Binary Kloosterman sums using Stickelberger's theorem and the Gross-Koblitz formula

by
Faruk Göloğlu, Gary McGuire and Richard Moloney (Dublin)

1. Introduction. Let $\mathcal{K}_{p^{n}}(a)$ denote the p-ary Kloosterman sum defined by

$$
\mathcal{K}_{p^{n}}(a):=\sum_{x \in \mathbb{F}_{p^{n}}} \zeta^{\operatorname{Tr}\left(x^{p^{n}-2}+a x\right)}
$$

for any $a \in \mathbb{F}_{p^{n}}$, where ζ is a primitive p th root of unity and Tr denotes the absolute trace map $\operatorname{Tr}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ defined as usual as

$$
\operatorname{Tr}(c):=c+c^{p}+c^{p^{2}}+\cdots+c^{p^{n-1}} .
$$

Finding explicit zeros (explicit a 's with $\mathcal{K}_{p^{n}}(a)=0$) of Kloosterman sums is considered difficult. Recent research on Kloosterman sums is generally concentrated on proving divisibility results and characterisation of Kloosterman sums modulo some integer (see [15, 12, 2, 1, 13]).

It is easy to see that binary Kloosterman sums are divisible by $4=2^{2}$, i.e., for all $a \in \mathbb{F}_{2^{n}}$,

$$
\begin{equation*}
\mathcal{K}_{2^{n}}(a) \equiv 0(\bmod 4) . \tag{1}
\end{equation*}
$$

They also satisfy (see [8])

$$
-2^{n / 2+1} \leq \mathcal{K}_{2^{n}}(a) \leq 2^{n / 2+1}
$$

and take every value which is congruent to 0 modulo 4 in that range.
Helleseth and Zinoviev proved the following result which improved (1) one level higher, i.e., modulo 2^{3}, in the sense of describing the a for which $\mathcal{K}_{2^{n}}(a)$ is 0 or 4 modulo 8.

Theorem 1.1 (${ }^{5}$). For $a \in \mathbb{F}_{2^{n}}$,

$$
\mathcal{K}_{2^{n}}(a) \equiv \begin{cases}0(\bmod 8) & \text { if } \operatorname{Tr}(a)=0, \\ 4(\bmod 8) & \text { if } \operatorname{Tr}(a)=1 .\end{cases}
$$

[^0]This paper will improve Theorem 1.1 to higher levels, i.e., modulo 2^{4}, in the sense of describing the residue class of $\mathcal{K}_{2^{n}}(a)$ modulo 2^{4} in terms of a. We will define the quadratic sum

$$
Q(a):=\sum_{0 \leq i<j<n} a^{2^{i}+2^{j}} .
$$

While the trace map $\operatorname{Tr}(a)$ is the sum of all linear powers of a, the sum $Q(a)$ is the sum of all quadratic powers of a. Using Stickelberger's theorem we will improve the Helleseth-Zinoviev result one level further to the modulus 2^{4}. We will prove the following theorem.

Theorem 1.2. For $a \in \mathbb{F}_{2^{n}}$,

$$
\mathcal{K}(a) \equiv \begin{cases}0(\bmod 16) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=0 \\ 4(\bmod 16) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=1 \\ 8(\bmod 16) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=1, \\ 12(\bmod 16) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=0\end{cases}
$$

We mention a recent result due to Lisoněk [12] that gives a description of the elements $a \in \mathbb{F}_{2^{n}}$ for which $\mathcal{K}(a) \equiv 0(\bmod 16)$:

Theorem 1.3. Let $n \geq 4$. For any $a \in \mathbb{F}_{2^{n}}, \mathcal{K}(a)$ is divisible by 16 if and only if $\operatorname{Tr}(a)=0$ and $\operatorname{Tr}(y)=0$ where $y^{2}+a y+a^{3}=0$.

In Sections 2 and 3, we introduce the techniques we use. In Section 4 we give an alternative proof of Theorem 1.1 using our techniques. We prove Theorem 1.2 in Section 5. In Section 6 we combine Theorem 1.2 with the result concerning Kloosterman sums modulo 3 to achieve the complete characterisation modulo 48. Finally, in Section 7 we employ the Gross-Koblitz formula to characterize the values of Kloosterman sums modulo 64 in terms of the lifted trace that we introduce in Section 5 .

We give a few remarks about the ternary case. It is easy to see that ternary Kloosterman sums are divisible by 3, i.e., for all $a \in \mathbb{F}_{3^{n}}$,

$$
\begin{equation*}
\mathcal{K}_{3^{n}}(a) \equiv 0(\bmod 3) . \tag{2}
\end{equation*}
$$

Ternary Kloosterman sums satisfy (see Katz and Livné [7)

$$
-2 \sqrt{3^{n}}<\mathcal{K}_{3^{n}}(a)<2 \sqrt{3^{n}}
$$

and take every value which is congruent to 0 modulo 3 in that range.
In a recent paper, we used Stickelberger's theorem to prove the following result on ternary Kloosterman sums, which improved (2) one level higher.

Theorem 1.4 (3). For $a \in \mathbb{F}_{3^{n}}$,

$$
\mathcal{K}_{3^{n}}(a) \equiv \begin{cases}0(\bmod 9) & \text { if } \operatorname{Tr}(a)=0 \\ 3(\bmod 9) & \text { if } \operatorname{Tr}(a)=1, \\ 6(\bmod 9) & \text { if } \operatorname{Tr}(a)=2\end{cases}
$$

2. Stickelberger's theorem. Let p be a prime (in Section 4 we set $p=2$) and let $q=p^{n}$. We consider multiplicative characters taking their values in an algebraic extension of the p-adic numbers \mathbb{Q}_{p}. Let ξ be a primitive $(q-1)$ th root of unity in a fixed algebraic closure of \mathbb{Q}_{p}. The group of multiplicative characters of \mathbb{F}_{q} (denoted $\widehat{\mathbb{F}_{q}^{\times}}$) is cyclic of order $q-1$. The group $\widehat{\mathbb{F}_{q}^{\times}}$is generated by the Teichmüller character $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{Q}_{p}(\xi)$, which, for a fixed generator t of \mathbb{F}_{q}^{\times}, is defined by

$$
\omega\left(t^{j}\right)=\xi^{j}
$$

We extend ω to \mathbb{F}_{q} by setting $\omega(0)$ to be 0 .
Let ζ be a primitive p th root of unity in the fixed algebraic closure of \mathbb{Q}_{p}. Let μ be the canonical additive character of \mathbb{F}_{q},

$$
\mu(x)=\zeta^{\operatorname{Tr}(x)}
$$

The Gauss sum (see [11, 18]) of a character $\chi \in \widehat{\mathbb{F}_{q}^{\times}}$is defined as

$$
\tau(\chi)=-\sum_{x \in \mathbb{F}_{q}} \chi(x) \mu(x)
$$

For any positive integer j, let $\mathrm{wt}_{p}(j)$ denote the p-weight of j, i.e.,

$$
\mathrm{wt}_{p}(j)=\sum_{i} j_{i}
$$

where $\sum_{i} j_{i} p^{i}$ is the p-ary expansion of j. Just for shorthand notation we define

$$
g(j):=\tau\left(\omega^{-j}\right)=\tau\left(\bar{\omega}^{j}\right)
$$

Let π be the unique $(p-1)$ th root of $-p$ in $\mathbb{Q}_{p}(\xi, \zeta)$ satisfying

$$
\pi \equiv \zeta-1\left(\bmod \pi^{p-1}\right)
$$

Wan [17] noted that the following improved version of Stickelberger's theorem is a direct consequence of the Gross-Koblitz formula [4, 16].

Theorem 2.1 ([17]). Let $1 \leq j<q-1$ and let $j=j_{0}+j_{1} p+\cdots+$ $j_{n-1} p^{n-1}$. Then

$$
g(j) \equiv \frac{\pi^{\mathrm{wt}_{p}(j)}}{j_{0}!\cdots j_{n-1}!}\left(\bmod \pi^{\mathrm{wt}_{p}(j)+p-1}\right)
$$

Stickelberger's theorem, as usually stated, is the same congruence modulo $\pi^{\mathrm{wt}_{p}(j)+1}$. Note that when $p=2$, which is the case in this paper, Theorem 2.1 is the same as this original Stickelberger theorem.

We know (see [4]) that (π) is the unique prime ideal of $\mathbb{Q}_{p}(\zeta, \xi)$ lying above p. Since $\mathbb{Q}_{p}(\zeta, \xi)$ is an unramified extension of $\mathbb{Q}_{p}(\zeta)$, a totally ramified (degree $p-1$) extension of \mathbb{Q}_{p}, it follows that $(\pi)^{p-1}=(p)$ and $\nu_{p}(\pi)=$ $1 /(p-1)$. Here ν_{p} denotes the p-adic valuation.

Therefore Theorem 2.1 implies that $\nu_{\pi}(g(j))=\operatorname{wt}_{p}(j)$, and because $\nu_{p}(g(j))=\nu_{\pi}(g(j)) \cdot \nu_{p}(\pi)$ we get

$$
\begin{equation*}
\nu_{p}(g(j))=\frac{\mathrm{wt}_{p}(j)}{p-1} \tag{3}
\end{equation*}
$$

In this paper we have $p=2$. In that case, $\pi=-2$ and equation (3) becomes

$$
\begin{equation*}
\nu_{2}(g(j))=\mathrm{wt}_{2}(j) \tag{4}
\end{equation*}
$$

3. Fourier analysis. The Fourier transform of a function $f: \mathbb{F}_{q} \rightarrow \mathbb{C}$ at $a \in \mathbb{F}_{q}$ is defined to be

$$
\widehat{f}(a)=\sum_{x \in \mathbb{F}_{q}} f(x) \mu(a x)
$$

The complex number $\widehat{f}(a)$ is called the Fourier coefficient of f at a.
Consider monomial functions defined by $f(x)=\mu\left(x^{d}\right)$. When $d=-1$ we have $\widehat{f}(a)=\mathcal{K}_{p^{n}}(a)$. By a similar Fourier analysis argument to that in Katz [6] or Langevin-Leander [9], for any d we have

$$
\widehat{f}(a)=\frac{q}{q-1}+\frac{1}{q-1} \sum_{j=1}^{q-2} \tau\left(\bar{\omega}^{j}\right) \tau\left(\omega^{j d}\right) \bar{\omega}^{j d}(a)
$$

and hence

$$
\widehat{f}(a) \equiv-\sum_{j=1}^{q-2} \tau\left(\bar{\omega}^{j}\right) \tau\left(\omega^{j d}\right) \bar{\omega}^{j d}(a)(\bmod q)
$$

We will use this to obtain congruence information about Kloosterman sums. Putting $d=-1=p^{n}-2$, the previous congruence becomes

$$
\begin{equation*}
\mathcal{K}(a) \equiv-\sum_{j=1}^{q-2}(g(j))^{2} \omega^{j}(a)(\bmod q) \tag{5}
\end{equation*}
$$

Equation (4) gives the 2-adic valuation of the Gauss sums $g(j)$, and the 2adic valuation of each term in equation (5) follows. Our proofs will consider (5) at various levels, i.e., modulo $2^{3}, 2^{4}$ and 2^{6}.
4. Binary Kloosterman sums modulo 8. Let $q=2^{n}$ for some integer $n \geq 2$.

To warm up we shall give a new proof of the following result due to Helleseth and Zinoviev [5]. This is equivalent to Theorem 1.1.

Theorem 4.1. For $a \in \mathbb{F}_{q}, \mathcal{K}(a) \equiv 0(\bmod 8)$ if and only if $\operatorname{Tr}(a)=0$.

Proof. If $f(x)=\mu\left(x^{d}\right)$ let

$$
M_{d}=\min _{j \in\left\{1, \ldots, 2^{n}-2\right\}}\left[\mathrm{wt}_{2}(j)+\mathrm{wt}_{2}(-j d)\right],
$$

and let

$$
J_{d}=\left\{j \in\left\{1, \ldots, 2^{n}-2\right\}: \mathrm{wt}_{2}(j)+\mathrm{wt}_{2}(-j d)=M_{d}\right\}
$$

Lemma 1 of [10] states that if $f(x)=\mu\left(x^{d}\right)$, then

$$
\begin{equation*}
2^{M_{d}+1} \mid \widehat{f}(a) \Leftrightarrow \sum_{j \in J_{d}} a^{-j d}=0 \tag{6}
\end{equation*}
$$

Let $d=-1$. Then $\widehat{f}(a)$ is the Kloosterman $\operatorname{sum} \mathcal{K}(a)$ on $\mathbb{F}_{q}, M_{-1}=2$, and

$$
J_{-1}=\left\{j \in\left\{1, \ldots, 2^{n}-2\right\}: \mathrm{wt}_{2}(j)=1\right\}
$$

It follows that

$$
\sum_{j \in J_{-1}} a^{j}=\operatorname{Tr}(a)
$$

and (6) implies that 8 divides $\mathcal{K}(a)$ if and only if $\operatorname{Tr}(a)=0$.
5. Binary Kloosterman sums modulo 16. Again $q=2^{n}$. For $i=$ $1,2, \ldots$, let

$$
W_{i}=\left\{j \in\left\{1, \ldots, 2^{n}-2\right\}: \mathrm{wt}_{2}(j)=i\right\}
$$

Then we may write

$$
\operatorname{Tr}(a)=\sum_{j \in W_{1}} a^{j}
$$

Recall that $\omega: \mathbb{F}_{q} \rightarrow \mathbb{Q}_{2}(\xi)$ is the Teichmüller character.
We define the lifted trace $\widehat{\operatorname{Tr}}: \mathbb{F}_{q} \rightarrow \mathbb{Q}_{2}(\xi)$ by

$$
\widehat{\operatorname{Tr}}(a)=\sum_{j \in W_{1}} \omega\left(a^{j}\right)
$$

and note that $\widehat{\operatorname{Tr}}(a) \equiv \operatorname{Tr}(a)(\bmod 2)$.
We define the quadratic trace $Q: \mathbb{F}_{q} \rightarrow \mathbb{F}_{2}$ by

$$
Q(a)=\sum_{j \in W_{2}} a^{j}
$$

and define the lifted quadratic trace $\widehat{Q}: \mathbb{F}_{q} \rightarrow \mathbb{Q}_{2}(\xi)$ by

$$
\widehat{Q}(a)=\sum_{j \in W_{2}} \omega\left(a^{j}\right)
$$

Then $\widehat{Q}(a) \equiv Q(a)(\bmod 2)$.
Next we prove our theorem on $\mathcal{K}(a) \bmod 16$.

Theorem 5.1. Let $q=2^{n}$. For $a \in \mathbb{F}_{q}$,

$$
\mathcal{K}(a) \equiv \begin{cases}0(\bmod 16) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=0 \\ 4(\bmod 16) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=1 \\ 8(\bmod 16) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=1 \\ 12(\bmod 16) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=0\end{cases}
$$

Proof. Let $q=2^{n}$ and let $a \in \mathbb{F}_{q}$. As in the proof of Theorem4.1, $\mathcal{K}(a)=$ $\widehat{f}(a)$, where $f(x)=\mu\left(x^{-1}\right)$. Stickelberger's theorem implies $g(j) \equiv 2^{\text {wt }_{2}(j)}$ $\left(\bmod 2^{\operatorname{wt}_{2}(j)+1}\right)$, so squaring gives

$$
g(j)^{2} \equiv 2^{2 \mathrm{wt}_{2}(j)}\left(\bmod 2^{2 \mathrm{wt}_{2}(j)+2}\right) .
$$

It follows that $g(j)^{2} \equiv 4(\bmod 16)$ for j of weight 1 , and $g(j)^{2} \equiv 0(\bmod 16)$ for j of weight at least 2 . Thus congruence (5) modulo 16 gives

$$
\mathcal{K}(a) \equiv-\sum_{j \in W_{1}} g(j)^{2} \omega^{j}(a)(\bmod 16)
$$

or in other words

$$
\mathcal{K}(a) \equiv-4 \widehat{\operatorname{Tr}}(a)(\bmod 16) .
$$

It remains to determine $\widehat{\operatorname{Tr}}(a) \bmod 4$.
This can be done in terms of the \mathbb{F}_{q}-sums $\operatorname{Tr}(a)$ and $Q(a)$ by noting that

$$
\begin{aligned}
\widehat{\operatorname{Tr}}(a)^{2} & =\sum_{j \in W_{1}} \sum_{k \in W_{1}} \omega\left(a^{j}\right) \omega\left(a^{k}\right)=\sum_{j, k \in W_{1}} \omega\left(a^{j+k}\right) \\
& =2 \sum_{i \in W_{2}} \omega\left(a^{i}\right)+\sum_{j \in W_{1}} \omega\left(a^{j}\right)=2 \widehat{Q}(a)+\widehat{\operatorname{Tr}}(a) .
\end{aligned}
$$

However

$$
\begin{aligned}
& \widehat{\operatorname{Tr}}(a)^{2} \equiv 0(\bmod 4) \Leftrightarrow \widehat{\operatorname{Tr}}(a) \equiv 0(\bmod 2) \Leftrightarrow \operatorname{Tr}(a)=0, \\
& \widehat{\operatorname{Tr}}(a)^{2} \equiv 1(\bmod 4) \Leftrightarrow \widehat{\operatorname{Tr}}(a) \equiv 1(\bmod 2) \Leftrightarrow \operatorname{Tr}(a)=1 .
\end{aligned}
$$

Recalling that $\widehat{Q}(a) \equiv Q(a)(\bmod 2)$, and observing that we only require $\widehat{Q}(a) \bmod 2$, we get

$$
\widehat{\operatorname{Tr}}(a) \equiv \begin{cases}0(\bmod 4) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=0 \\ 1(\bmod 4) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=0 \\ 2(\bmod 4) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=1, \\ 3(\bmod 4) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=1,\end{cases}
$$

which proves the result.
6. Binary Kloosterman sums modulo 48 . We combine the results above with the result on the divisibility modulo 3 of binary Kloosterman
sums from [1, 2, 14, 15] to fully characterise the congruence modulo 48 of binary Kloosterman sums.

6.1. Case n odd

Theorem 6.1. Let $q=2^{n}$ and let $a \in \mathbb{F}_{q}^{\times}$where n is odd and $n \geq 5$.
(1) If $\operatorname{Tr}\left(a^{1 / 3}\right)=0$ then

$$
\mathcal{K}(a) \equiv \begin{cases}4(\bmod 48) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=1 \\ 16(\bmod 48) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=0 \\ 28(\bmod 48) & \text { if } \operatorname{Tr}(a)=1 \text { and } Q(a)=0 \\ 40(\bmod 48) & \text { if } \operatorname{Tr}(a)=0 \text { and } Q(a)=1\end{cases}
$$

(2) If $\operatorname{Tr}\left(a^{1 / 3}\right)=1$, let β be the unique element satisfying $\operatorname{Tr}(\beta)=0$, $a^{1 / 3}=\beta^{4}+\beta+1$. Then

$$
\mathcal{K}(a) \equiv \begin{cases}0(\bmod 48) & \text { if } \operatorname{Tr}(a)=0, Q(a)=0, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 5,7(8) \\ 8(\bmod 48) & \text { if } \operatorname{Tr}(a)=0, Q(a)=1, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 1,3(8) \\ 12(\bmod 48) & \text { if } \operatorname{Tr}(a)=1, Q(a)=0, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 5,7(8) \\ 20(\bmod 48) & \text { if } \operatorname{Tr}(a)=1, Q(a)=1, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 1,3(8) \\ 24(\bmod 48) & \text { if } \operatorname{Tr}(a)=0, Q(a)=1, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 5,7(8) \\ 32(\bmod 48) & \text { if } \operatorname{Tr}(a)=0, Q(a)=0, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 1,3(8) \\ 36(\bmod 48) & \text { if } \operatorname{Tr}(a)=1, Q(a)=1, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 5,7(8) \\ 44(\bmod 48) & \text { if } \operatorname{Tr}(a)=1, Q(a)=0, n+\operatorname{Tr}\left(\beta^{3}\right) \equiv 1,3(8)\end{cases}
$$

Note that we consider $\operatorname{Tr}\left(\beta^{3}\right)$ to be an integer in the final congruences.

Proof. Follows from Theorem 5.1 above, and Theorem 3 of [1], which implies that $\mathcal{K}(a) \equiv 1(\bmod 3) \Leftrightarrow \operatorname{Tr}\left(a^{1 / 3}\right)=0$, and otherwise, $\mathcal{K}(a) \equiv 0$ $(\bmod 3)$ if and only if either $\operatorname{Tr}\left(\beta^{3}\right)=0$ and $n \equiv 5$ or $7(\bmod 8)$, or $\operatorname{Tr}\left(\beta^{3}\right)=1$ and $n \equiv 1$ or $3(\bmod 8)$.
6.2. Case n even. By a similar argument (with a few more cases) we can combine Theorem 5.1 above with Theorem 11 of [15] to classify the congruence modulo 48 of the Kloosterman sum on $\mathbb{F}_{2^{n}}$ where n is even. We omit the details.
7. Binary Kloosterman sums modulo 64. So far in this paper we have used the lifted trace modulo 2 (the usual finite field trace) and the lifted quadratic trace modulo 2 to characterise the Kloosterman sums modulo 16. Further information can be obtained using the lifted traces modulo higher powers of 2 . We will now show how the values taken by the lifted trace mod-
ulo 16 determine the congruence modulo 64 of binary Kloosterman sums, using the Gross-Koblitz formula.

The first part of this section, down to Theorem 7.1, is a restatement of Section 8 of [10] (with a correction when $q=4$).

For a field $\mathbb{F}_{q}=\mathbb{F}_{2^{n}}$, and a residue j modulo $q-1$, the Gross-Koblitz formula [16] states that

$$
\begin{equation*}
\tau\left(\bar{\omega}^{j}\right)=(-2)^{\operatorname{wt}_{2}(j)} \prod_{i=0}^{n-1} \Gamma_{2}\left(\left\langle\frac{2^{i} j}{q-1}\right\rangle\right) \tag{7}
\end{equation*}
$$

where $\langle x\rangle$ is the fractional part of x, and Γ_{2} is the 2 -adic Gamma function.

The p-adic Gamma function Γ_{p} is defined over \mathbb{N} by

$$
\Gamma_{p}(k)=(-1)^{k} \prod_{\substack{t<k \\(t, p)=1}} t .
$$

By the generalised Wilson's theorem, $\Gamma_{p}\left(p^{k}\right) \equiv 1\left(\bmod p^{k}\right)$, unless $p^{k}=4$, in which case $\Gamma_{2}(4) \equiv-1(\bmod 4)$.

Suppose $x \equiv y\left(\bmod 2^{k}\right)$. Observe that $(-1)^{x+2^{k}}=(-1)^{x}$, and that the product

$$
\prod_{\substack{x \leq t<x+2^{k} \\(t, 2)=1}} t \bmod 2^{k}
$$

consists of 2^{k-1} distinct elements, and hence is congruent to $\Gamma_{2}\left(2^{k}\right)$. It follows that $\Gamma_{2}(x) \equiv \Gamma_{2}(y)\left(\bmod 2^{k}\right)$ unless $k=2$, in which case $\Gamma_{2}(x) \equiv-\Gamma_{2}(y)$ $(\bmod 4)$.

Theorem 7.1. Let $q=2^{n}$. For $a \in \mathbb{F}_{q}$,

$$
\mathcal{K}(a) \equiv \begin{cases}0(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 0(\bmod 16), \\ 4(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 3(\bmod 16), \\ 8(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 10(\bmod 16), \\ 12(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 5(\bmod 16), \\ 16(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 4(\bmod 16), \\ 20(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 7(\bmod 16), \\ 24(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 14(\bmod 16), \\ 28(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 9(\bmod 16), \\ 32(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 8(\bmod 16), \\ 36(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 11(\bmod 16),\end{cases}
$$

$$
\mathcal{K}(a) \equiv \begin{cases}40(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 2(\bmod 16) \\ 44(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 13(\bmod 16) \\ 48(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 12(\bmod 16) \\ 52(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 15(\bmod 16) \\ 56(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 6(\bmod 16) \\ 60(\bmod 64) & \text { if } \widehat{\operatorname{Tr}}(a) \equiv 1(\bmod 16)\end{cases}
$$

Proof. By the statements above, the following congruences hold for residues mod 8:

$$
\left.\begin{array}{rl}
\Gamma_{2}(0) & \equiv 1(\bmod 8) \\
\Gamma_{2}(1) & \equiv 7(\bmod 8) \\
\Gamma_{2}(2) \equiv 1(\bmod 4), \\
\Gamma_{2}(3) & \equiv 7(\bmod 8) \\
\equiv 1(\bmod 8) & \equiv-1(\bmod 4), \\
\Gamma_{2}(4) & \equiv 3(\bmod 8) \\
\Gamma_{2}(5) & \equiv 5(\bmod 8) \\
\Gamma_{2}(6) & \equiv 1(\bmod 4), \\
\Gamma_{2}(\bmod 8) & \equiv-1(\bmod 4), \\
\Gamma_{2}(7) & \equiv 1(\bmod 8)
\end{array}\right)=1(\bmod 4) .
$$

If $j=j_{0}+2 j_{1}+4 j_{2}+\cdots$ is the 2 -adic expansion of j, then

$$
\Gamma_{2}\left(\left\langle\frac{2^{i} j}{q-1}\right\rangle\right) \equiv \Gamma_{2}\left(7 j_{0}+6 j_{1}+4 j_{2}\right)(\bmod 8) \equiv(-1)^{j_{2}+j_{1}+j_{0} j_{1}}(\bmod 4)
$$

Feeding this into the Gross-Koblitz formula (7) gives

$$
\begin{equation*}
g(j) \equiv(-1)^{Q(j)+\mathrm{wt}_{2}(j)} 2^{\mathrm{wt}_{2}(j)}\left(\bmod 2^{\mathrm{wt}_{2}(j)+2}\right) \tag{8}
\end{equation*}
$$

where $Q(j)=j_{0} j_{1}+j_{1} j_{2}+\cdots+j_{n-1} j_{0}$. Squaring (8) gives

$$
\begin{equation*}
g(j)^{2} \equiv 2^{2 \mathrm{wt}_{2}(j)}\left(\bmod 2^{2 \mathrm{wt}_{2}(j)+4}\right) \tag{9}
\end{equation*}
$$

It follows that $g(j)^{2} \equiv 4(\bmod 64)$ for j of weight 1 , and $g(j)^{2} \equiv 16(\bmod 64)$ for j of weight 2 , and $g(j)^{2} \equiv 0(\bmod 64)$ for j of weight greater than 2 .

Taking this into account, reading congruence (5) modulo 64 gives

$$
\mathcal{K}(a) \equiv-4 \widehat{\operatorname{Tr}}(a)-16 \widehat{Q}(a)(\bmod 64)
$$

As we have noted,

$$
2 \widehat{Q}(a)=\widehat{\operatorname{Tr}}(a)^{2}-\widehat{\operatorname{Tr}}(a)
$$

so the value of $\widehat{\operatorname{Tr}}(a) \bmod 16$ determines $\widehat{Q}(a) \bmod 8$, and so determines $16 \widehat{Q}(a) \bmod 64$. Thus $\widehat{\operatorname{Tr}}(a) \bmod 16$ completely determines $\mathcal{K}(a) \bmod 64$. The possibilities are enumerated in the statement.

Remark. Just as we did in Section 6, this theorem can be combined with the results on binary Kloosterman sums modulo 3 to yield a theorem characterizing binary Kloosterman sums modulo 192. We omit the details.

Acknowledgements. This research was supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006 and, in the case of the third author, the Irish Research Council for Science, Engineering and Technology.

References

[1] P. Charpin, T. Helleseth, and V. Zinoviev, The divisibility modulo 24 of Kloosterman sums on $\operatorname{GF}\left(2^{m}\right)$, m odd, J. Combin. Theory Ser. A 114 (2007), 322-338.
[2] K. Garaschuk and P. Lisoněk, On binary Kloosterman sums divisible by 3, Des. Codes Cryptogr. 49 (2008), 347-357.
[3] F. Göloğlu, G. McGuire, and R. Moloney, Ternary Kloosterman sums modulo 18 using Stickelberger's theorem, in: Sequences and Their Applications - SETA 2010, C. Carlet and A. Pott (eds.), Lecture Notes in Comput. Sci. 6338, Springer, Berlin, 2010, 196-203.
[4] B. H. Gross and N. Koblitz, Gauss sums and the p-adic Γ-function, Ann. of Math. (2) 109 (1979), 569-581.
[5] T. Helleseth and V. Zinoviev, On \mathbb{Z}_{4}-linear Goethals codes and Kloosterman sums, Des. Codes Cryptogr. 17 (1999), 269-288.
[6] N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton Univ. Press, Princeton, NJ, 1988.
[7] N. Katz et R. Livné, Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 723-726.
[8] G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Theory 36 (1990), 686-692.
[9] P. Langevin and G. Leander, Monomial bent functions and Stickelberger's theorem, Finite Fields Appl. 14 (2008), 727-742.
[10] P. Langevin, G. Leander, G. McGuire, and E. Zălinescu, Analysis of Kasami-Welch functions in odd dimension using Stickelberger's theorem, J. Combin. Number Theory 2 (2010).
[11] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge Univ. Press, Cambridge, 1986.
[12] P. Lisoněk, On the connection between Kloosterman sums and elliptic curves, in: Sequences and Their Applications - SETA 2008, S. W. Golomb, M. G. Parker, A. Pott, and A. Winterhof (eds.), Lecture Notes in Comput. Sci. 5203, Springer, Berlin, 2008, 182-187.
[13] P. Lisoněk and M. Moisio, On zeros of Kloosterman sums, to appear.
[14] M. Moisio, Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm, Acta Arith. 132 (2008), 329-350.
[15] -, The divisibility modulo 24 of Kloosterman sums on $\operatorname{GF}\left(2^{m}\right), m$ even, Finite Fields Appl. 15 (2009), 174-184.
[16] A. M. Robert, The Gross-Koblitz formula revisited, Rend. Sem. Mat. Univ. Padova 105 (2001), 157-170.
[17] D. Q. Wan, Minimal polynomials and distinctness of Kloosterman sums, Finite Fields Appl. 1 (1995), 189-203.
[18] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.
Faruk Göloğlu, Gary McGuire, Richard Moloney
School of Mathematical Sciences
University College Dublin
Dublin, Ireland
E-mail: farukgologlu@gmail.com
gary.mcguire@ucd.ie
richard.moloney@ucd.ie

[^0]: 2010 Mathematics Subject Classification: Primary 11L05.
 Key words and phrases: Kloosterman sums, Stickelberger's theorem, Gross-Koblitz formula.

