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1. Introduction. Let Kpn(a) denote the p-ary Kloosterman sum de-
fined by

Kpn(a) :=
∑
x∈Fpn

ζTr(xpn−2+ax),

for any a ∈ Fpn , where ζ is a primitive pth root of unity and Tr denotes the
absolute trace map Tr : Fpn → Fp defined as usual as

Tr(c) := c+ cp + cp
2

+ · · ·+ cp
n−1

.

Finding explicit zeros (explicit a’s with Kpn(a) = 0) of Kloosterman
sums is considered difficult. Recent research on Kloosterman sums is gen-
erally concentrated on proving divisibility results and characterisation of
Kloosterman sums modulo some integer (see [15, 12, 2, 1, 13]).

It is easy to see that binary Kloosterman sums are divisible by 4 = 22,
i.e., for all a ∈ F2n ,

(1) K2n(a) ≡ 0 (mod 4).

They also satisfy (see [8])

−2n/2+1 ≤ K2n(a) ≤ 2n/2+1,

and take every value which is congruent to 0 modulo 4 in that range.
Helleseth and Zinoviev proved the following result which improved (1)

one level higher, i.e., modulo 23, in the sense of describing the a for which
K2n(a) is 0 or 4 modulo 8.

Theorem 1.1 ([5]). For a ∈ F2n,

K2n(a) ≡
{

0 (mod 8) if Tr(a) = 0,
4 (mod 8) if Tr(a) = 1.
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This paper will improve Theorem 1.1 to higher levels, i.e., modulo 24, in
the sense of describing the residue class of K2n(a) modulo 24 in terms of a.
We will define the quadratic sum

Q(a) :=
∑

0≤i<j<n
a2i+2j

.

While the trace map Tr(a) is the sum of all linear powers of a, the sum Q(a)
is the sum of all quadratic powers of a. Using Stickelberger’s theorem we will
improve the Helleseth–Zinoviev result one level further to the modulus 24.
We will prove the following theorem.

Theorem 1.2. For a ∈ F2n,

K(a) ≡


0 (mod 16) if Tr(a) = 0 and Q(a) = 0,
4 (mod 16) if Tr(a) = 1 and Q(a) = 1,
8 (mod 16) if Tr(a) = 0 and Q(a) = 1,
12 (mod 16) if Tr(a) = 1 and Q(a) = 0.

We mention a recent result due to Lisoněk [12] that gives a description
of the elements a ∈ F2n for which K(a) ≡ 0 (mod 16):

Theorem 1.3. Let n ≥ 4. For any a ∈ F2n, K(a) is divisible by 16 if
and only if Tr(a) = 0 and Tr(y) = 0 where y2 + ay + a3 = 0.

In Sections 2 and 3, we introduce the techniques we use. In Section 4
we give an alternative proof of Theorem 1.1 using our techniques. We prove
Theorem 1.2 in Section 5. In Section 6 we combine Theorem 1.2 with the
result concerning Kloosterman sums modulo 3 to achieve the complete char-
acterisation modulo 48. Finally, in Section 7 we employ the Gross–Koblitz
formula to characterize the values of Kloosterman sums modulo 64 in terms
of the lifted trace that we introduce in Section 5.

We give a few remarks about the ternary case. It is easy to see that
ternary Kloosterman sums are divisible by 3, i.e., for all a ∈ F3n ,

(2) K3n(a) ≡ 0 (mod 3).

Ternary Kloosterman sums satisfy (see Katz and Livné [7])

−2
√

3n < K3n(a) < 2
√

3n

and take every value which is congruent to 0 modulo 3 in that range.
In a recent paper, we used Stickelberger’s theorem to prove the following

result on ternary Kloosterman sums, which improved (2) one level higher.

Theorem 1.4 ([3]). For a ∈ F3n,

K3n(a) ≡


0 (mod 9) if Tr(a) = 0,
3 (mod 9) if Tr(a) = 1,
6 (mod 9) if Tr(a) = 2.



Binary Kloosterman sums 271

2. Stickelberger’s theorem. Let p be a prime (in Section 4 we set
p = 2) and let q = pn. We consider multiplicative characters taking their
values in an algebraic extension of the p-adic numbers Qp. Let ξ be a prim-
itive (q − 1)th root of unity in a fixed algebraic closure of Qp. The group

of multiplicative characters of Fq (denoted F̂×q ) is cyclic of order q − 1. The

group F̂×q is generated by the Teichmüller character ω : F×q → Qp(ξ), which,
for a fixed generator t of F×q , is defined by

ω(tj) = ξj .

We extend ω to Fq by setting ω(0) to be 0.
Let ζ be a primitive pth root of unity in the fixed algebraic closure of Qp.

Let µ be the canonical additive character of Fq,

µ(x) = ζTr(x).

The Gauss sum (see [11, 18]) of a character χ ∈ F̂×q is defined as

τ(χ) = −
∑
x∈Fq

χ(x)µ(x).

For any positive integer j, let wtp(j) denote the p-weight of j, i.e.,

wtp(j) =
∑
i

ji

where
∑

i jip
i is the p-ary expansion of j. Just for shorthand notation we

define
g(j) := τ(ω−j) = τ(ω̄j).

Let π be the unique (p− 1)th root of −p in Qp(ξ, ζ) satisfying

π ≡ ζ − 1 (mod πp−1).

Wan [17] noted that the following improved version of Stickelberger’s theo-
rem is a direct consequence of the Gross–Koblitz formula [4, 16].

Theorem 2.1 ([17]). Let 1 ≤ j < q − 1 and let j = j0 + j1p + · · · +
jn−1p

n−1. Then

g(j) ≡ πwtp(j)

j0! · · · jn−1!
(mod πwtp(j)+p−1).

Stickelberger’s theorem, as usually stated, is the same congruence mod-
ulo πwtp(j)+1. Note that when p = 2, which is the case in this paper, Theorem
2.1 is the same as this original Stickelberger theorem.

We know (see [4]) that (π) is the unique prime ideal of Qp(ζ, ξ) lying
above p. Since Qp(ζ, ξ) is an unramified extension of Qp(ζ), a totally ramified
(degree p − 1) extension of Qp, it follows that (π)p−1 = (p) and νp(π) =
1/(p− 1). Here νp denotes the p-adic valuation.
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Therefore Theorem 2.1 implies that νπ(g(j)) = wtp(j), and because
νp(g(j)) = νπ(g(j)) · νp(π) we get

(3) νp(g(j)) =
wtp(j)
p− 1

.

In this paper we have p = 2. In that case, π = −2 and equation (3)
becomes

(4) ν2(g(j)) = wt2(j).

3. Fourier analysis. The Fourier transform of a function f : Fq → C
at a ∈ Fq is defined to be

f̂(a) =
∑
x∈Fq

f(x)µ(ax).

The complex number f̂(a) is called the Fourier coefficient of f at a.
Consider monomial functions defined by f(x) = µ(xd). When d = −1 we

have f̂(a) = Kpn(a). By a similar Fourier analysis argument to that in Katz
[6] or Langevin–Leander [9], for any d we have

f̂(a) =
q

q − 1
+

1
q − 1

q−2∑
j=1

τ(ω̄j)τ(ωjd)ω̄jd(a)

and hence

f̂(a) ≡ −
q−2∑
j=1

τ(ω̄j)τ(ωjd)ω̄jd(a) (mod q).

We will use this to obtain congruence information about Kloosterman sums.
Putting d = −1 = pn − 2, the previous congruence becomes

(5) K(a) ≡ −
q−2∑
j=1

(g(j))2ωj(a) (mod q).

Equation (4) gives the 2-adic valuation of the Gauss sums g(j), and the 2-
adic valuation of each term in equation (5) follows. Our proofs will consider
(5) at various levels, i.e., modulo 23, 24 and 26.

4. Binary Kloosterman sums modulo 8. Let q = 2n for some integer
n ≥ 2.

To warm up we shall give a new proof of the following result due to
Helleseth and Zinoviev [5]. This is equivalent to Theorem 1.1.

Theorem 4.1. For a ∈ Fq, K(a) ≡ 0 (mod 8) if and only if Tr(a) = 0.
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Proof. If f(x) = µ(xd) let

Md = min
j∈{1,...,2n−2}

[wt2(j) + wt2(−jd)],

and let

Jd = {j ∈ {1, . . . , 2n − 2} : wt2(j) + wt2(−jd) = Md}.
Lemma 1 of [10] states that if f(x) = µ(xd), then

(6) 2Md+1 | f̂(a) ⇔
∑
j∈Jd

a−jd = 0.

Let d = −1. Then f̂(a) is the Kloosterman sum K(a) on Fq, M−1 = 2, and

J−1 = {j ∈ {1, . . . , 2n − 2} : wt2(j) = 1}.
It follows that ∑

j∈J−1

aj = Tr(a),

and (6) implies that 8 divides K(a) if and only if Tr(a) = 0.

5. Binary Kloosterman sums modulo 16. Again q = 2n. For i =
1, 2, . . . , let

Wi = {j ∈ {1, . . . , 2n − 2} : wt2(j) = i}.
Then we may write

Tr(a) =
∑
j∈W1

aj .

Recall that ω : Fq → Q2(ξ) is the Teichmüller character.
We define the lifted trace T̂r : Fq → Q2(ξ) by

T̂r(a) =
∑
j∈W1

ω(aj)

and note that T̂r(a) ≡ Tr(a) (mod 2).
We define the quadratic trace Q : Fq → F2 by

Q(a) =
∑
j∈W2

aj

and define the lifted quadratic trace Q̂ : Fq → Q2(ξ) by

Q̂(a) =
∑
j∈W2

ω(aj).

Then Q̂(a) ≡ Q(a) (mod 2).
Next we prove our theorem on K(a) mod 16.
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Theorem 5.1. Let q = 2n. For a ∈ Fq,

K(a) ≡


0 (mod 16) if Tr(a) = 0 and Q(a) = 0,
4 (mod 16) if Tr(a) = 1 and Q(a) = 1,
8 (mod 16) if Tr(a) = 0 and Q(a) = 1,
12 (mod 16) if Tr(a) = 1 and Q(a) = 0.

Proof. Let q = 2n and let a ∈ Fq. As in the proof of Theorem 4.1, K(a) =
f̂(a), where f(x) = µ(x−1). Stickelberger’s theorem implies g(j) ≡ 2wt2(j)

(mod 2wt2(j)+1), so squaring gives

g(j)2 ≡ 22wt2(j) (mod 22wt2(j)+2).

It follows that g(j)2 ≡ 4 (mod 16) for j of weight 1, and g(j)2 ≡ 0 (mod 16)
for j of weight at least 2. Thus congruence (5) modulo 16 gives

K(a) ≡ −
∑
j∈W1

g(j)2ωj(a) (mod 16)

or in other words
K(a) ≡ −4 T̂r(a) (mod 16).

It remains to determine T̂r(a) mod 4.
This can be done in terms of the Fq-sums Tr(a) and Q(a) by noting that

T̂r(a)2 =
∑
j∈W1

∑
k∈W1

ω(aj)ω(ak) =
∑

j,k∈W1

ω(aj+k)

= 2
∑
i∈W2

ω(ai) +
∑
j∈W1

ω(aj) = 2Q̂(a) + T̂r(a).

However

T̂r(a)2 ≡ 0 (mod 4) ⇔ T̂r(a) ≡ 0 (mod 2) ⇔ Tr(a) = 0,

T̂r(a)2 ≡ 1 (mod 4) ⇔ T̂r(a) ≡ 1 (mod 2) ⇔ Tr(a) = 1.

Recalling that Q̂(a) ≡ Q(a) (mod 2), and observing that we only require
Q̂(a) mod 2, we get

T̂r(a) ≡


0 (mod 4) if Tr(a) = 0 and Q(a) = 0,
1 (mod 4) if Tr(a) = 1 and Q(a) = 0,
2 (mod 4) if Tr(a) = 0 and Q(a) = 1,
3 (mod 4) if Tr(a) = 1 and Q(a) = 1,

which proves the result.

6. Binary Kloosterman sums modulo 48. We combine the results
above with the result on the divisibility modulo 3 of binary Kloosterman
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sums from [1, 2, 14, 15] to fully characterise the congruence modulo 48 of
binary Kloosterman sums.

6.1. Case n odd

Theorem 6.1. Let q = 2n and let a ∈ F×q where n is odd and n ≥ 5.

(1) If Tr(a1/3) = 0 then

K(a) ≡


4 (mod 48) if Tr(a) = 1 and Q(a) = 1,
16 (mod 48) if Tr(a) = 0 and Q(a) = 0,
28 (mod 48) if Tr(a) = 1 and Q(a) = 0,
40 (mod 48) if Tr(a) = 0 and Q(a) = 1.

(2) If Tr(a1/3) = 1, let β be the unique element satisfying Tr(β) = 0,
a1/3 = β4 + β + 1. Then

K(a) ≡



0 (mod 48) if Tr(a) = 0, Q(a) = 0, n+ Tr(β3) ≡ 5, 7 (8),
8 (mod 48) if Tr(a) = 0, Q(a) = 1, n+ Tr(β3) ≡ 1, 3 (8),
12 (mod 48) if Tr(a) = 1, Q(a) = 0, n+ Tr(β3) ≡ 5, 7 (8),
20 (mod 48) if Tr(a) = 1, Q(a) = 1, n+ Tr(β3) ≡ 1, 3 (8),
24 (mod 48) if Tr(a) = 0, Q(a) = 1, n+ Tr(β3) ≡ 5, 7 (8),
32 (mod 48) if Tr(a) = 0, Q(a) = 0, n+ Tr(β3) ≡ 1, 3 (8),
36 (mod 48) if Tr(a) = 1, Q(a) = 1, n+ Tr(β3) ≡ 5, 7 (8),
44 (mod 48) if Tr(a) = 1, Q(a) = 0, n+ Tr(β3) ≡ 1, 3 (8).

Note that we consider Tr(β3) to be an integer in the final congru-
ences.

Proof. Follows from Theorem 5.1 above, and Theorem 3 of [1], which
implies that K(a) ≡ 1 (mod 3) ⇔ Tr(a1/3) = 0, and otherwise, K(a) ≡ 0
(mod 3) if and only if either Tr(β3) = 0 and n ≡ 5 or 7 (mod 8), or
Tr(β3) = 1 and n ≡ 1 or 3 (mod 8).

6.2. Case n even. By a similar argument (with a few more cases) we
can combine Theorem 5.1 above with Theorem 11 of [15] to classify the
congruence modulo 48 of the Kloosterman sum on F2n where n is even. We
omit the details.

7. Binary Kloosterman sums modulo 64. So far in this paper we
have used the lifted trace modulo 2 (the usual finite field trace) and the lifted
quadratic trace modulo 2 to characterise the Kloosterman sums modulo 16.
Further information can be obtained using the lifted traces modulo higher
powers of 2. We will now show how the values taken by the lifted trace mod-
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ulo 16 determine the congruence modulo 64 of binary Kloosterman sums,
using the Gross–Koblitz formula.

The first part of this section, down to Theorem 7.1, is a restatement of
Section 8 of [10] (with a correction when q = 4).

For a field Fq = F2n , and a residue j modulo q − 1, the Gross–Koblitz
formula [16] states that

(7) τ(ω̄j) = (−2)wt2(j)
n−1∏
i=0

Γ2

(〈
2ij
q − 1

〉)
where 〈x〉 is the fractional part of x, and Γ2 is the 2-adic Gamma func-
tion.

The p-adic Gamma function Γp is defined over N by

Γp(k) = (−1)k
∏
t<k

(t,p)=1

t.

By the generalised Wilson’s theorem, Γp(pk) ≡ 1 (mod pk), unless pk = 4,
in which case Γ2(4) ≡ −1 (mod 4).

Suppose x ≡ y (mod 2k). Observe that (−1)x+2k
= (−1)x, and that the

product ∏
x≤t<x+2k

(t,2)=1

t mod 2k

consists of 2k−1 distinct elements, and hence is congruent to Γ2(2k). It follows
that Γ2(x) ≡ Γ2(y) (mod 2k) unless k = 2, in which case Γ2(x) ≡ −Γ2(y)
(mod 4).

Theorem 7.1. Let q = 2n. For a ∈ Fq,

K(a) ≡



0 (mod 64) if T̂r(a) ≡ 0 (mod 16),
4 (mod 64) if T̂r(a) ≡ 3 (mod 16),
8 (mod 64) if T̂r(a) ≡ 10 (mod 16),
12 (mod 64) i f T̂r(a) ≡ 5 (mod 16),
16 (mod 64) if T̂r(a) ≡ 4 (mod 16),
20 (mod 64) if T̂r(a) ≡ 7 (mod 16),
24 (mod 64) if T̂r(a) ≡ 14 (mod 16),
28 (mod 64) if T̂r(a) ≡ 9 (mod 16),
32 (mod 64) if T̂r(a) ≡ 8 (mod 16),
36 (mod 64) if T̂r(a) ≡ 11 (mod 16),
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K(a) ≡



40 (mod 64) if T̂r(a) ≡ 2 (mod 16),
44 (mod 64) if T̂r(a) ≡ 13 (mod 16),
48 (mod 64) if T̂r(a) ≡ 12 (mod 16),
52 (mod 64) if T̂r(a) ≡ 15 (mod 16),
56 (mod 64) if T̂r(a) ≡ 6 (mod 16),
60 (mod 64) if T̂r(a) ≡ 1 (mod 16).

Proof. By the statements above, the following congruences hold for re-
sidues mod 8:

Γ2(0) ≡ 1 (mod 8) ≡ 1 (mod 4),
Γ2(1) ≡ 7 (mod 8) ≡ −1 (mod 4),
Γ2(2) ≡ 1 (mod 8) ≡ 1 (mod 4),
Γ2(3) ≡ 7 (mod 8) ≡ −1 (mod 4),
Γ2(4) ≡ 3 (mod 8) ≡ −1 (mod 4),
Γ2(5) ≡ 5 (mod 8) ≡ 1 (mod 4),
Γ2(6) ≡ 7 (mod 8) ≡ −1 (mod 4),
Γ2(7) ≡ 1 (mod 8) ≡ 1 (mod 4).

If j = j0 + 2j1 + 4j2 + · · · is the 2-adic expansion of j, then

Γ2

(〈
2ij
q − 1

〉)
≡ Γ2(7j0 + 6j1 + 4j2) (mod 8) ≡ (−1)j2+j1+j0j1 (mod 4).

Feeding this into the Gross–Koblitz formula (7) gives

(8) g(j) ≡ (−1)Q(j)+wt2(j)2wt2(j) (mod 2wt2(j)+2)

where Q(j) = j0j1 + j1j2 + · · ·+ jn−1j0. Squaring (8) gives

(9) g(j)2 ≡ 22wt2(j) (mod 22wt2(j)+4).

It follows that g(j)2 ≡ 4 (mod 64) for j of weight 1, and g(j)2 ≡ 16 (mod 64)
for j of weight 2, and g(j)2 ≡ 0 (mod 64) for j of weight greater than 2.

Taking this into account, reading congruence (5) modulo 64 gives

K(a) ≡ −4T̂r(a)− 16Q̂(a) (mod 64).

As we have noted,

2Q̂(a) = T̂r(a)2 − T̂r(a),

so the value of T̂r(a) mod 16 determines Q̂(a) mod 8, and so determines
16Q̂(a) mod 64. Thus T̂r(a) mod 16 completely determines K(a) mod 64.
The possibilities are enumerated in the statement.
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Remark. Just as we did in Section 6, this theorem can be combined
with the results on binary Kloosterman sums modulo 3 to yield a theorem
characterizing binary Kloosterman sums modulo 192. We omit the details.
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