is a pth root of 1. Now consider the element q = ug. Plainly, qp = 1. Also,
qτ = usgt = wqt for some pth root of unity w. Thus, the subgroup generated
by q and elements wI, w a pth root of 1, is Γ -stable and it is an elementary
abelian p-group of order p2. Note that g is conjugated to diagonal matrices
by an element of GLn(Z) (or GLn(Zp)) iff q is such. Thus we can assume
that G is elementary abelian of order p2 and H is cyclic of order p.
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Suppose now that gp = 1. Then elements of order p in H and g generate
an elementary abelian p-group of order p2 which is Γ -stable and it has to
equal G by minimality of our counterexample.

In any case, we can assume that G is elementary abelian of order p2. For
any τ ∈ Γ we have gτ = gi(τ)h(τ), where i is the cyclotomic character and
h(τ)∈H. An easy calculation shows that gτ1τ2 =gi(τ1)i(τ2)h(τ1)i(τ2)h(τ2)i(τ1).
Consequently, τ1τ2 and τ2τ1 act in the same way on G. Thus, we can assume
that Γ is abelian.

If p is odd this implies that Γ is cyclic. Let τ be a generator of Γ . Note
that gτ = gi(τ)h for some h ∈ H. An easy calculation shows that gτ

p−1
=

gh(p−1)i(τ)p−2
= gh1. If h 6= 1 then τ has order p(p − 1) and h1 = ξI for a

primitive pth root of unity ξ. It follows that K is the cyclotomic extension
of Q of degree p(p−1) (we use Kronecker–Weber theorem in the global case;
recall that p is the only ramified prime in K). Thus there is a primitive p2th
root of unity ζ in K such that ζτ

p−1
= ζξ−1. Note that (gζ)τ

p−1
= gζ, i.e. gζ

has entries inQp(ξp) (we pass to the completion at p in the global case). Thus
gζ is an element of order p2 in the congruence subgroup GLn(Zp[ξp], (1−ξp)),
which contradicts the inequality in Minkowski’s Lemma. Thus h = 1 and
therefore the subgroup generated by g is Γ -stable. This contradicts the fact
that G is a minimal counterexample and H is nontrivial.

If p = 2 then Γ acts trivially on H, so we can assume that no nontrivial
element of Γ fixes g. In other words, Γ is cyclic of order 2 and gτ = −g
for a generator τ of Γ . Note that in this case K equals Q[w], where w is
one of i,

√
2,
√
−2. In any case, wτ = −w and therefore wg ∈ GLn(Q2) (we

pass to the completion at 2 in the global case). If w = i, we find that wg ∈
GLn(Z2, 2) has order 4, which contradicts Minkowski’s Lemma. Otherwise,
wg has integral entries with nontrivial 2-adic valuation, so wg = 2A where A
has integral entries. But then (wg)2 = ±2I = 4A2, which is a contradiction
again. All this shows that H has to be trivial.

By Lemma 7, G is elementary abelian with no nontrivial proper Γ -stable
subgroups. For every r ≥ 1 the congruence subgroups G(γr) are Γ -stable.
Thus there is r > 0 such that G = G(γr) and G(γr+1) = 1. Observe that
the residue field OK/γ has p elements. In fact, this is clear in the local case.
In the global case, since γ is the only prime over p in K/Q, we infer that
Γ = D(γ) is the decomposition group of γ. Thus, the inertia subgroup I(γ)
is normal in Γ and its fixed field is an extensions of Q unramified at all finite
primes. Consequently, Γ = I(γ) and OK/γ has p elements. Note that Γ is
the Galois group of the local extension Kγ/Qp. By Lemma 4, Γ preserves
all subgroups of G. It follows that G is cyclic of order p. Therefore we can
assume that Γ is cyclic of order p − 1 and K = Q(ξp) (K = Qp(ξp) in the
local case). From the inequality in Minkowski’s Lemma we see that r = 1.
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Note that π = 1− ξp is a generator of γ and πτ/π = i(τ) (modπ). Thus Γ
acts on G via the cyclotomic character by Lemma 4.

Let g be a generator of G. For every pth root of unit ξ (including ξ = 1)
define Aξ = (

∑p−1
j=0 ξ

jgj)/p. Since the action on both ξ and g is via the
cyclotomic character, we find that Aξ is fixed by Γ , i.e. has entries in Q
(Qp in the local case). Note that Aξ = (π/p)

∑p−1
j=0 ξ

jbj , where π = 1 − ξp
and bj = (gj − I)/π ∈ Mn(OK). In particular, each entry of Aξ has p-adic
valuation at least 1/(p − 1) − 1 > −1. But these entries are in Q (Qp), so
they are in fact in Z (or Zp), i.e. Aξ ∈ Mn(Z) (Aξ ∈ Mn(Zp) in the local
case). Note now that Aξ are commuting idempotent matrices and their sum
equals the identity matrix. Also, gAξ = ξAξ. Let ei be the standard ba-
sis of Kn. The elements Aξei are eigenvectors for g and they generate Zn
(resp. Znp ). We can chose among them a basis of Zn (resp. Znp ), which shows
that g can be conjugated to diagonal matrix by an element of GLn(Z)
(GLn(Zp) in the local case). This contradicts our assumption that G is
a counterexample. The proof of Theorem 1 is now complete.

Question. Let K be a finite Galois extension of Qp which is totally
ramified and set γ for the maximal ideal of OK . Suppose that G is a finite
subgroup of GLn(OK , γ) stable under the action of the Galois group Γ
of K/Qp. Is it true that G can be conjugated to diagonal matrices by an
element of GLn(Zp)?

Most of the proof of Theorem 1 works in the local situation, but the
problem is that not all totally ramified extensions of Qp are contained in
Qp(µp∞). An affirmative answer to our question would be very useful for
attacking Conjecture 1.

4. Consequences. Let K/Q be a finite Galois extension and write OK
for the ring of integers in K. Consider a finite subgroup of GLn(OK) stable
under the action of Γ = Gal(K/Q). The group G acts in a natural way on
Zn ⊗OK ((ai,j)ei =

∑
ai,jej). After Y. Kitaoka, we say that G is of A-type

if there exists a decomposition Zn =
⊕k

i=1 Mi such that for every g ∈ G
there are a permutation π(g) of {1, . . . , k} and roots of unity εi(g) such that
εi(g)gMi = Mπ(g) for i = 1, . . . , k.

It is clear that groups of A-type are contained in GLn(Kab) (recall that
Kab is the maximal abelian subextension of K/Q). But being of A-type
means much more. It is not hard to see that if G has odd order then it
is of A-type iff it is conjugated by an element of GLn(Z) to a semidirect
product DB where D is normal in G and consists of diagonal matrices and
B ⊆ GLn(Z). When the order of G is even, the group theoretic properties
are a little harder to spell out. In this case, G can be conjugated over Z to
a subgroup of a semidirect product DB as above.
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The following theorem was proved by Kitaoka and Suzuki [2]:

Theorem 2. If Γ = Gal(K/Q) is nilpotent then any finite Γ -stable
subgroup of GLn(OK) is of A-type.

Below we give a new proof of this result, based on Theorem 1 and the
methods of Section 2. For this we need a few lemmas.

Lemma 8. Let K be a Galois extension of Q. Suppose that A∈GLn(OK)
has the property that for any τ ∈ Gal(K/Q) there is a diagonal matrix
Dτ = diag(ξ1(τ), . . . , ξn(τ)) such that ξi(τ)’s are roots of unity and Aτ =
DτA. Then A = DM where D is a diagonal matrix of finite order and
M ∈ GLn(Z).

Proof. Let A = (ai,j). For every i there exists k such that ai = ai,k 6= 0.
We have aτi,j = ξi(τ)ai,j for all j. In particular, a−1

i ai,j is stable under the
action of Gal(K/Q) for all j. Thus there are rational numbers qi,j such
that ai,j = aiqi,j . For a given i there is a rational number qi such that
mi,j = qiqi,j are integers with no common factor. Set di = q−1

i ai and let D
be the diagonal matrix with d1, . . . , dn on the diagonal. Clearly A = DM ,
where M = (mi,j). Since each row of M consists of integers with no common
factor and A has entries in OK , it follows that di is an algebraic integer for
all i. Moreover, detA = d1 . . . dn detM is a unit in OK , which implies that
each di is a unit and M ∈ GLn(Z). Let N be a natural number such that
ξi(τ)N = 1 for all automorphisms τ and all i. Since dτi = ξi(τ)di, we deduce
that (dNi )τ = dNi for all τ ∈ Gal(K/Q). Thus dNi ∈ Q. Since the only units
in Q are 1 and −1 we conclude that di is a root of unity.

Lemma 9. Let K be a number field which has no abelian extensions un-
ramified at all finite primes. Let β be a prime of OK and L a Galois ex-
tension of K with nilpotent Galois group which is unramified at all finite
primes different from β. Then there is a unique prime in OL over β which
is totally ramified.

Proof. We use induction on the order of the Galois group Γ of L/K.
Let π be a prime of OL over β. If Γ is abelian and the inertia group I(π)
is a proper subgroup of Γ then LI(π) is a nontrivial abelian extension of K,
unramified at all finite primes, which contradicts our assumption about K.
Thus Γ = I(π) and consequently π is the only prime in OL over β.

In general, let F be the Frattini subgroup of Γ . In particular, F is a
normal subgroup and Γ/F is abelian. Thus LF is an abelian extension of
K so there is a unique prime γ of LF over β. In other words, Γ/F = I(γ).
Note that under the natural projection Γ → Γ/F the inertia group I(π)
is mapped onto I(γ). Thus Γ = I(π)F . Directly from the definition of the
Frattini subgroup it follows that I(π) = Γ , which is exactly what we want
to show.
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Now we are in a position to prove Theorem 2. Let then G be a finite
Γ -stable subgroup of GLn(OK), where K/Q is a finite Galois extension
with nilpotent Galois group Γ . Fix a rational prime p. Let I be the sub-
group of Γ generated by all the inertia subgroups I(β) such that β does not
contain p. For any prime γ of K over p the group I acts trivially on G(γ)
by Lemma 5. Recall that G(p) is the subgroup of G generated by all the
G(γ) with γ over p. Thus G(p) is a normal Γ -stable p-subgroup of G and I
acts trivially on it. The fixed field KI of I is unramified at all finite primes
different from p and KI/Q has nilpotent Galois group. By Lemma 9, there
is a unique prime in KI over p. Theorem 1 applied to G(p) ⊆ GLn(KI)
implies that G(p) can be conjugated to diagonal matrices by an element in
GLn(Z). In particular, the group G(p) is a commutative p-group for every
prime p. If p 6= q then clearly the groups G(p) and G(q) commute.

An easy inductive argument shows that the whole group D generated by
the subgroups G(q) can be conjugated to diagonal matrices by an element of
GLn(Z). In fact, D is a commutative abelian group with p-Sylow subgroup
G(p). Fix a prime p such that G(p) is not trivial and let D(p) be the product
of all Sylow subgroups of D different from G(p). Theorem 1 allows us to
assume that G(p) is in a strongly diagonal form. Clearly D(p) centralizes
G(p) and therefore it is contained in the centralizer of G(p) in GLn. As
noted in Section 2, this centralizer consists of block-diagonal matrices, i.e.
it is a product of GLm’s, and in each of these, the elements of G(p) are
scalar matrices. Thus we can use induction and conjugate D(p) to diagonal
matrices by an element in GLn(Z) which centralizes G(p). Hence we can
assume that D is in a strongly diagonal form. Clearly D is normal in G.
Note that Γ acts trivially on G/D. In fact, for any prime β of K the inertia
I(β) acts trivially on G/G(β) so it acts trivially on G/D. Since all the
inertia groups generate Γ (because Q has no unramified extensions), our
claim follows.

By our discussion of the normalizer of D in Section 2 it follows that any
element g of G is of the form g = cw, where c centralizes D and w is a
permutation matrix in ΠD. Plainly c ∈ GLn(OK). Since Γ acts trivially on
G/D, for any τ ∈ Γ there is d ∈ D such that gτg−1 = cτ c−1 = d. Now the
centralizer of D in GLn is a product of GLm’s and if we take a component C
of c in one of these GLm’s then we have Cτ = Cξ where ξ is a root of unity
(corresponding component of d). By Lemma 8 we get C = ζM , where M is
an invertible integral matrix and ζ is a root of 1. Thus c = bm where b is a
diagonal matrix of finite order and m ∈ GLn(Z) centralizes D and b. Thus
we proved that any element of G is of the form bmw where b is diagonal
of finite order, m ∈ GLn(Z) centralizes b and D, and w is a permutation
matrix in ΠD. This is exactly what we need in order to say that G is of
A-type.



276 M. Mazur

References

[1] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Math. 106, Cam-
bridge Univ. Press, 1993.

[2] Y. Kitaoka and H. Suzuki, Finite arithmetic subgroups of GLn, IV , Nagoya Math.
J. 142 (1996), 183–188.

[3] M. Mazur, Finite arithmetic subgroups of GLn, J. Number Theory 75 (1999),
109–119.

[4] —, Finite arithmetic subgroups of GLn, part 1 of the University of Chicago PhD.
thesis, 1999.

[5] —, Finite flat group schemes and a conjecture of Kitaoka, in preparation.
[6] V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory , Pure

Appl. Math. 139, Academic Press, Boston, MA, 1994.

Department of Mathematics
University of Illinois at Urbana-Champaign
1409 W. Green Street
Urbana, IL 61801-2975
E-mail: mazur1@math.uiuc.edu

Received on 28.2.2000
and in revised form on 17.11.2000 (3759)


