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1. Introduction. The Bernoulli polynomials Bn(x) may be defined by

(1.1)
(

t

et − 1

)
ext =

∞∑

n=0

Bn(x)
tn

n!
,

and their values at x = 0 are called the Bernoulli numbers and denoted Bn.
The strong form of the Kummer congruences (cf. [1]) states that if p is an
odd prime, c ≡ 0 (mod (p− 1)pa), and p− 1 does not divide m, then

(1.2) ∆k
c

{
(1− pm−1)

Bm
m

}
≡ 0 (mod pk(a+1)Zp),

where ∆c is the forward difference operator with increment c and ∆k
c denotes

the kth compositional iterate of this operator.
In this paper we give a generalization to Bernoulli polynomials Bn(x)

where the argument x may be any p-adic integer. Specifically, we show in
Theorem 3.2 below that

(1.3) ∆k
c

{
Bm(x)− pm−1Bm(x′)

m

}
≡ 0 (mod pk(a+1)Zp)

under the above hypotheses, as well as an extension to the case p = 2. The
map x 7→ x′ appearing in (1.3) is Dwork’s shift map, defined for x ∈ Zp
by the relation px′ − x = µx ∈ {0, 1, . . . , p − 1} (cf. [3], Ch. 8). A version
of this result was first given in [4] in the case where k = 1, p ≥ 5, and
x ∈ Zp ∩ Q. Our method is based on general properties of the p-adic Γ -
transform recorded in [11] and yields a nontrivial analogous result in the case
p = 2. We also treat the Euler polynomials Hn(u, x) in the same manner.
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Additionally, in each case we give an analogous congruence with ∆k
c replaced

by a binomial coefficient operator, as in [7].
In §4 we prove Kummer congruences for generalized Bernoulli polyno-

mials Bn,χ(x) associated to a Dirichlet character χ. We demonstrate in
Theorem 4.2 an analogue of (1.3) for Bm,χω−m(x) which holds for x ∈ pZp
as long as χ is not a character of the second kind. The members of these
congruences coincide with values of the two-variable p-adic L function de-
fined by G. Fox in [6]. We also show how this congruence can be extended
in certain cases where χ is a character of the first kind and x lies in Z×p .

2. Preliminaries. Throughout this paper p will denote a prime number,
Zp the ring of p-adic integers, and Qp the field of p-adic numbers. If K is
a finite extension of Qp then OK will denote its ring of integers and O×K
will denote the multiplicative group of units in OK . Define the quantity q by
setting q = p if p > 2 and q = 4 if p = 2. The Teichmüller character ω on Z×p
is defined by setting ω(x) to be the unique φ(q)th root of unity congruent to
x modulo qZp. We use OK [T −1] and OK [[T −1]] to denote respectively the
ring of polynomials and of formal power series in the indeterminate T − 1
over OK . We use “ordp” to denote the additive valuation on K normalized
by ordp p = 1. Finally, et denotes the exponential function defined by the
power series

∑∞
n=0 t

n/n! for ordp t > 1/(p− 1).
If c is a nonnegative integer, the difference operator ∆c operates on the

sequence {am} by

(2.1) ∆c am = am+c − am.
The powers ∆k

c of ∆c are defined by ∆0
c = identity and ∆k

c = ∆c ◦∆k−1
c for

positive integers k, so that

(2.2) ∆k
c am =

k∑

j=0

(
k

j

)
(−1)k−jam+jc

for all nonnegative integers k. To define binomial coefficient operators
(
D
k

)

associated to an operator D (cf. [7]), we write the binomial coefficient

(2.3)
(
X

k

)
=
X(X − 1) . . . (X − k + 1)

k!

for k ≥ 0 as a polynomial in X, and replace X by D. Since the particular
sequences considered in this paper have multiple indices, we shall always use
the index m to denote the index on which an operator operates.

Define the linear operator ϕ by

(2.4) ϕh(T ) = h(T )− 1
p

∑

ζp=1

h(ζT ).
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This operator is well defined and stable on rational functions, and also
on OK [[T − 1]] (cf. [11], (2.14)). If h(et) =

∑
ant

n/n!, write (ϕh)(et) =∑
ânt

n/n!. The following congruences for the numbers ân were proved
in [11]:

Theorem 2.1. Let h ∈ OK [[T − 1]] and write ϕh(et) =
∑∞
n=0 ânt

n/n!.
Then ân ∈ OK for all n. Furthermore, if c ≡ 0 (modφ(q)pa) with a ≥ 0 then

∆k
c âm ≡ 0 (mod pka

+
OK)

for all m,k ≥ 0, where a+ = a+1 if p > 2 and a+ = a+3 if p = 2, and also
(
p−r∆c

k

)
âm ∈ OK

for 0 ≤ r ≤ a+ and all m,k ≥ 0.

It will be observed from this theorem that the operator (p−a
+
∆c)k is a

polynomial of order k in ∆c with leading coefficient p−ka
+

which sends âm
into OK , whereas the binomial coefficient operator

(
p−a

+
∆c

k

)
is a polynomial

of order k in ∆c with leading coefficient p−ka
+
/k! which sends âm into OK .

The proof of this theorem made use of the correspondence

(2.5) Λ↔ OK [[T − 1]]

where Λ denotes the set of all OK -valued measures on Zp, under which each
measure α ∈ Λ corresponds to the formal power series h ∈ OK [[T − 1]]
defined by

(2.6) h(T ) =
�

Zp
T x dα(x).

From this it follows that

(2.7) an =
�

Zp
xn dα(x).

We also observed ([11], (2.14)) that

(2.8) ϕh(T ) =
�

Z×p

T x dα(x),

which implies

(2.9) ân =
�

Z×p

xn dα(x).

Since

(2.10) (1− ϕ)h(T ) =
�

pZp
T x dα(x) =

�

Zp
T px dα(px),

we see that (1 − ϕ)h(T ) ∈ OK [[T p − 1]] according to the correspondence
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(2.5), (2.6). Therefore there is a linear operator ψ on OK [[T − 1]] such that
(ψh)(T p) = (1 − ϕ)h(T ). From (2.4) we see that the operator ψ may be
defined by

(2.11) ψh(T ) =
1
p

∑

Zp=T

h(Z),

and therefore coincides on OK [[T − 1]] with Dwork’s ψ operator (cf. [3],
Ch. 5). So if we write (ψh)(et) =

∑∞
n=0 a

∗
nt
n/n!, then a∗n ∈ OK for all n and

(2.12) ân = an − pna∗n.
Now if g ∈ OK [[T − 1]] and g(et) =

∑∞
n=0 unt

n/n!, let us define polyno-
mials un(x) ∈ OK [x] by

(2.13) extg(et) =
∞∑

n=0

un(x)
tn

n!
.

It is easily seen that with this definition we have un(0) = un, and in general

(2.14) un(x) =
n∑

k=0

(
n

k

)
un−kx

k.

The sequence un(x) is therefore an example of an Appell family of poly-
nomials, since the degree of un is n and d

dxun(x) = nun−1(x) for all n.
Furthermore, since

(2.15) ψ(T pτh(T )) = T τ (ψh)(T )

for τ ∈ Zp, we have

(2.16) (an(pτ))∗ = a∗n(τ),

or equivalently,

(2.17) ̂an(pτ) = an(pτ)− pna∗n(τ),

for τ ∈ Zp. These considerations demonstrate that congruences associated
to a sequence {an} produced by Theorem 2.1 extend immediately to {an(x)}
for x ∈ pZp, as we record below:

Theorem 2.2. Let h ∈ OK [[T − 1]] and write ϕh(et) =
∑∞
n=0 ânt

n/n!.
Then ân(x) ∈ OK [x] for all n. Furthermore, if c ≡ 0 (modφ(q)pa) with
a ≥ 0 then for all τ ∈ Zp,

∆k
c{ ̂am(pτ)} ≡ 0 (mod pka

+
OK)

for all m,k ≥ 0, and
(
p−r∆c

k

)
{ ̂am(pτ)} ∈ OK

for 0 ≤ r ≤ a+ and all m,k ≥ 0, where ̂am(pτ) is as in (2.17).
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3. Congruences for Bernoulli and Euler polynomials. Recall that
Dwork’s shift map x 7→ x′ is defined for x ∈ Zp by the relation px′ − x =
µx ∈ {0, 1, . . . , p−1}, so that µx is the representative of −x mod pZp which
lies in {0, 1, . . . , p−1}. The following lemma describes the action of Dwork’s
ψ operator on certain functions in terms of the shift map.

Lemma 3.1. For x ∈ Zp and (b, p) = 1, we have formally

ψ

(
T bx

T b − c

)
= cp−1−µx T bx

′

T b − cp ,

or equivalently ,

ϕ

(
T bx

T b − c

)
=

T bx

T b − c − c
p−1−µx T bpx

′

T bp − cp .

Proof. Using (2.4) we compute

(1− ϕ)
(

T x

T − c

)
=

1
p

∑

ζp=1

ζxT x

ζT − c = T x
(

1
p

∑

ζp=1

ζ−µx

ζT − c

)
(3.1)

= T x
(
cp−1−µx Tµx

T p − cp
)

by considering the partial fraction decomposition of the latter rational func-
tion. The result in the case b = 1 follows immediately by noting that x+µx =
px′. To get the result for general b, note that ϕ(h(T b)) = (ϕh)(T b) for
(b, p) = 1, since in this case the map ζ 7→ ζb permutes the solutions of ζp = 1.

Theorem 3.2. Suppose φ(q) does not divide m. If c ≡ 0 (modφ(q)pa)
with a ≥ 0, then for all x ∈ Zp,

∆k
c

{
Bm(x)− pm−1Bm(x′)

m

}
≡ 0

(
mod 1

2p
ka+
Zp
)

and (
p−r∆c

k

){
Bm(x)− pm−1Bm(x′)

m

}
∈ 1

2
Zp

for 0 ≤ r ≤ a+ and all k > 0.

Proof. Let b be any positive integer with (b, p) = 1, and define

(3.2) h(T ) =
bT bx

T b − 1
− T x

T − 1
.

By writing

(3.3) h(T ) =
1

T − 1

(
bT bx

Φb(T )
− T x

)

with Φb(T ) = T b−1 + T b−2 + . . . + T + 1 and observing that the latter
factor in (3.3) lies in Zp[[T − 1]] and has constant term zero, we see that
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h ∈ Zp[[T − 1]]. Applying Lemma 3.1 gives

(3.4) (1− ϕ)h(T ) =
bT bpx

′

T bp − 1
− T px

′

T p − 1
,

and substitution of T = et then yields

(3.5) ϕh(et) =
∞∑

n=1

(bn − 1)
(
Bn(x)− pn−1Bn(x′)

n

)
tn−1

(n− 1)!
.

So corresponding to the function h(T ) in (3.2), the congruences of Theorem
2.1 hold for the numbers

(3.6) ân = (bn+1 − 1)
Bn+1(x)− pnBn+1(x′)

n+ 1
.

Now supposing that n + 1 is not divisible by φ(q), choose b so that
bn+1 6≡ 1 (mod q). Then since the congruences of Theorem 2.1 hold for the
numbers ân in (3.6) associated to (−1)p−1bp

i

for i = 1, 2, . . . , they hold for
the numbers

(3.7) (ω(b)n+1 − 1)
Bn+1(x)− pnBn+1(x′)

n+ 1

obtained upon passing to the p-adic limit (because (−1)p−1bp
i → ω(b) in

Zp). Put m = n+ 1. Since ω(b)m+jc = ω(b)m for all integers j, we have

(3.8) ∆k
c

{
(ω(b)m − 1)

Bm(x)− pm−1Bm(x′)
m

}

= (ω(b)m − 1)∆k
c

{
Bm(x)− pm−1Bm(x′)

m

}

for all k, that is, the constant factor ω(b)m − 1 may be removed from each
term in the congruences. Finally, noting that ordp(ω(b)m − 1) = ordp 2 for
all primes p gives the result of the theorem.

The generalized Euler polynomials Hn(u, x) attached to an algebraic
number u 6= 1 have been defined by

(3.9)
(

1− u
et − u

)
ext =

∞∑

n=0

Hn(u, x)
tn

n!

in [9]. For our purposes u will be an algebraic integer for which 1 − u is a
p-adic unit. When p > 2 and u = −1 one obtains the usual Euler polynomials
En(x) = Hn(−1, x). Theorem 2.1 may be applied to give congruences for
Hn(u, x) for x ∈ Zp.

Theorem 3.3. Let u be algebraic over Qp, and suppose that 1−u ∈ O×K ,
where K = Qp(u). If c ≡ 0 (modφ(q)pa) then for all x ∈ Zp we have
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∆k
c

{
Hm(u, x)− up−1−µx 1− u

1− up p
mHm(up, x′)

}
≡ 0 (mod pka

+
OK)

and (
p−r∆c

k

){
Hm(u, x)− up−1−µx 1− u

1− up p
mHm(up, x′)

}
∈ OK

for 0 ≤ r ≤ a+ and all k > 0.

Proof. If 1− u ∈ O×K then h(T ) = ((1− u)/(T − u)) · T x ∈ OK [[T − 1]]
for all x ∈ Zp. From Lemma 3.1 we have

(3.10) (1− ϕ)h(T ) = up−1−µx(1− u)
T px

′

T p − up .

Setting T = et and expanding ϕh(et) =
∑
n ânt

n/n! as formal power series
gives

(3.11) âm = Hm(u, x)− up−1−µx 1− u
1− up p

mHm(up, x′).

The theorem then follows from Theorem 2.1.

In many applications of Euler polynomials the parameter u is taken to be
a nontrivial (p−1)st root of unity. We observe that in this case the numbers
âm in the congruences simplify to

(3.12) âm = Hm(u, x)− u−µxpmHm(u, x′).

If in addition x is a rational number in [0, 1] with denominator dividing p−1
then x′ = x and we have

(3.13) âm = (1− u−µxpm)Hm(u, x).

4. Congruences for generalized Bernoulli polynomials. For a
primitive Dirichlet character χ of conductor f = fχ the generalized Bernoulli
polynomials Bn,χ(x) are defined by

(4.1)
( f∑

a=1

χ(a)teat

eft − 1

)
ext =

∞∑

n=0

Bn,χ(x)
tn

n!
.

We begin this section by using Theorem 2.2 to produce congruences for
Bn,χ(x) for x ∈ pZp and characters χ whose conductor is not a power of p.
All the congruences of this section are extensions of congruences of the type
given for x = 0 which may be found in [2], [5], and [8].

Theorem 4.1. Suppose that χ is a primitive Dirichlet character whose
conductor f is not a power of p, and put K = Qp(χ). If c ≡ 0 (modφ(q)pa)
with a ≥ 0, then for all τ ∈ Zp,

∆k
c

{
Bm,χ(pτ)− χ(p)pm−1Bm,χ(τ)

m

}
≡ 0 (mod pka

+
OK)
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and (
p−r∆c

k

){
Bm,χ(pτ)− χ(p)pm−1Bm,χ(τ)

m

}
∈ OK

for 0 ≤ r ≤ a+ and all m,k > 0.

Proof. Since f is not a power of p, we may write f in the form f = dpe

with e ≥ 0, (d, p) = 1, and d 6= 1. Define the rational function

(4.2) hχ(T ) =
f∑

a=1

χ(a)T a

T f − 1
.

We claim that hχ ∈ OK [[T − 1]]. To show this, observe that if ζp
e

= 1,
then

∑f
a=1 χ(a)ζa = 0 by ([10], Lemma 4.7). Therefore T p

e − 1 divides∑f
a=1 χ(a)T a in OK [T − 1]. We also have

(4.3) T f − 1 = (T p
e − 1)(T (d−1)pe + T (d−2)pe + . . .+ T p

e

+ 1)

in OK [T −1], and the latter factor is a unit in OK [[T −1]] since its constant
term is d ∈ O×K . By dividing both numerator and denominator of (4.2)
by T p

e − 1 we may then write hχ(T ) = g(T )/k(T ) with g, k elements of
OK [T−1] and k invertible in OK [[T−1]]. This proves that hχ ∈ OK [[T−1]].

We now verify that (1−ϕ)hχ(T ) = χ(p)hχ(T p) as rational functions, by
computing

(1− ϕ)hχ(T ) =
1
p

∑

ζp=1

( f∑

a=1

χ(a)(ζT )a

(ζT )f − 1

)
(4.4)

=
1
p

∑

ζp=1

( fp∑

a=1

χ(a)(ζT )a

(ζT )fp − 1

)

=
fp∑

a=1
p|a

χ(a)T a

T fp − 1
=

f∑

b=1

χ(pb)T pb

T fp − 1
= χ(p)hχ(T p),

the second equality being obtained by multiplying each numerator and de-
nominator by 1 + (ζT )f + (ζT )2f + . . .+ (ζT )(p−1)f . Therefore if hχ(et) =∑
ant

n/n! we have an = Bn+1,χ/(n+ 1) and a∗n = χ(p)Bn+1,χ/(n+ 1). The
theorem then follows by taking m = n+ 1 and applying Theorem 2.2.

We say that χ is a character of the first kind if either f = d or f = dq
with (d, p) = 1; we say that χ is a character of the second kind if either
f = 1 or f = qpe with e ≥ 1. If χ is a primitive Dirichlet character and n
is an integer, the symbol χn will denote the character χω−n, where ω is the
Teichmüller character. Here we use Theorem 2.1 to produce congruences for
Bn,χn(x) for x ∈ pZp and characters χ which are not of the second kind.
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Theorem 4.2. Suppose that χ is a primitive Dirichlet character which
is not of the second kind , and put K = Qp(χ). If c ≡ 0 (modφ(q)pa) with
a ≥ 0, then for all τ ∈ Zp,

∆k
c

{
Bm,χm(pτ)− χm(p)pm−1Bm,χm(τ)

m

}
≡ 0

(
mod 1

2p
ka+

OK

)

and (
p−r∆c

k

){
Bm,χm(pτ)− χm(p)pm−1Bm,χm(τ)

m

}
∈ 1

2
OK

for 0 ≤ r ≤ a+ and all m,k > 0.

Proof. First assume that the conductor f = fχ of χ is not a power of
p. Then the conductor f = fχm of χm is also not a power of p for any m.
Furthermore, ωc = 1, so χm+jc = χm for all j. The theorem in this case
follows immediately from Theorem 4.1.

We have now reduced to the case fχ = q, so that χ is a power of the
Teichmüller character ω. In this case fχm is either q or 1, and if fχm = 1,
then φ(q) does not divide m, since χ is nontrivial. So in the case where
fχ = q, fχm = 1, the theorem follows from Theorem 3.2 by observing that
χm+jc = χm = 1 for all j and using the identity Bn,1(x) = (−1)nBn(−x).

The remaining case is f = fχ = fχm = q. Let n be any positive integer
with fχn = q, let b be a positive integer with (b, p) = 1, and define

(4.5) hχn(T ) = bχn(b)T bx
( f∑

a=1

χn(a)T ab

T bf − 1

)
− T x

f∑

a=1

χn(a)T a

T f − 1
,

where x ∈ pZp. Equivalently we may write

hχn(T ) =
bχn(b)T bx(

∑f
a=1 χn(a)T ab)− T x∑fb

a=1 χn(a)T a

T bf − 1
(4.6)

=
g(T )

T bf − 1

with g(T ) ∈ OK [[T − 1]]. If ζq = 1, then

g(ζ) = bχn(b)ζbx
( f∑

a=1

χn(a)ζab
)
− ζx

fb∑

a=1

χn(a)ζa(4.7)

= b
(
ζbx

f∑

a=1

χn(ab)ζab − ζx
f∑

a=1

χn(a)ζa
)

= b(ζbx − ζx)
( f∑

a=1

χn(a)ζa
)

= 0,
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since (b − 1)x ≡ 0 (mod qZp) for x ∈ pZp and (b, p) = 1. This shows that
T f − 1 divides g(T ) in OK [[T − 1]]. Since T bf − 1 is also divisible by T f − 1
in OK [T − 1] and the quotient is a unit in OK [[T − 1]]×, we see that hχn ∈
OK [[T − 1]].

We now obtain am−1 = (bmχn(b) − 1)Bm,χn(x)/m by using equation
(4.1) to expand hχn(et) =

∑
amt

m/m!. Furthermore, as in (4.4) we can
compute

(4.8) (1− ϕ)hχn(T ) = bχn(b)
( f∑

a=1
p|a

χn(a)T b(a+x)

T bf − 1

)
−

f∑

a=1
p|a

χn(a)T a+x

T f − 1
= 0,

since χn(a) = 0 if p divides a; therefore âm = am for all m.
Since χ is nontrivial, we may choose a value of b for which (b, p) = 1

and χ(b) 6= 1. The congruences of Theorem 2.1 hold for the numbers âm−1

associated to b and to (−1)p−1bp
i

for i = 1, 2, . . . , so they also hold for the
numbers

(4.9) (ω(b)mχn(b)− 1)Bm,χn(x)/m

obtained upon passing to the p-adic limit. Since ωm = ωm+jc for all j,
the constant factor ω(b)mχn(b) − 1 may be factored out of each term in
the congruences. Now set n = m. Since χ(b) and ω(b) are both nonzero,
ω(b)mχm(b)− 1 equals χ(b)− 1. Observing that ordp(χ(b)− 1) = ordp 2 for
all primes p, putting x = pτ , and observing that χm(p) = 0 completes the
proof.

In [6] G. Fox studied a two-variable p-adic L function Lp(s, τ, χ) which is
defined for s, τ lying in the p-adic completion Cp of an algebraic closure of
Qp and satisfying ordp τ ≥ 0 and ordp s ≥ 1/(p− 1)− ordp q. The members
of the congruences in the above theorem are values of this L-function at
negative integer values of s. Specifically, Fox showed that if n is a positive
integer then

(4.10) Lp(1− n, τ, χ) =
1
n

(Bn,χn(pτ)− χn(p)pn−1Bn,χn(τ)).

In both (4.10) and Theorem 4.2 the main term Bernoulli polynomial has
an argument whose p-adic ordinal must be at least 1. We conclude with an
analogue of Theorem 3.2 for values of generalized Bernoulli polynomials at
an argument which is not restricted to lie in pZp, extending Theorem 4.1.
Unfortunately this requires certain impositions upon the conductor of χ. For
this result we make use of the decomposition of χ as χ = χ(0)χ(p), where
the conductor f0 of χ(0) is relatively prime to p and the conductor fp of χ(p)

is a power of p (cf. [10], p. 23).
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Theorem 4.3. Suppose that χ is a primitive Dirichlet character such
that f0 6= 1 and fp = 1 or p, and put K = Qp(χ). Let x ∈ Zp be such that
f0 divides µx in Z. If c ≡ 0 (modφ(q)pa) with a ≥ 0, then

∆k
c

{
Bm,χ(x)− χ(p)(µx)χ(0)(p)pm−1Bm,χ(0)(x

′)

m

}
≡ 0 (mod pka

+
OK)

and (
p−r∆c

k

){
Bm,χ(x)− χ(p)(µx)χ(0)(p)pm−1Bm,χ(0)(x

′)

m

}
∈ OK

for 0 ≤ r ≤ a+ and all m,k > 0.

Proof. Suppose that x ∈ Zp is such that f0 divides µx in Z. Define the
function

(4.11) hχ(T, x) =
f∑

a=1

χ(a)T a+x

T f − 1
.

As the product of T x and the function hχ(T ) in (4.2), this function lies in
OK [[T − 1]]. We compute

(1− ϕ)hχ(T, x) =
1
p

∑

ζp=1

( f∑

a=1

χ(a)(ζT )a+x

(ζT )f − 1

)
(4.12)

=
1
p

∑

ζp=1

( fp∑

a=1

χ(a)(ζT )a+x

(ζT )fp − 1

)
=

fp∑

a=1
p|a+x

χ(a)T a+x

T fp − 1
.

Since (f0, fp) = 1, we have χ(a) = χ(0)(a)χ(p)(a) for all a. If p divides
a+ x in Zp then a ≡ µx (mod p) and therefore χ(p)(a) = χ(p)(µx). Then by
writing pb = a+ x as b runs from x′ to x′ + f − 1, equation (4.12) becomes

(1− ϕ)hχ(T, x) = χ(p)(µx)
fp∑

a=1
p|a+x

χ(0)(a)T a+x

T fp − 1
(4.13)

= χ(p)(µx)
f−1∑

c=0

χ(0)(µx + pc)T p(c+x
′)

T fp − 1

= χ(p)(µx)
f−1∑

c=0

χ(0)(pc)T p(c+x
′)

T fp − 1
(since f0 |µx)

= χ(p)(µx)χ(0)(p)hχ(0)(T
p, x′).

Therefore if hχ(et, x) =
∑
ant

n/n! we have an = Bn+1,χ(x)/(n + 1)
for all n and a∗n = χ(p)(µx)χ(0)(p)Bn+1,χ(0)(x

′)/(n + 1). The theorem then
follows by taking m = n+ 1 and applying Theorem 2.1.
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By using the identity Bn,χ(−x) = (−1)nχ(−1)Bn,χ(x) and the fact that
(−x)′ = 1 − x′ and µ−x = p − µx when µx 6= 0 we obtain the following
variation of Theorem 4.3.

Corollary 4.4. Suppose that χ is a primitive Dirichlet character such
that f0 6= 1 and fp = 1 or p, and put K = Qp(χ). Let x ∈ Zp be such that
f0 divides p− µx in Z. If c ≡ 0 (modφ(q)pa) with a ≥ 0, then

∆k
c

{
Bm,χ(x)− χ(p)(µx)χ(0)(p)pm−1Bm,χ(0)(x

′ − 1)

m

}
≡ 0 (mod pka

+
OK)

and (
p−r∆c

k

){
Bm,χ(x)− χ(p)(µx)χ(0)(p)pm−1Bm,χ(0)(x

′ − 1)

m

}
∈ OK

for 0 ≤ r ≤ a+ and all m,k > 0.
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